Syntactic complexity

 of ultimately periodic sets of integersMichel Rigo, Elise Vandomme

Numeration 2011 - Liège

Baum-Sweet sequence

$$
\begin{array}{rlrl}
\text { Let } A= & \{a, b, c, d\}, B=\{0,1\}, & \\
\qquad & & & \\
& & b \mapsto a b \text { and } g: & \\
& b \mapsto 1 & \mapsto b & \\
& c \mapsto b d & & b \mapsto 1 \\
& d \mapsto d d & & c \mapsto 0 \\
& & & d \mapsto 0
\end{array}
$$

Baum-Sweet sequence

Let $A=\{a, b, c, d\}, B=\{0,1\}$,

$$
f: \begin{array}{llll}
f: & a \mapsto a b \text { and } g: \quad & a \mapsto 1 \\
& b \mapsto c b & & b \mapsto 1 \\
& c \mapsto b d & & c \mapsto 0 \\
& d \mapsto d d & & d \mapsto 0
\end{array}
$$

We have

$$
f^{\omega}(a)=a b c b b d c b c b d d b d \cdots
$$

$$
\begin{aligned}
\left(x_{n}\right)_{n \geq 0} & :=g\left(f^{\omega}(a)\right) \\
& =11011001010010 \ldots
\end{aligned}
$$

Periodicity problem

Let A, B be finite alphabets.
A morphism $f: A \rightarrow B$ is prolongable on $a \in A$ if

$$
f(a)=a w \text { with } w \in A^{*} \backslash\{\varepsilon\} .
$$

A coding $g: A \rightarrow B$ is a letter-to-letter morphism.
General problem (HDOL periodicity problem)
Let

- $g: A \rightarrow B$ be a coding,
- $f: A \rightarrow A^{*}$ be a morphism prolongable on $a \in A^{*}$.

Is the word $g\left(f^{\omega}(a)\right)$ ultimately periodic?

Periodicity problem

Let A be a finite alphabet.

Problem (DOL periodicity problem)
If $f: A \rightarrow A^{*}$ is a prolongable morphism on $a \in A$, is the infinite word $f^{\omega}(a)$ ultimately periodic?

It is decidable.
[Harju, Linna, 1986] [Pansiot, 1986]

Baum-Sweet sequence

Let $A=\{a, b, c, d\}, B=\{0,1\}$,

We have

$$
f^{\omega}(a)=a b c b b d c b c b d d b d \cdots
$$

$$
\begin{aligned}
\left(x_{n}\right)_{n \geq 0} & :=g\left(f^{\omega}(a)\right) \\
& =11011001010010 \ldots
\end{aligned}
$$

(2) Numeration systems
(3) Syntactic complexity
4. Further work

k-automatic sequences

Let $k \geq 2$.
A morphism $f: A \rightarrow \boldsymbol{A}^{*}$ is k-uniform if $|f(\alpha)|=k \forall \alpha \in \boldsymbol{A}$.
Theorem (Cobham, 1972)
An infinite word x is k-automatic iff there exist

- a k-uniform morphism $f: A \rightarrow A^{*}$ prolongable on $a \in A$,
- a coding $g: A \rightarrow B$ such that $x=g\left(f^{\omega}(a)\right)$.

A sequence $\left(x_{n}\right)_{n \geq 0}$ is k-automatic if the n-th term x_{n} is obtained by feeding a DFA with output with the base k representation of n.

Baum-Sweet sequence

\[

\]

No block of 0 of odd length appears in rep ${ }_{2}(n)$

Baum-Sweet sequence

$\left(x_{n}\right)_{n \geq 0}=11011001010010 \ldots$

$$
\begin{array}{ccccccccccc}
x_{n} & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & \cdots \\
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \cdots \\
\operatorname{rep}_{2}(n) & \varepsilon & 1 & 10 & 11 & 100 & 101 & 110 & 111 & 1000 & \cdots
\end{array}
$$

$$
x_{n}=1 \Leftrightarrow
$$

No block of 0 of odd length appears in $\operatorname{rep}_{2}(n)$

Example (Baum-Sweet sequence)

$S_{1}=\left\{n \geq 0 \mid x_{n}=1\right\}$ is 2-recognizable, i.e., $\operatorname{rep}_{2}\left(S_{1}\right)=\left\{\operatorname{rep}_{2}(n) \mid n \in S_{1}\right\}$ is accepted by a DFA.

Conversely,

$$
X \subseteq \mathbb{N} k \text {-recognizable } \Rightarrow 1_{X} k \text {-automatic. }
$$

Problem

Let $g: A \rightarrow B$ be a coding and
$f: A \rightarrow A^{*}$ be a k-uniform morphism prolongable on $a \in A^{*}$. Is the word $g\left(f^{\omega}(a)\right)$ ultimately periodic?

A set $X \subseteq \mathbb{N}$ is ultimately periodic if 1_{X} is ultimately periodic.
Equivalent problem
Given a DFA that accepts the base k representation of $X \subseteq \mathbb{N}$, is the set X ultimately periodic?

Integer base

Problem

Given a DFA that accepts the base k representation of $X \subseteq \mathbb{N}$, is the set X ultimately periodic?

It is decidable. [Honkala, 1986]

Integer base

Problem
 Given a DFA that accepts the base k representation of $X \subseteq \mathbb{N}$, is the set X ultimately periodic?

It is decidable. [Honkala, 1986]

Remark
Allouche, Rampersad, Shallit 2009
Leroux 2005
Muchnik

Integer base

Idea:
If $X \subseteq \mathbb{N}$ is ultimately periodic, then the state complexity of the DFA \nearrow with the period and preperiod of X.

Decision method :
Input : $X \subseteq \mathbb{N}$ given by a DFA accepting $0^{*} r e p_{b}(X)$.
If X is ultimately periodic, we have an upper bound on its period and its preperiod.
\rightsquigarrow a finite number of pairs (period, preperiod) to test.

(1) Uniform morphisms

(2) Numeration systems

(3) Syntactic complexity
4. Further work

General case

Abstract numeration system $S=(L, \Sigma,<)$ where

- L is infinite recognizable language,
- $(\Sigma,<)$ is a totally ordered alphabet.

The representation of an integer n is

$$
\operatorname{rep}_{S}(n):=\text { the }(n+1) \text {-th word of } L \text {. }
$$

Example

Let $S=(L,\{a, b\}, a<b)$ with $L=\{\varepsilon\} \cup\{a, a b\}^{*}$.

$\operatorname{rep}_{S}(\mathbb{N})$	ε	a	$a a$	$a b$	aaa	aab	aba	aaaa	\ldots
\mathbb{N}	0	1	2	3	4	5	6	7	\cdots

Back to the problem

General problem (HDOL periodicity problem)
Let

- $g: A \rightarrow B$ be a coding,
- $f: A \rightarrow A^{*}$ be a morphism prolongable on $a \in A^{*}$. Is the word $g\left(f^{\omega}(a)\right)$ ultimately periodic?

Theorem (Maes, Rigo, 2002)
An infinite word x is S-automatic iff there exist

- a morphism $f: A \rightarrow A^{*}$ prolongable on $a \in A$,
- a coding $g: A \rightarrow B$ such that $x=g\left(f^{\omega}(a)\right)$.

Problem (equivalent to the "HDOL periodicity problem")

Let

- S be an abstract numeration system,
- $X \subseteq \mathbb{N}$ be a set such that $\operatorname{rep}_{S}(X)$ is recognizable. Is the set X ultimately periodic?

It is decidable for a class of abstract numeration systems. [Bell, Charlier, Fraenkel, Rigo, 2008]

Positional numeration system

A positional numeration system $U=\left(U_{i}\right)_{i \geq 0}$ is

- a strictly increasing sequence U of integers such that
- $\left\{U_{i+1} / U_{i} \mid i \geq 0\right\}$ is bounded,
- $U_{0}=1$.

Remark

Particular case : integer base

$$
\left(U_{i}\right)_{i \geq 0}=\left(b^{i}\right)_{i \geq 0}
$$

Fibonacci numeration system

$$
\begin{gathered}
\text { Let } F=\left(F_{i}\right)_{i \geq 0}:=(1,2,3,5,8,13,21,34, \ldots) \text { be given by } \\
F_{0}=1, F_{1}=2 \text { and } F_{i+2}=F_{i+1}+F_{i} \text { for all } i \geq 0 .
\end{gathered}
$$

13	8	5	3	2	1	
					ε	0
					1	1
				1	0	2
			1	0	0	3
			1	0	1	4
	0	0			0	
1	0		17			

$$
\operatorname{rep}_{F}(17)=100101
$$

Fibonacci numeration system

$$
\begin{gathered}
\text { Let } F=\left(F_{i}\right)_{i \geq 0}:=(1,2,3,5,8,13,21,34, \ldots) \text { be given by } \\
F_{0}=1, F_{1}=2 \text { and } F_{i+2}=F_{i+1}+F_{i} \text { for all } i \geq 0 .
\end{gathered}
$$

Positional numeration system

Problem

Let

- U be a positional numeration system,
- $X \subseteq \mathbb{N}$ be a set such that $\operatorname{rep}_{U}(X)$ is recognizable.

Is the set X ultimately periodic?

It is decidable for a class of positional numeration systems.
[Bell, Charlier, Fraenkel, Rigo, 2008]

Remark

The decision procedure of Bell et al. can not be applied to the integer base systems.

(9) Uniform morphisms

(2) Numeration systems
(3) Syntactic complexity
4. Further work

Let L be a language over the finite alphabet A.
Context of a word $u \in A^{*}$ with respect to L :

$$
C_{L}(u)=\left\{(x, y) \in A^{*} \times A^{*} \mid x u y \in L\right\}
$$

Myhill congruence for $L: \forall u, v \in A^{*}$,

$$
u \leftrightarrow L v \Leftrightarrow C_{L}(u)=C_{L}(v)
$$

Let L be a language over the finite alphabet A.
Context of a word $u \in A^{*}$ with respect to L :

$$
C_{L}(u)=\left\{(x, y) \in A^{*} \times A^{*} \mid x u y \in L\right\}
$$

Myhill congruence for $L: \forall u, v \in A^{*}$,

$$
u \leftrightarrow_{L} v \Leftrightarrow C_{L}(u)=C_{L}(v)
$$

Example

Let $A=\{a, b\}$ and $L=a^{*} b^{*}=\left\{a^{n} b^{m} \mid n, m \in \mathbb{N}\right\}$.

$$
\begin{aligned}
& C_{L}(a b)=\left\{\left(a^{i}, b^{j}\right) \mid i, j \in \mathbb{N}\right\} \\
& C_{L}(b a)=\emptyset \\
& C_{L}(a)=\left\{\left(a^{i}, a^{j} b^{\ell}\right) \mid i, j, \ell \in \mathbb{N}\right\}
\end{aligned}
$$

Let $[u]$ denote the class of $u \in A^{*}$ in $A^{*} / \leftrightarrow L$.
The product is defined by

$$
[u] \circ[v]=[w] \text { if }[u] \cdot[v] \subseteq[w] .
$$

In particular, $[u] \circ[v]=[u v]$.
Syntactic monoid of $L:\left(A^{*} / \leftrightarrow L, \circ\right)$
Theorem

$$
L \text { is recognizable } \Leftrightarrow A^{*} / \leftrightarrow L \text { is finite }
$$

Syntactic complexity of L : \#($\left.\boldsymbol{A}^{*} / \leftrightarrow_{L}\right)$

Back to the problem

Problem

Given a DFA that accepts the representation of $X \subseteq \mathbb{N}$, is the set X ultimately periodic?

If $X \subseteq \mathbb{N}$ is periodic of period m, then the representation of X in a reasonable numeration system gives a language $L \subseteq A^{*}$ recognizable by a DFA.

Question : Does \#($\left.A^{*} / \leftrightarrow_{L}\right)$ grow with the period m of X ?

Integer base

Theorem (Rigo, V., 2011)

Let $m, b \geq 2$ be integers such that $(m, b)=1$. If $X \subseteq \mathbb{N}$ is periodic of period m, then

$$
\#\left(A^{*} / \leftrightarrow_{0^{*} \operatorname{cep}_{b}(x)}\right)=m \cdot \operatorname{ord}_{m}(b) .
$$

Notation : $\operatorname{ord}_{m}(b)=\min \left\{j \in \mathbb{N} \backslash\{0\} \mid b^{j} \equiv 1(\bmod m)\right\}$.
Idea : Show for all $u, v \in A^{*}$,

$$
u \leftrightarrow 0^{*} r e_{b}(X)^{*} v \Leftrightarrow\left\{\begin{array}{cl}
\operatorname{val}_{b}(u) \equiv \operatorname{val}_{b}(v) & (\bmod m) \\
|u| \equiv|v| & \left(\bmod \operatorname{ord}_{m}(b)\right)
\end{array}\right.
$$

Example : $X=3 \mathbb{N}=\{3 n \mid n \in \mathbb{N}\}$

- $b=2$
- $m=3$
- $\operatorname{ord}_{3}(2)=2$

Multiplication table of the syntactic monoid of $0^{*} \operatorname{rep}_{2}(X)$:

	ε	0	1	01	10	101
ε	ε	0	1	01	10	101
0	0	ε	01	1	101	10
1	1	10	ε	101	0	01
01	01	101	0	10	ε	1
10	10	1	101	ε	01	0
101	101	01	10	0	1	ε

Integer base

Lower bounds on the syntactic complexity can be obtained for a period m and a base b such that :

- $m=q$ with $\operatorname{gcd}(q, b)=1$,
- $m=b^{n}$ with $n \geq 1$,
- $m=b^{n} q$ with $q \geq 2, \operatorname{gcd}(q, b)=1$ and $n \geq 1$,
- $m=d b^{n} q$ with $q \geq 2, \operatorname{gcd}(q, b)=1, \operatorname{gcd}(d, b) \geq 1$ and $n \geq 0$.

Integer base

Proposition (Rigo, V., 2011)

If b is prime and $X \subseteq \mathbb{N}$ is ultimately periodic of period $m=q b^{n}$ with $q \geq 2, \operatorname{gcd}(q, b)=1$ and $n \geq 0$, then

$$
\#\left(A^{*} / \leftrightarrow_{0^{*} \text { rep }(x)}\right) \geq(n+1) q .
$$

In the proof, we use a result of Perles, Rabin, Shamir (1963) on n-definite languages a. k. a. suffix testable languages.
[Pin, 1997]

A language $L \in A^{*}$ is a n-definite if

- $\forall u, v \in A^{*}$ such that $u=u^{\prime} x, v=v^{\prime} x$ with $|x|=n$ and $u^{\prime}, v^{\prime} \in A^{*}$,

$$
u \in L \Leftrightarrow v \in L
$$

- $\exists u, v \in A^{*}$ such that $u=u^{\prime} x, v=v^{\prime} x$ with $|x|=n-1$ and $u^{\prime}, v^{\prime} \in A^{*} \backslash\{\varepsilon\}$,

$$
u \in L \text { and } v \notin L \text {. }
$$

Example

Let $X=5+8 \mathbb{N}$ and $L=0^{*} r e p_{2}(X)$.
L is 3 -definite because

$$
L=\{0,1\}^{*}\{101\}
$$

2 Numeration systems
(3) Syntactic complexity
(4) Further work

Goal : Deal with a larger class of numeration systems using the syntactic monoid.

Goal : Deal with a larger class of numeration systems using the syntactic monoid.

Conjecture (Fibonacci numeration system)

$$
F_{0}=1, F_{1}=2 \text { and } F_{i+2}=F_{i+1}+F_{i} \text { for all } i \geq 0
$$

If $X=m \mathbb{N}=\{m \cdot n \mid n \in \mathbb{N}\}$, then

$$
\#\left(A^{*} / \leftrightarrow_{0 * \operatorname{rep} F}(X)=4 \cdot m^{2} \cdot P_{F}(m)+2\right.
$$

where $P_{F}(m)$ is the period of $\left(F_{i} \bmod m\right)_{i \geq 0}$.

Thank you.

