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Baum-Sweet sequence

Let A = {a,b, c,d}, B = {0,1},

f : a 7→ ab and g : a 7→ 1
b 7→ cb b 7→ 1
c 7→ bd c 7→ 0
d 7→ dd d 7→ 0

a
ab
abcb
abcbbdcb
...

f
f
f
f

We have

fω(a) = abcbbdcbcbddbd · · ·

(xn)n≥0 := g(fω(a))

= 11011001010010 . . .
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Periodicity problem

Let A,B be finite alphabets.

A morphism f : A→ B is prolongable on a ∈ A if

f (a) = aw with w ∈ A∗ \ {ε}.

A coding g : A→ B is a letter-to-letter morphism.

General problem (HD0L periodicity problem)
Let

g : A→ B be a coding ,
f : A→ A∗ be a morphism prolongable on a ∈ A∗.

Is the word g(fω(a)) ultimately periodic ?



Uniform morphisms Numeration systems Syntactic complexity Further work

Periodicity problem

Let A be a finite alphabet.

Problem (D0L periodicity problem)
If f : A→ A∗ is a prolongable morphism on a ∈ A,
is the infinite word fω(a) ultimately periodic ?

It is decidable.
[Harju, Linna, 1986] [Pansiot, 1986]
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k -automatic sequences

Let k ≥ 2.

A morphism f : A→ A∗ is k -uniform if |f (α)| = k ∀α ∈ A.

Theorem (Cobham, 1972)
An infinite word x is k-automatic iff there exist

a k-uniform morphism f : A→ A∗ prolongable on a ∈ A,
a coding g : A→ B such that x = g(fω(a)).

A sequence (xn)n≥0 is k -automatic if the n-th term xn is
obtained by feeding a DFA with output with the base k
representation of n.
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Baum-Sweet sequence

(xn)n≥0 = 11011001010010 . . .

xn 1 1 0 1 1 0 0 1 0 . . .
n 0 1 2 3 4 5 6 7 8 . . .

rep2(n) ε 1 10 11 100 101 110 111 1000 · · ·

xn = 1⇔
No block of 0 of odd length appears in rep2(n)

q/1 r/1 s/0 t/0
1

1
0

0
1

0,1

 (xn)n≥0 is 2-automatic.
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Example (Baum-Sweet sequence)

S1 = {n ≥ 0 | xn = 1} is 2-recognizable,
i.e., rep2(S1) = {rep2(n) | n ∈ S1} is accepted by a DFA.

q r s t
1

1
0

0
1

0,1

Conversely,

X ⊆ N k -recognizable⇒ 1X k -automatic.
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Problem
Let g : A→ B be a coding and
f : A→ A∗ be a k -uniform morphism prolongable on a ∈ A∗.
Is the word g(fω(a)) ultimately periodic ?

A set X ⊆ N is ultimately periodic if 1X is ultimately periodic.

Equivalent problem
Given a DFA that accepts the base k representation of X ⊆ N,
is the set X ultimately periodic ?
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Integer base

Problem
Given a DFA that accepts the base k representation of X ⊆ N,
is the set X ultimately periodic ?

It is decidable. [Honkala, 1986]

Remark

Allouche, Rampersad, Shallit 2009
Leroux 2005
Muchnik 1991
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Integer base

Idea :

If X ⊆ N is ultimately periodic,
then the state complexity of the DFA↗ with the period and
preperiod of X .

Decision method :

Input : X ⊆ N given by a DFA accepting 0∗repb(X ).

If X is ultimately periodic,
we have an upper bound on its period and its preperiod.

 a finite number of pairs (period, preperiod) to test.
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General case

Abstract numeration system S = (L,Σ, <) where
L is infinite recognizable language,
(Σ, <) is a totally ordered alphabet.

The representation of an integer n is

repS(n) := the (n + 1)-th word of L.

Example

Let S = (L, {a,b},a < b) with L = {ε} ∪ {a,ab}∗.

repS(N) ε a aa ab aaa aab aba aaaa . . .

N 0 1 2 3 4 5 6 7 . . .
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Back to the problem

General problem (HD0L periodicity problem)
Let

g : A→ B be a coding ,
f : A→ A∗ be a morphism prolongable on a ∈ A∗.

Is the word g(fω(a)) ultimately periodic ?

Theorem (Maes, Rigo, 2002)

An infinite word x is S-automatic iff there exist
a morphism f : A→ A∗ prolongable on a ∈ A ,
a coding g : A→ B such that x = g(fω(a)).
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Problem (equivalent to the "HD0L periodicity problem")
Let

S be an abstract numeration system,
X ⊆ N be a set such that repS(X ) is recognizable.

Is the set X ultimately periodic ?

It is decidable for a class of abstract numeration systems.
[Bell, Charlier, Fraenkel, Rigo, 2008]
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Positional numeration system

A positional numeration system U = (Ui)i≥0 is
a strictly increasing sequence U of integers such that
{Ui+1/Ui | i ≥ 0} is bounded,
U0 = 1.

Remark
Particular case : integer base

(Ui)i≥0 = (bi)i≥0
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Fibonacci numeration system

Let F = (Fi)i≥0 := (1,2,3,5,8,13,21,34, . . .) be given by

F0 = 1,F1 = 2 and Fi+2 = Fi+1 + Fi for all i ≥ 0.

13 8 5 3 2 1
ε 0
1 1

1 0 2
1 0 0 3
1 0 1 4

...
1 0 0 1 0 1 17

repF (17) = 100101

repF (N) = {ε} ∪ 1{0,01}∗

1

0
0

1
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Positional numeration system

Problem
Let

U be a positional numeration system,
X ⊆ N be a set such that repU(X ) is recognizable.

Is the set X ultimately periodic ?

It is decidable for a class of positional numeration systems.
[Bell, Charlier, Fraenkel, Rigo, 2008]

Remark
The decision procedure of Bell et al. can not be applied to the
integer base systems.
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Let L be a language over the finite alphabet A.

Context of a word u ∈ A∗ with respect to L :

CL(u) = {(x , y) ∈ A∗ × A∗|xuy ∈ L}

Myhill congruence for L : ∀u, v ∈ A∗,

u ↔L v ⇔ CL(u) = CL(v)

Example

Let A = {a,b} and L = a∗b∗ = {anbm |n,m ∈ N}.

CL(ab) = { (ai ,bj) | i , j ∈ N}
CL(ba) = ∅
CL(a) = {(ai ,ajb`)|i , j , ` ∈ N}
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Let [u] denote the class of u ∈ A∗ in A∗/↔L .

The product is defined by

[u] ◦ [v ] = [w ] if [u] · [v ] ⊆ [w ].

In particular, [u] ◦ [v ] = [uv ].

Syntactic monoid of L : (A∗/↔L , ◦)

Theorem

L is recognizable ⇔ A∗/↔L is finite

Syntactic complexity of L : #(A∗/↔L)
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Back to the problem

Problem
Given a DFA that accepts the representation of X ⊆ N,
is the set X ultimately periodic ?

If X ⊆ N is periodic of period m,

then the representation of X in a reasonable numeration
system gives a language L ⊆ A∗ recognizable by a DFA.

Question : Does #(A∗/↔L) grow with the period m of X ?
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Integer base

Theorem (Rigo, V., 2011)

Let m,b ≥ 2 be integers such that (m,b) = 1. If X ⊆ N is
periodic of period m, then

#(A∗/↔0∗repb(X)
) = m · ordm(b).

Notation : ordm(b) = min{ j ∈ N \{0}|b j ≡ 1 (mod m)}.

Idea : Show for all u, v ∈ A∗,

u ↔0∗repb(X)∗ v ⇔
{

valb(u) ≡ valb(v) (mod m)
|u| ≡ |v | (mod ordm(b))

.
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Example : X = 3N = {3n | n ∈ N}

b = 2
m = 3
ord3(2) = 2

1

1

0

0

0 1

Multiplication table of the syntactic monoid of 0∗rep2(X ) :

ε 0 1 01 10 101
ε ε 0 1 01 10 101
0 0 ε 01 1 101 10
1 1 10 ε 101 0 01

01 01 101 0 10 ε 1
10 10 1 101 ε 01 0

101 101 01 10 0 1 ε
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Integer base

Lower bounds on the syntactic complexity can be obtained for a
period m and a base b such that :

m = q with gcd(q,b) = 1,
m = bn with n ≥ 1,
m = bnq with q ≥ 2, gcd(q,b) = 1 and n ≥ 1,
m = dbnq with q ≥ 2, gcd(q,b) = 1, gcd(d ,b) ≥ 1 and
n ≥ 0.
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Integer base

Proposition (Rigo, V., 2011)

If b is prime and X ⊆ N is ultimately periodic of period m = qbn

with q ≥ 2, gcd(q,b) = 1 and n ≥ 0, then

#(A∗/↔0∗repb(X)
) ≥ (n + 1)q.

In the proof, we use a result of Perles, Rabin, Shamir (1963) on

n-definite languages a. k. a. suffix testable languages.

[Pin, 1997]
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A language L ∈ A∗ is a n-definite if
∀u, v ∈ A∗ such that u = u′x , v = v ′x with |x | = n and
u′, v ′ ∈ A∗,

u ∈ L⇔ v ∈ L

∃u, v ∈ A∗ such that u = u′x , v = v ′x with |x | = n − 1 and
u′, v ′ ∈ A∗ \ {ε},

u ∈ L and v 6∈ L.

Example

Let X = 5 + 8N and L = 0∗rep2(X ).
L is 3-definite because

L = {0,1}∗{101}



Uniform morphisms Numeration systems Syntactic complexity Further work

1 Uniform morphisms

2 Numeration systems

3 Syntactic complexity

4 Further work



Uniform morphisms Numeration systems Syntactic complexity Further work

Goal : Deal with a larger class of numeration systems using the
syntactic monoid.

Conjecture (Fibonacci numeration system)

F0 = 1,F1 = 2 and Fi+2 = Fi+1 + Fi for all i ≥ 0.

If X = mN = {m · n |n ∈ N}, then

#(A∗/↔0∗repF (X)
) = 4 ·m2 · PF (m) + 2

where PF (m) is the period of (Fi mod m)i≥0.
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Thank you.
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