Syntactic complexity of ultimately periodic sets of integers

Michel Rigo, Elise Vandomme

Numeration 2011 – Liège

Let
$$A = \{a, b, c, d\}$$
, $B = \{0, 1\}$,
$$f: a \mapsto ab \quad \text{and} \quad g: a \mapsto 1$$

$$b \mapsto cb \quad b \mapsto 1$$

$$c \mapsto bd \quad c \mapsto 0$$

$$d \mapsto dd \quad d \mapsto 0$$

Baum-Sweet sequence

Let
$$A = \{a, b, c, d\}$$
, $B = \{0, 1\}$,
$$f: a \mapsto ab \quad \text{and} \quad g: a \mapsto 1 \qquad f \left(\begin{array}{ccc} a \\ ab \\ b \mapsto cb \\ c \mapsto bd \\ d \mapsto dd \end{array}\right) \qquad f \left(\begin{array}{ccc} a \\ abcb \\ f \left(\begin{array}{ccc} abcb \\ abcbbdcl \\ f \left(\begin{array}{ccc} abcbbdcl abcbb$$

We have

$$f^{\omega}(a) = abcbbdcbcbddbd \cdots$$

$$(x_n)_{n\geq 0} := g(f^{\omega}(a))$$

= 11011001010010...

Periodicity problem

Let A, B be finite alphabets.

A morphism $f: A \rightarrow B$ is prolongable on $a \in A$ if

$$f(a) = aw \text{ with } w \in A^* \setminus \{\varepsilon\}.$$

A coding $g: A \rightarrow B$ is a letter-to-letter morphism.

General problem (HD0L periodicity problem)

Let

- $g: A \to B$ be a coding,
- $f: A \to A^*$ be a morphism prolongable on $a \in A^*$.

Is the word $g(f^{\omega}(a))$ ultimately periodic?

Periodicity problem

Let A be a finite alphabet.

Problem (D0L periodicity problem)

If $f: A \to A^*$ is a prolongable morphism on $a \in A$, is the infinite word $f^{\omega}(a)$ ultimately periodic?

> It is decidable. [Harju, Linna, 1986] [Pansiot, 1986]

Baum-Sweet sequence

Let
$$A = \{a, b, c, d\}$$
, $B = \{0, 1\}$,
$$f: a \mapsto ab \quad \text{and} \quad g: a \mapsto 1 \qquad f \left(\begin{array}{ccc} a \\ ab \\ b \mapsto cb \\ c \mapsto bd \\ d \mapsto dd \end{array}\right) \qquad f \left(\begin{array}{ccc} a \\ ab \\ c \mapsto 0 \\ d \mapsto 0 \end{array}\right) \qquad f \left(\begin{array}{ccc} a \\ ab \\ abcb \\ c \mapsto bd \\ c \mapsto 0 \end{array}\right)$$

We have

$$f^{\omega}(a) = abcbbdcbcbddbd \cdots$$

$$(x_n)_{n\geq 0} := g(f^{\omega}(a))$$

= 11011001010010...

Syntactic complexity

- Numeration systems
- Further work

k-automatic sequences

Let k > 2.

A morphism $f: A \to A^*$ is k-uniform if $|f(\alpha)| = k \ \forall \alpha \in A$.

Theorem (Cobham, 1972)

An infinite word x is k-automatic iff there exist

- a k-uniform morphism $f: A \to A^*$ prolongable on $a \in A$.
- a coding $g: A \to B$ such that $x = g(f^{\omega}(a))$.

A sequence $(x_n)_{n\geq 0}$ is **k**-automatic if the *n*-th term x_n is obtained by feeding a DFA with output with the base k representation of *n*.

Baum-Sweet sequence

Uniform morphisms

000000

$$(x_n)_{n\geq 0} = 11011001010010...$$

$$x_n \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad ...$$

$$n \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad ...$$

$$rep_2(n) \quad \varepsilon \quad 1 \quad 10 \quad 11 \quad 100 \quad 101 \quad 110 \quad 111 \quad 1000 \quad ...$$

$$x_n = 1 \Leftrightarrow$$

No block of 0 of odd length appears in $rep_2(n)$

Baum-Sweet sequence

$$(x_n)_{n\geq 0} = 11011001010010...$$

$$x_n \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad ...$$

$$n \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad ...$$

$$rep_2(n) \quad \varepsilon \quad 1 \quad 10 \quad 11 \quad 100 \quad 101 \quad 110 \quad 111 \quad 1000 \quad ...$$

$$x_n = 1 \Leftrightarrow$$

No block of 0 of odd length appears in $rep_2(n)$

 $\rightsquigarrow (x_n)_{n>0}$ is 2-automatic.

Example (Baum-Sweet sequence)

$$S_1 = \{n \ge 0 \mid x_n = 1\}$$
 is 2-recognizable, i.e., $\operatorname{rep}_2(S_1) = \{\operatorname{rep}_2(n) \mid n \in S_1\}$ is accepted by a DFA.

Conversely,

 $X \subseteq \mathbb{N}$ *k*-recognizable $\Rightarrow 1_X k$ -automatic.

Let $g: A \rightarrow B$ be a coding and

 $f: A \to A^*$ be a k-uniform morphism prolongable on $a \in A^*$. Is the word $g(f^{\omega}(a))$ ultimately periodic?

A set $X \subseteq \mathbb{N}$ is ultimately periodic if 1_X is ultimately periodic.

Equivalent problem

Given a DFA that accepts the base k representation of $X \subseteq \mathbb{N}$, is the set *X* ultimately periodic?

Integer base

Problem

Given a DFA that accepts the base k representation of $X \subseteq \mathbb{N}$, is the set *X* ultimately periodic?

It is decidable. [Honkala, 1986]

Integer base

Problem

Given a DFA that accepts the base k representation of $X \subseteq \mathbb{N}$, is the set X ultimately periodic?

It is decidable. [Honkala, 1986]

Remark

Allouche, Rampersad, Shallit 2009 Leroux 2005 Muchnik 1991

Idea:

If $X \subseteq \mathbb{N}$ is ultimately periodic, then the state complexity of the DFA \nearrow with the period and preperiod of X.

<u>Decision method</u>:

Input : $X \subseteq \mathbb{N}$ given by a DFA accepting $0^*rep_b(X)$.

If *X* is ultimately periodic, we have an upper bound on its period and its preperiod.

→ a finite number of pairs (period, preperiod) to test.

Syntactic complexity

- Uniform morphisms
- 2 Numeration systems
- Syntactic complexity
- 4 Further work

General case

Abstract numeration system $S = (L, \Sigma, <)$ where

- L is infinite recognizable language,
- $(\Sigma, <)$ is a totally ordered alphabet.

The representation of an integer *n* is

$$rep_S(n) := the (n+1)-th word of L.$$

Example

Let
$$S = (L, \{a, b\}, a < b)$$
 with $L = \{\varepsilon\} \cup \{a, ab\}^*$.

$$\operatorname{rep}_{S}(\mathbb{N})$$
 ε a aa ab aaa aab aba aaaa ... \mathbb{N} 0 1 2 3 4 5 6 7 ...

General problem (HD0L periodicity problem)

Let

- $g: A \to B$ be a coding,
- $f: A \to A^*$ be a morphism prolongable on $a \in A^*$.

Is the word $g(f^{\omega}(a))$ ultimately periodic?

Theorem (Maes, Rigo, 2002)

An infinite word x is S-automatic iff there exist

- a morphism $f: A \to A^*$ prolongable on $a \in A$,
- a coding $g: A \to B$ such that $x = g(f^{\omega}(a))$.

Problem (equivalent to the "HD0L periodicity problem")

Let

- S be an abstract numeration system,
- $X \subseteq \mathbb{N}$ be a set such that $rep_S(X)$ is recognizable.

Is the set X ultimately periodic?

It is decidable for a class of abstract numeration systems. [Bell, Charlier, Fraenkel, Rigo, 2008]

A positional numeration system $U = (U_i)_{i>0}$ is

- a strictly increasing sequence U of integers such that
- $\{U_{i+1}/U_i \mid i \ge 0\}$ is bounded,
- $U_0 = 1$.

Remark

Particular case: integer base

$$(U_i)_{i\geq 0}=(b^i)_{i\geq 0}$$

Fibonacci numeration system

Let
$$F = (F_i)_{i \ge 0} := (1, 2, 3, 5, 8, 13, 21, 34, ...)$$
 be given by $F_0 = 1, F_1 = 2$ and $F_{i+2} = F_{i+1} + F_i$ for all $i \ge 0$.

13	8	5	3	2	1		
					ε	0	
					1	1	$rep_F(17) = 100101$
				1	0	2	1677(17)
			1	0	0	3	
			1	0	1	4	
						:	
1	0	0	1	0	1		
	13			1 1	1 1 0 1 0	ε 1 1 0 1 0 0 1 0 1	$\begin{array}{c cccc} \varepsilon & 0 \\ & 1 & 1 \\ & 1 & 0 & 2 \\ 1 & 0 & 0 & 3 \\ 1 & 0 & 1 & 4 \\ & & \vdots \end{array}$

Fibonacci numeration system

Let
$$F = (F_i)_{i \ge 0} := (1, 2, 3, 5, 8, 13, 21, 34, ...)$$
 be given by $F_0 = 1, F_1 = 2$ and $F_{i+2} = F_{i+1} + F_i$ for all $i \ge 0$.

Positional numeration system

Problem

Let

- U be a positional numeration system,
- $X \subseteq \mathbb{N}$ be a set such that $rep_{IJ}(X)$ is recognizable.

Is the set X ultimately periodic?

It is decidable for a class of positional numeration systems. [Bell, Charlier, Fraenkel, Rigo, 2008]

Remark

The decision procedure of Bell et al. can not be applied to the integer base systems.

Syntactic complexity

Numeration systems

Syntactic complexity

Further work

Context of a word $u \in A^*$ with respect to L:

$$C_L(u) = \{(x,y) \in A^* \times A^* | xuy \in L\}$$

Syntactic complexity

•0000000

Myhill congruence for $L: \forall u, v \in A^*$,

$$u \leftrightarrow_L v \Leftrightarrow C_L(u) = C_L(v)$$

Let L be a language over the finite alphabet A.

Context of a word $u \in A^*$ with respect to L:

$$C_L(u) = \{(x,y) \in A^* \times A^* | xuy \in L\}$$

Syntactic complexity

•0000000

Myhill congruence for $L: \forall u, v \in A^*$,

$$u \leftrightarrow_L v \Leftrightarrow C_L(u) = C_L(v)$$

Example

Let
$$A = \{a, b\}$$
 and $L = a^*b^* = \{a^nb^m \, | \, n, m \in \mathbb{N}\}.$

$$C_L(ab) = \{ (a^i, b^j) | i, j \in \mathbb{N} \}$$

$$C_L(ba) = \emptyset$$

$$C_L(a) = \{ (a^i, a^j b^\ell) | i, j, \ell \in \mathbb{N} \}$$

Let [u] denote the class of $u \in A^*$ in $A^*/_{\leftrightarrow}$.

The product is defined by

$$[u] \circ [v] = [w] \text{ if } [u] \cdot [v] \subseteq [w].$$

Syntactic complexity

00000000

In particular, $[u] \circ [v] = [uv]$.

Syntactic monoid of $L: (A^*/_{\leftrightarrow_L}, \circ)$

Theorem

L is recognizable $\Leftrightarrow A^*/_{\leftrightarrow}$, is finite

Syntactic complexity of $L: \#(A^*/_{\leftrightarrow})$

Back to the problem

Problem

Given a DFA that accepts the representation of $X \subseteq \mathbb{N}$, is the set X ultimately periodic?

If $X \subseteq \mathbb{N}$ is periodic of period m,

then the representation of X in a reasonable numeration system gives a language $L \subseteq A^*$ recognizable by a DFA.

Question : Does $\#(A^*/_{\leftrightarrow_l})$ grow with the period m of X?

00000000

Integer base

Theorem (Rigo, V., 2011)

Let m, b > 2 be integers such that (m, b) = 1. If $X \subseteq \mathbb{N}$ is periodic of period m, then

$$\#(A^*/_{\leftrightarrow_{0^*\operatorname{rep}_b(X)}}) = m \cdot \operatorname{ord}_m(b).$$

Notation : ord_m(b) = min{ $j \in \mathbb{N} \setminus \{0\} | b^j \equiv 1 \pmod{m}$ }.

Idea : Show for all $u, v \in A^*$,

$$u \leftrightarrow_{0^* rep_b(X)^*} v \Leftrightarrow \left\{ egin{array}{ll} \operatorname{val}_b(u) \equiv \operatorname{val}_b(v) & \pmod{m} \\ |u| \equiv |v| & \pmod{\operatorname{ord}_m(b)} \end{array}
ight..$$

Example : $X = 3 \mathbb{N} = \{3n \mid n \in \mathbb{N}\}$

- b = 2
- m = 3
- $ord_3(2) = 2$

Syntactic complexity

00000000

Multiplication table of the syntactic monoid of $0*rep_2(X)$:

	ε	0	1	01	10	101
$\overline{\varepsilon}$	ε	0		01		
0		ε		1	101	10
1	1	10	ε	101	0	01
01	01	101 1	0	10	ε	1
10	10	1	101	ε	01	0
101	101	01	10	0	1	ε

Integer base

Lower bounds on the syntactic complexity can be obtained for a period m and a base b such that:

- m = q with gcd(q, b) = 1,
- $m = b^n$ with n > 1,
- $m = b^n q$ with $q \ge 2$, gcd(q, b) = 1 and $n \ge 1$,
- $m = db^n q$ with $q \ge 2$, gcd(q, b) = 1, $gcd(d, b) \ge 1$ and n > 0.

Integer base

Proposition (Rigo, V., 2011)

If b is prime and $X \subseteq \mathbb{N}$ is ultimately periodic of period $m = qb^n$ with $q \ge 2$, gcd(q, b) = 1 and $n \ge 0$, then

Syntactic complexity

00000000

$$\#(A^*/_{\leftrightarrow_{0*\operatorname{rep}_{h}(X)}}) \geq (n+1)q.$$

In the proof, we use a result of Perles, Rabin, Shamir (1963) on *n*-definite languages a. k. a. suffix testable languages.

[Pin, 1997]

• $\forall u, v \in A^*$ such that u = u'x, v = v'x with |x| = n and u', $v' \in A^*$.

$$u \in L \Leftrightarrow v \in L$$

Syntactic complexity

00000000

 $\bullet \exists u, v \in A^*$ such that u = u'x, v = v'x with |x| = n - 1 and $u', v' \in A^* \setminus \{\varepsilon\},\$

$$u \in L$$
 and $v \notin L$.

Example

Let $X = 5 + 8 \mathbb{N}$ and $L = 0*rep_2(X)$. L is 3-definite because

$$L = \{0, 1\}^* \{101\}$$

Syntactic complexity

- Numeration systems
- Further work

Goal: Deal with a larger class of numeration systems using the syntactic monoid.

Syntactic complexity

Conjecture (Fibonacci numeration system)

$$F_0 = 1, F_1 = 2$$
 and $F_{i+2} = F_{i+1} + F_i$ for all $i \ge 0$.

If $X = m\mathbb{N} = \{m \cdot n \mid n \in \mathbb{N}\}$, then

$$\#(A^*/_{\leftrightarrow_{0^*\text{rep}_F}(X)}) = 4 \cdot m^2 \cdot P_F(m) + 2$$

where $P_F(m)$ is the period of $(F_i \mod m)_{i>0}$.

Thank you.