
Towards Large-Scale Network Virtualization

Panagiotis Papadimitriou†, Ines Houidi§, Wajdi Louati§,
Djamal Zeghlache§, Christoph Werle⋆, Roland Bless⋆, Laurent Mathy‡

†Institute of Communications Technology, Leibniz University of Hannover, Germany
panagiotis.papadimitriou@ikt.uni-hannover.de

§Institut Telecom, Telecom SudParis, France
{ines.houidi, wajdi.louati, djamal.zeghlache}@it-sudparis.eu

⋆Karlsruhe Institute of Technology, Germany
{werle, bless}@tm.uka.de

‡Computing Department, Lancaster University, UK
laurent@comp.lancs.ac.uk

Abstract. Most existing virtual network (VN) provisioning approaches
assume a single administrative domain and therefore, VN deployments
are limited to the geographic footprint of the substrate provider. To
enable wide-area VN provisioning, network virtualization architectures
need to address the intricacies of inter-domain aspects, i.e., how to provi-
sion VNs with limited control and knowledge of any aspect of the physical
infrastructure.
To this end, we present a framework for large-scale VN provisioning. We
decompose VN provisioning into multiple steps to overcome the impli-
cations of limited information on resource discovery and allocation. We
present a new resource selection algorithm with simultaneous node and
link mapping to assign resources within each domain. We use a signaling
protocol that integrates resource reservations for virtual link setup with
Quality-of-Service guarantees. Our experimental results show that small
VNs can be provisioned within a few seconds.

1 Introduction

The Internet has been experiencing a remarkable emergence of new applications
and network services. This is due to the flexibility of the Internet’s original design
and the resulting ability to act as a carrier for nearly arbitrary services. While
the services on top of the Internet evolved, the core of the Internet remained
unchanged over the past decades with the exception of small patches. Thereby,
the current Internet infrastructure remains sub-optimal for many network appli-
cations that require high performance, reliability and/or security.

To overcome this impasse, numerous Future Internet Initiatives [7], [18], [1]
leverage on network virtualization to concurrently deploy and operate different
network architectures within virtual networks (VNs). Recently, technology has
evolved to satisfy the various needs for full network virtualization across multi-
ple administrative domains. Although large-scale VN setup may be technically
feasible, VN provisioning and management requires the separation between the



network operations and the physical infrastructure. A newly envisioned level of
indirection already exists in GENI [7], 4WARD [1], and Cabernet [18].

In this context, VN Providers (VNPs) that act as brokers for virtual resources
between VN Operators (VNOs) and Physical Infrastructure Providers (InPs) will
have to provision VNs without having control or even knowledge of any aspect of
the physical infrastructure (see [15] for VNP and VNO definitions). This entails
serious implications on resource discovery and allocation, since InPs will not
be willing to disclose their resource and topology information to third parties
(i.e., VNPs). Currently, most existing VN embedding approaches are limited
to a single administrative domain, assuming complete knowledge of physical
resources and the underlying substrate topology. Thereby, such VN deployments
are limited to the geographic footprint of the substrate provider. Recent work
[6] presents a multi-domain VN embedding framework, where VN requests are
relayed across InPs till the embedding is completed. However, this work lacks the
required embedding algorithms and their evaluation and therefore, it is unclear
how fast it converges to a full embedding.

In this paper, we present a VN provisioning framework that allows VNPs
to discover and allocate resources across multiple physical infrastructures with
limited information disclosure. Furthermore, we propose a new algorithm with
simultaneous node and link mapping for resource assignment within InPs. To
provide the required interoperability across InPs for virtual link setup, we use a
signaling protocol based on the Next Steps in Signaling (NSIS) framework [8].
Using a prototype implementation, we evaluate the performance of VN provi-
sioning with a diverse size of virtual and substrate networks.

The remainder of the paper is organized as follows. Section 2 gives an overview
of the provisioning framework. In Section 3, we present our resource assignment
algorithm with simultaneous node and link mapping within InPs. Section 4 dis-
cusses our signaling protocol for virtual link setup. Section 5 provides experimen-
tal results on VN provisioning and performance analysis of virtual link setup.
Finally, in Section 6, we highlight our conclusions and discuss future work.

2 Virtual Network Provisioning Overview

In this section, we provide an overview of our multi-domain VN provisioning
framework. In contrast to VNs deployed on top of a single shared substrate,
multi-domain VN provisioning is coordinated by VN Providers, which have lim-
ited resource and topology information of the underlying substrates. Hence, vir-
tual resources should be initially discovered and matched at a rather high level
of abstraction (i.e., VNP) to identify candidate resources from which the most
appropriate resources will be selected based on detailed information only avail-
able to InPs. Thereby, our approach consists in decomposing VN provisioning
into the following steps:

Resource Advertisement: To facilitate resource discovery, resource/service
advertisement from the InPs is required. An InP will not expose any informa-
tion on the substrate topology nor the number of virtual resource instances it



is willing to provide for the construction of VNs. Separate node and link speci-
fications will essentially describe different types of virtual resources that can be
offered by the InPs. Hence, the VNP will be in position to match requested with
offered virtual resources across InPs. Thereby, we consider the InPs disclosing a
set of offered virtual nodes and links accompanied with static attributes (e.g.,
node/link type, operating system, number of network interfaces, geographic lo-
cation) and the associated cost. Virtual resource descriptions are formed by
extracting the static attributes from resource repositories at the InPs. Upon re-
ceiving any advertised information, the VNP registers it into a local repository
which is subsequently used for the resource matching step.

Resource Matching: Resource matching is the identification of a set of re-
sources offered by InPs that fulfill the requirements for each individual re-
source request. We consider a VN request as a weighted undirected graph Gv =
(Nv, Lv), where Nv is the set of virtual nodes nv and Lv is the set of virtual
links lv between nodes of the set Nv. For a given Gv request, VNP determines
for each nv ∈ Nv the corresponding Match(nv) set among resources advertised
from InPs. This set essentially includes all possible candidates for each requested
virtual node.

VN Splitting: Since a Match(nv) set may include resources from multiple
InPs, the VNP has to decide to which InP each requested virtual node nv should
be assigned. Essentially, the VNP should split the VN graph into sub-graphs
that will compose the requests for each target InP, while minimizing the cost for
allocating all nodes and links across InPs. Previous work [10] provides heuristic
and exact methods for VN splitting.

Resource Assignment: Resource assignment relies on a selection process
within each InP, since full knowledge of the physical resources and topology
is required. Each InP assigns its partial VN to the substrate network using a VN
mapping algorithm. Unlike most existing work [17], [16], [12], where node and
link mapping is achieved sequentially, we develop a new heuristic resource assign-
ment algorithm with simultaneous node and link mapping. The main objective
of this algorithm is to optimize load balancing over substrate nodes. Further-
more, our heuristic algorithm yields faster execution than multi-commodity flow
algorithms (e.g., [5]), which is critical for embedding VNs onto large physical
infrastructures.

VN Instantiation: Upon resource assignment, the selected substrate resources
are allocated by the InPs in order to instantiate the requested VN. Within each
InP, VN instantiation is coordinated by a dedicated management node, which
signals requests to substrate nodes for virtual node and link setup. Our prototype
implementation uses Xen [3] for node/router virtualization and Click Modular
Router [11] (running in the Linux kernel) for packet encapsulation/decapsulation
and packet forwarding. Each virtual node request (within each InP) is handled
by a separate thread, speeding up VN instantiation. Similarly, separate threads
allow VN setup to proceed in parallel across InPs. We use NSIS (and particu-
larly the implementation available in [14]) to carry the required information for



virtual link setup across inter-domain paths. Besides providing interoperability,
our signaling protocol improves performance since it couples virtual link setup
with resource reservation via the QoS Signaling Layer Protocol (NSLP) [13].

3 Resource Assignment

Assigning VN graphs to shared substrate networks is known as an NP-hard
problem. Hereby, we propose a heuristic resource assignment algorithm where
node and link mapping phases are simultaneously executed in one stage.

3.1 Embedding Model and Problem Formulation

Substrate Network Model: The substrate network can be represented by a
weighted undirected graph Gs = (Ns, Ls), where Ns is the set of substrate nodes
and Ls is the set of substrate links between nodes of the set Ns. Each substrate
node ns ∈ Ns is associated with the capacity weight value C(ns) which denotes
the available capacity of the physical node ns. Each substrate link ls(i, j) ∈ Ls

between two substrate nodes i and j is associated with the available bandwidth
capacity C(ls(i, j)).

Let ψ be a set of substrate paths in the substrate network Gs. The available
bandwidth capacity C(P ) associated to a substrate path P ∈ ψ between two
substrate nodes can be evaluated as the minimal residual bandwidth of the links
along the substrate path:

C(P ) = min
ls(i,j)∈P

C(ls(i, j)) (1)

Let Vs and Ms denote a node capacity vector and a link capacity matrix,
respectively, associated to the graph Gs such that:

– Vs=[C(ni
s)] is the available capacity vector for substrate nodes ni

v, where
1 ≤ i ≤ |Ns|.

– Ms=[C(ls(i, j))] is the available bandwidth capacity matrix for substrate
links lv ∈ Ls between nodes ni

s and nj
s, where 1 ≤ i, j ≤ |Ns|.

Virtual Network Model: An InP receives requests to set up on-demand VN
topologies with different capacity parameters over the shared substrate. Each
virtual node nv ∈ Nv is associated with a minimum required capacity denoted
by C(nv). Each virtual link lv ∈ Lv between two virtual nodes is associated with
a capacity weight value C(lv) which denotes the minimum required bandwidth
capacity of the virtual link lv.

We represent a VN request with the quadruple Req = (Reqid , Gv, Vv,Mv),
where Reqid represents the unique identifier for the request Req. Vv and Mv

denote a node capacity vector and a link capacity matrix, respectively, associated
to the graph Gv, so that:

– Vv=[C(ni
v)] is the minimum required capacity vector for virtual nodes ni

v,
where 1 ≤ i ≤ |Nv|.

– Mv=[C(lv(i, j))] is the minimum required bandwidth capacity matrix for
virtual links lv ∈ Lv between nodes ni

v and nj
v, where 1 ≤ i, j ≤ |Nv|.



VN Mapping Problem Formulation: Based on the substrate and VN mod-
els, the challenge is to find the best mapping between the virtual graph Gv

and the substrate graph Gs given specific objectives. Our goal is to provide a
mapping, denoted by MAP, that optimizes load balancing across the substrate
resources with respect to the capacity constraints. Finding the optimal VN map-
ping solution that satisfies multiple objectives and constraints can be formulated
as an NP-hard problem, as follows:

Node Mapping: Let MAPN : Nv → NReqid
s ⊆ Ns denote a mapping

function between virtual nodes and substrate nodes, where NReqid
s represents

the set of substrate nodes capable of supporting at least one virtual node of a
request Reqid, i.e., NReqid

s = {ns ∈ Ns | C(ns) ≥ minnv∈Nv
{C(nv)}}.

Link Mapping: Let MAPL : Lv → φ ⊆ ψ denote a mapping function be-
tween virtual links and substrate paths, where φ = {P ∈ ψ | C(P ) ≥ C(lv), ∀ lv ∈
Lv}.

3.2 Resource Assignment Algorithm

We propose a centralized and heuristic resource assignment algorithm (Algo-
rithm 1) with simultaneous node and link mapping. Since our objective is to
optimize load balancing over substrate nodes, we use a greedy node mapping
algorithm to assign virtual nodes to the substrate nodes with the maximum
substrate resources.

Once a virtual node nv is assigned, all virtual links directly connected to this
node as well as the set of its neighborhood nodes Nei(nv) are assigned. Virtual
link assignment is based on the shortest-path (SPT) algorithm. To accomplish
that, two predefined functions are used in this algorithm: SORT and HEAD

function. SORT is a sorting function that sorts a vector of nodes (e.g., Ns)
based on their capacities by ordering them from higher to lower capacity. The
HEAD function returns the first element (node identifier) of the vector. The
SPT algorithm computes a path from node ns to each node k (ns 6= k) so that
the weight between node ns and all other nodes is minimum. Let Pk denotes
the shortest path between node ns and a substrate node k. The substrate path
Pk is associated with the minimum path capacity C(Pk) between k and ns (see
Equation 1). Consequently, the SPT algorithm returns a set Tns

associated to
the node ns such that: Tns

= {(Pk, C(Pk))∀ k ∈ NReqid
s }.

For each virtual node j ∈ Nei(Nv) (starting with the largest required ca-
pacity) the algorithm will select the substrate node k such that C(Pk) is min-
imal. The node k should also satisfy virtual node and link constraints so that
C(k) > C(j) and C(Pk) > Mv[nv][j]. Therefore, the virtual node j is assigned
to the substrate node k and the virtual link lv(nv, j) is assigned to the substrate
path Pk at one stage (i.e., simultaneous node and link mapping). The same pro-
cess is repeated for the residual VN graph until all virtual nodes and links are
assigned. Once the entire request is mapped successfully onto the substrate, the
algorithm execution is terminated.

In order to satisfy the node and link constraints of incoming VN requests,
updated resource information is needed. To this end, the substrate nodes monitor



CPU load and link bandwidth which are subsequently communicated to the InP
management node before embedding a requested VN.

Algorithm 1 Resource Assignment

Inputs: Gs = (NReqid
s , Ls), Vs,Ms

Gv = (Nv, Lv), Vv,Mv

SORT(Vv)

SORT(Vs)

nv ← HEAD(Vv)

ns ← HEAD(Vs)

MAPN (nv) ← ns // Virtual node with largest required capacity is mapped to the
substrate node with maximum available capacity

SORT(Nei(nv))

for each lv(nv , j) ∈ Lv; j ∈ Nei(nv) // Mapping all virtual links directly connected
to the virtual node nv and its adjacency list Nei(nv) do

a. Tns
← SPT(ns)

b. k ← {k ∈ NReqid
s \ ns; C(Pk) isminimal} such that:

C(Pk) > Mv [nv][j] and Vs[k] > Vv[j] // substrate node k should satisfy the
requested node and link constraints

i. MAPN (j)← k

ii. MAPL(lv(nv , j))← Pk

iii. Nv ← Nv \ j and Lv ← Lv \ lv(nv, j) // Removing the already assigned
virtual nodes and links from the VN request graph

if Nv = ∅ then

STOP

else

GOTO 1 with the residual graph of the VN request Gv

end if

end for

4 Virtual Link Setup

The setup of virtual links across multiple domains with QoS guarantees requires
a resource reservation protocol that supports inter-domain signaling. Recently,
IETF approved the Next Steps in Signaling Protocol (NSIS) suite which provides
a resource reservation protocol for inter-domain signaling (i.e., QoS NSLP [13]).
One major enabler in this context is the generic QoS parameter specification
using the QSPEC template [2], which can be mapped to domain specific QoS
mechanisms. Irrespective of the herein proposed NSIS-based solution, however,
InPs must agree on a common method and signaling protocol to set up virtual
links between their domains a priori.

We use the NSIS protocol suite (the NSIS-ka implementation [14]) to com-
bine the virtual link setup with the resource reservation signaling via the QoS



NSIS

Daemon

Router X

eth0

IP forwarding

eth0

Node

Management

Agent

NSIS

Daemon

Dom 0Dom U1

InP

Management

Node

Router A Router B

eth0

eth0

Dom 0

CLICK CLICK

1. Setup virtual link from 

DomU1@A � DomU1@B

3. RESERVE

+ VLSP Object

5. RESERVE

+ VLSP Object
4. Ignores VLSP 

object, performs 

Admission Control

2. Init virtual link setup

DomU1@A � DomU1@B

7. RESPONSE

9. 

RESPONSE

6. Setup virtual link

DomU1@A � DomU1@B

eth1

8. Reserves

resources

10. Setup virtual link

DomU1@A � DomU1@B

virtual link

IP in IP tunnel

Dom U1

eth0

Node

Management

Agent

NSIS

Daemon

Fig. 1. Virtual link setup.

NSLP. This integration reduces the setup time of a virtual link, as the resource
reservation at the same time conveys the necessary address information of the
virtual link. A QoS NSLP extension mechanism for carrying new objects is used
to convey the newly created virtual link setup protocol (VLSP) object. Only the
substrate nodes hosting the virtual nodes at the edges of the virtual link need
to support the VLSP object and act on it accordingly by installing any state
required for virtual link setup. Intermediate substrate nodes may be involved in
guaranteeing QoS properties of the virtual link or an aggregate of virtual links
and therefore need to process the QoS NSLP content. They can, however, simply
ignore and forward the contained VLSP object, which is ensured by the NSLP
object extensions flags in the VLSP object header. The path-coupled signaling
approach of NSIS ensures that a viable substrate path with enough resources
exists to accommodate the new virtual link. The VLSP object was also used
in [4] to carry the required information for virtual link setup combined with
authentication.

Fig. 1 shows the sequence of events during the setup of a unidirectional virtual
link: Router A and Router X belong to InP1, whereas Router B resides in InP2’s
infrastructure. For simplicity, we consider Router B acting as gateway border
router of InP2. Both routers A and B, which support virtualization, provide
a control interface to their corresponding InP management node and run an
NSIS daemon that interprets and processes the VLSP object. The intermediate
Router X merely needs to perform general QoS tasks, such as admission control,
resource reservation, and policing (as a border router), and hence it can use
NSIS without any modifications.

The setup of a unidirectional virtual link between two virtual nodes (from
DomU1@A to DomU1@B, both part of the same VN) is triggered by a request
of the InP management node to the substrate node management agent (Step
1 ). This request contains the specification of the substrate link endpoints and
the virtual link endpoints. A virtual link endpoint description at least includes
identifiers for the VN, the virtual node, and the respective interface but can be
easily extended. In Step 2, the request is passed via inter-process communication



(IPC) to the NSIS daemon, which puts the QoS requirements (QSPEC object)
and the virtual link description (VLSP object) into a QoS NSLP RESERVE
message. In Step 3, a signaling connection with the NSIS instance on Router B is
established and the QoS NLSP RESERVE message is sent. As mentioned before,
the intermediate Router X only interprets the contained QSPEC object and
performs admission control for the virtual link while the VLSP object is ignored
(Step 4 ) and forwarded to Router B in the RESERVE message (Step 5 ). On
arrival of the RESERVE message at Router B, admission control is performed
and on success, resources are reserved and the local end of the virtual link is set
up (Step 6). A RESPONSE message is sent back towards Router A (Step 7 ),
which causes Router X to reserve the required resources for the virtual link
(Step 8 ) and to forward the RESPONSE to Router A (Step 9 ). Router A
then reserves local resources and installs the virtual link (Step 10 ), thereby
establishing the data plane from DomU1@A to DomU1@B.

In Section 5.2, we subject our inter-domain solution to virtual link setup to
a detailed performance analysis for the scenario given in Fig. 1.

5 Evaluation

In this section, we use our prototype implementations to evaluate the perfor-
mance with VN provisioning and provide insights into inter-domain virtual link
setup.

5.1 Virtual Network Provisioning

VN provisioning experiments are carried out in the Heterogeneous Experimental

Network (HEN) [9] using Dell PowerEdge 2950 systems with two Intel quad-
core CPUs, 8 GB of DDR2 667MHz memory and 8 or 12 Gigabit ports. A
fixed number of HEN nodes compose the substrate. To explore VN provisioning
with multiple InPs, these nodes are split into multiple logical clusters, each one
serving as an independent InP. Separate HEN nodes undertake the role of VNP
and VNO.

First, we evaluate VN provisioning with a single domain. We measure the
time required to provision VNs with varying size (3–10 nodes/links). Fig. 2(a)
shows the substrate topology which is composed of 10 nodes. In Fig. 2(b), we
demonstrate the time required for each provisioning step, including resource dis-
covery, assignment, and VN instantiation. Our experimental results indicate that
a VN can be provisioned just in a few seconds, with most time being spent within
the InP for virtual node and link setup. More precisely, it takes 3.61 seconds on
average across 20 runs with a small standard deviation to provision the VN com-
posed of 3 nodes/links. Resource discovery and assignment are concluded in 0.31
and 0.17 seconds, respectively.

Fig. 2(b) also shows that VN provisioning scales within our experimental in-
frastructure. Varying the size of the requested VN has no noticeable impact on
resource discovery and assignment. According to Fig. 2(b), instantiation times



(a) Experimental scenario

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

  3   4   5   6   7   8   9  10

tim
e 

(s
ec

)

VNet size

VNet Instantiation
Resource Assignment

Resource Discovery

(b) Time required for VN provisioning

Fig. 2. VN provisioning with single InP.

0.0

0.5

1.0

1.5

2.0

2.5

  0   5  10  15  20  25  30  35  40  45  50

tim
e 

(s
ec

)

number of substrate nodes

Resource Assignment
Resource Discovery

Fig. 3. Resource discovery and assignment with a diverse number of substrate nodes.

increase only slightly for larger VNs, due to the parallelism during virtual node
and link setup. Tests with no parallelization during VN instantiation show sig-
nificantly higher delays, even for VNs with small size.

In Fig. 3, we provide more insights into resource discovery and assignment.
In particular, we measure the delay incurred for these steps while provisioning
a VN with 5 nodes/links on top of a substrate network with a varying number
of nodes (5–50). Fig. 3 shows that the time required to embed the VN is not
increased, validating the efficiency of the proposed resource assignment algorithm
in terms of execution time. We further assess the performance of our algorithm
with larger substrate nodes and requested VNs. To this end, we implemented a
tool for constructing network topologies with CPU and bandwidth specifications.
Our tests show that the delay incurred during resource assignment is less than
1 sec for substrates with a number of nodes as high as 200.

As depicted in Fig. 3, resource discovery scales linearly with the number of
substrate nodes, as each substrate node communicates updated resource infor-
mation to the InP management node, upon an incoming VN request. For large
infrastructures, delegating configuration management across multiple nodes can
provide more efficiency and lower delays during VN provisioning.

We also assess the performance with VN provisioning and two InPs. To this
end, we use the experimental scenario of Fig. 4(a) where VNs with varying
size (3–10 nodes/links) are embedded onto two InPs, each one composed of 5



(a) Experimental scenario

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

  3   4   5   6   7   8   9  10

tim
e 

(s
ec

)

VNet size

VNet Provisioning

(b) Time required for VN provisioning

Fig. 4. VN provisioning with two InPs.

substrate nodes. Fig. 4(b) validates the high performance and the nice scala-
bility properties within our experimental infrastructure. Regardless of its size,
each VN can be provisioned within a few seconds. This shows that efficient VN
splitting and high parallelization (within each InP and across all participating
InPs) during VN instantiation are essential for fast and scalable provisioning of
VNs. Similar performance numbers are obtained when we use our prototype im-
plementation to assess VN provisioning in another medium-scale experimental
infrastructure (composed of 60 nodes with a single quad-core CPU at 2.26 GHz
and 6 GB of DDR3 memory).

5.2 Virtual Link Setup

We conduct a performance analysis of virtual link setup in a controllable en-
vironment, based on the setup of Fig. 1. Each node consists of a Pentium IV
PC running at 2.8GHz, 2 GB RAM, and 4 Gigabit Ethernet network interfaces
(Intel(R) PRO/1000), interconnected by a Cisco Catalyst Switch 6500 running
CatOS. Nodes A and B use a Debian Linux (Squeeze) running kernel version
2.6.18.8, patched so that Click can run with Xen. Node X uses the same Linux
distribution but with the Debian distribution kernel 2.6.32-3-686.

The signaling for virtual link setup follows the steps depicted in Fig. 1 and
the signaling procedure is repeated 300 times (using packet dumps and in-code
timestamps). VLSP objects are processed on the endpoints of the virtual link
and the NSIS daemon calls a setup script for Click, passing to it the arguments
extracted from the VLSP object in order to establish the virtual link.

Fig. 5(a) shows the results of the VLSP setup for each of the 300 measure-
ments. The measured time for virtual link setup includes the time required for
inter-process communication, signaling via NSIS (including admission control
and resource reservation), and the execution of ruby scripts on Router A and
Router B, which determine and install the required Click scripts for the virtual
link. On average, this takes 399ms overall, a large part of which is consumed for
the execution of the two ruby scripts including Click script installation. At the
sink, an average of 228ms is spent to determine and install the Click script while



 0

 100

 200

 300

 400

 500

 0  50  100  150  200  250  300

D
u

ra
ti
o

n
 [

m
s
]

Run No.

Duration of VLSP setup phases

Sink Click Setup
Source Click Setup

QoS NSLP
External Program

(a) with Click setup

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  50  100  150  200  250  300

D
u

ra
ti
o

n
 [

µ
s
]

Run No.

Duration of VLSP Setup Signalling (w/o Click setup)

External program (MP 1−8, excl. Click setup)
QoS NSLP signalling (MP 2−7, excl. Click setup)

Router X RESERVE setup processing (incl. GIST handshake)
Router X RESPONSE setup processing

(b) without Click setup

Fig. 5. Time spent during virtual link setup.

the corresponding delay for the source is 162ms on average. With a standard
deviation of only 9ms, the setup of virtual links behaves very deterministically.

Fig. 5(b) shows the duration of the overall signaling exchange excluding exe-
cution time of the Click setup scripts. The two lines at the top show the virtual
link setup time as measured at Router A with and without IPC. The QoS NSLP
is triggered by an external program running in the node management agent, and
ends with returning a result of the request to the external program. Fig. 5(b)
shows the overall duration for the signalling message exchange without Click
scripts. This sums up to 8ms on average in our setup with one intermediate
substrate node and to 7ms when omitting the IPC between the node manage-
ment agent and the NSIS daemon. The two curves at the bottom show the
processing time of the RESERVE and RESPONSE respectively in the interme-
diate router X during setup. The RESPONSE processing takes only 541µs on
average, whereas the RESERVE processing requires more time since it includes
each time a GIST three-way handshake phase. It becomes already apparent in
this simple setup that the combined QoS/VLSP signaling is responsible only for
a minor part of the overall time spent in the setup of the virtual link. Even if the
substrate path across two domains comprises several hops, we expect that the
resource reservation processing will not dominate the virtual link setup time.

6 Conclusions

In this paper, we discussed VN provisioning with emphasis on techniques and
embedding algorithms that comply with the restrictions imposed by multiple
domains, such as limited information disclosure. We also provided the required
interoperability for inter-domain virtual link setup with QoS guarantees. Despite
the increased complexity for resource discovery and allocation, we showed that
small VNs can be provisioned within a few seconds. Our results indicate that
new business models can create commercial products that setup VNs in large
infrastructures in the order of minutes. The proposed VN provisioning framework



essentially lowers the barrier for large-scale service deployment by offering the
capability to lease network slices from multiple substrate providers.

Due to the limitations of our experimental infrastructure, we were not able
to investigate issues of large scale. In the future, we plan to implement a simu-
lator optimized for large scale and thereby, examine scalability issues with VN
embedding onto multiple large infrastructures.

References

1. 4WARD Project, http://www.4ward-project.eu.
2. G. Ash, A. Bader, C. Kappler, and D. Oran, QSPEC Template for the Quality-of-

Service NSIS Signaling Layer Protocol (NSLP), RFC 5975, October 2010.
3. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, Xen and the Art of Virtualization, Proc. 19th ACM
Symposium on OS Principles, Bolton Landing, NY, USA, October 2003.

4. R. Bless, M. Röhricht, and C. Werle, Authenticated Setup of Virtual Links with
Quality-of-Service Guarantees, Proc. IEEE ICCCN 2011, Hawaii, USA, July 2011.

5. M. Chowdhury, M. Rahman, and R. Boutaba, Virtual Network Embedding with
Coordinated Node and Link Mapping, Proc. IEEE Infocom 2009, Rio de Janeiro,
Brazil, April 2009.

6. M. Chowdhury, F. Samuel, and R. Boutaba, PolyViNE: Policy-based Virtual Net-
work Embedding Across Multiple Domains, Proc. ACM SIGCOMM VISA, New
Delhi, India, September 2010.

7. GENI: Global Environment for Network Innovations, http://www.geni.net.
8. R. Hancock, G. Karagiannis, J. Loughney, and S. Van den Bosch, Next Steps in

Signaling (NSIS) Framework, RFC 4080, June 2005.
9. Heterogeneous Experimental Network, http://hen.cs.ucl.ac.uk.

10. I. Houidi, W. Louati, W. Bean-Ameur, and D. Zeghlache, Virtual Network Pro-
visioning Across Multiple Substrate Networks, Computer Networks, 55(4), March
2011.

11. E. Kohler, R. Morris, B. Chen, J. Jahnotti, and M. F. Kasshoek, The Click Modular
Router, ACM Transaction on Computer Systems, 18(3), 2000.

12. J. Lu and J. Turner, Efficient Mapping of Virtual Networks onto a Shared Sub-
strate, Washington University, Technical Report WUCSE-2006-35, 2006.

13. J. Manner, G. Karagiannis, and A. McDonald, NSIS Signaling Layer Protocol
(NSLP) for Quality-of-Service Signaling, RFC 5974, October 2010.

14. NSIS-ka, A free C++ implementation of NSIS protocols, KIT,
https://svn.tm.kit.edu/trac/NSIS

15. G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless, A. Greenhalgh,
A. Wundsam, M. Kind, O. Maennel, and L. Mathy, Network Virtualization Archi-
tecture: Proposal and Initial Prototype, Proc. ACM SIGCOMM VISA, Barcelona,
Spain, August 2009.

16. M. Yu, Y. Yi, J. Rexford, and M. Chiang, Rethinking Virtual Network Embedding:
Substrate Support for Path Splitting and Migration, ACM SIGCOMM Computer
Communications Review, 38(2), April 2008, pp. 17–29.

17. Y. Zhu and M. Ammar: Algorithms for Assigning Substrate Network Resources to
Virtual Network Components, Proc. IEEE Infocom, Barcelona, Spain, April 2006.

18. Y. Zu, R. Zhang-Shen, S.Rangarajan, and J. Rexford, Cabernet: Connectivity Ar-
chitecture for Better Network Services, Proc. ACM ReArch ’08, Madrid, Spain,
December 2008.


