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SUMMARY  

 Introduction : Patients with type 2 diabetes have an increased risk of chronic liver disease 

(CLD)  such as non-alcoholic fatty liver disease and steatohepatitis and about one third of 

cirrhotic patients have diabetes. However, the use of several antidiabetic agents may be a 

concern in case of hepatic impairment (HI).  

Area covered: An extensive literature search was performed to analyze the influence of HI on 

the pharmacokinetics (PK) of glucose-lowering agents and the potential consequences for 

clinical practice as far as the efficacy/safety balance of their use in diabetic patients with 

CLD.  

Expert Opinion : Almost no PK studies have been published regarding metformin, 

sulfonylureas, thiazolidinediones and alpha-glucosidase inhibitors in patients with HI. Only 

mild changes in PK of glinides, dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium glucose 

cotransporters type 2 (SGLT2) inhibitors were observed in dedicated PK studies in patients 

with various degrees of HI, presumably without major clinical relevance although large 

clinical experience is lacking. GLP-1 receptor agonists have a renal excretion rather than liver 

metabolism. Rare anecdotal case reports of hepatotoxicity have been described with various 

glucose-lowering agents contrasting with numerous reassuring data. Nevertheless, caution 

should be recommended, especially in patients with advanced cirrhosis, including with the use 

of metformin. 

 
 
Key-words : Chronic liver disease – Cirrhosis – Glucose-lowering therapy  – Hepatic 
impairment – Hepatotoxicity – Pharmacokinetics – Oral antidiabetic agent –Type 2 diabetes 
mellitus 
  



 

1. Introduction 

The liver is one of the principal organs involved in glucose metabolism. A link 

between diabetes and chronic liver disease (CLD) was first observed in the early half of the 

last century, and the complex and bi-directional relationship linking the liver and diabetes has 

recently gained intense new interest (Figure 1)  [1, 2]. Type 2 diabetes mellitus (T2DM) 

favors non-alcoholic fatty liver disease (NAFLD), both steatosis and non-alcoholic 

steatohepatitis (NASH) [3] while alcoholic cirrhosis, chronic hepatitis C virus and 

hemochromatosis are frequently associated with diabetes [4]. Overall, about 30% of patients 

with cirrhosis have diabetes.  Diabetes, which develops as a complication of cirrhosis, is 

known as "hepatogenous diabetes" [5]. An impaired response of the islet beta-cells of the 

pancreas and insulin resistance (both hepatic and muscular) are contributory factors to the 

development of diabetes in cirrhotic patients [6, 7]. Treatment of the diabetes is complex due 

to liver damage and potential hepatotoxicity of some oral hypoglycemic medications or drug-

associated adverse events favored by CLD [8]. 

Differential use of antidiabetic drugs in patients with co-morbid disease constellations 

will help to reduce treatment related complications and might improve prognosis [9]. 

However, guidelines fail to give advice on the use of specific glucose-lowering medications in 

patients with co-morbidity and the literature is deficient in studies documenting antidiabetic 

drug use in patients with CLD. Whereas several recent articles focused on the use of glucose-

lowering agents in patients with chronic kidney disease [10-12], only scarce review papers are 

available yet regarding the management of diabetic patients with CLD [13,14]. Furthermore, 

these papers focused on general management rather than on the specific use of glucose-

lowering agents and the place of new medications such as dipeptidyl peptidase (DPP-4) 

inhibitors (also known as gliptins), sodium glucose cotransporters type 2 (SGLT2) inhibitors 

and glucagon-like peptide-1 (GLP-1) receptor agonists was almost not considered [13].  

Managing diabetes in patients with CLD can be challenging because many 

antihyperglycemic therapies are contraindicated or must be used with caution for safety 

reasons [8]. Another interesting aspect concerns the use of insulin-sensitizing agents, well 

known compounds for the management of T2DM, in patients with NAFLD. Indeed, because 

insulin resistance seems to play a role in the development of NAFLD, the administration of 

insulin-sensitizing medications deserves much consideration in the management of patients 

with NAFLD, of course when T2DM is present but also in absence of diabetes [15, 16]. 



The aim of this review paper is to provide an updated analysis of the use of oral 

antidiabetic agents (OADs) and injectable agents in diabetic patients with CLD. After a brief 

description of how to assess liver function and evaluate the severity of hepatic impairment 

(HI), we will describe the PK characteristics as well as the safety profile of each glucose-

lowering compound in patients with various degrees of CLD.   

To identify relevant studies, an extensive literature search of MEDLINE was 

performed from 1970 to December 2013, with the names of the following pharmacological 

classes biguanides, sulfonylureas, meglitinides (glinides), alpha-glucosidase inhibitors, 

thiazolidinediones, DPP-4 inhibitors, SGLT2 inhibitors, GLP-1 receptor agonists, human 

insulin or insulin analogs combined with any of the following terms : “chronic liver disease”, 

“hepatic impairment” or “cirrhosis”. Each generic name - metformin, glibenclamide 

(glyburide), glimepiride, glipizide, gliclazide, gliquidone, repaglinide, nateglinide, acarbose, 

miglitol, voglibose, pioglitazone, rosiglitazone, sitagliptin, vildagliptin, saxagliptin, 

linagliptin, alogliptin, dapagliflozin, canagliflozin, empagliflozin, exenatide, liraglutide, 

lixisenatide - was also combined with each of the various terms corresponding to CLD.  No 

language restrictions were imposed. Reference lists of original studies, narrative reviews and 

previous systematic reviews were also carefully examined. 

 

2. Classification of liver impairment 

Liver tests are commonly altered in patients with overweight/obesity and in patients 

with T2DM. The prevalence of NAFLD ranges 10-24% in the general population, reaching 

60-95% and 28-55% in obese and diabetic patients, respectively [17]. Although the etiology 

of NAFLD is still unclear, several lines of evidences have indicated a pathogenic role of 

insulin resistance in this disorder [3, 17]. Chronic inflammation associated to NASH may lead 

to progressive fibrosis. Cirrhosis is the ultimate stage of HI, whose severity may vary from 

patient to patient, and the management of diabetes in those patients is most often difficult.  

In hepatology, the Child-Pugh score, initially developed for selecting patients who 

may benefit from liver transplantation, is currently used to assess the overall prognosis of 

CLD, mainly cirrhosis [18]. In clinical pharmacology, it is used to score the severity of HI in 

order to guide the use of drugs in patients with CLD, although its limitations have been 

acknowledged [19]. The Child-Pugh score employs five clinical measures of liver disease : 

total bilirubin level, serum albumin concentration, prothrombin or international normalized 

ratio (INR) value, presence of ascitis and hepatic encephalopathy. Each measure is scored 



from 1 to 3, with 3 indicating most severe derangement. CLD is classified into Child-Pugh 

class A-C, employing the added score from above : 5-6 (class A = mild HI), 7-9 (class B = 

moderate HI) and 10-15 (class C : severe HI). Such classification has been used in the various 

PK studies with glucose-lowering agents described below. 

Noteworthy, hepatorenal syndrome is a distinctive complication of CLD and cirrhosis 

[20]. Therefore, renal function should be carefully monitored in all patients with cirrhosis and 

selection of antidiabetic pharmacotherapy should also take into account the possibility of 

associated renal impairment in such patients [10-12]. 

 

3. PK considerations 

PK studies are recommended in subjects with impaired hepatic function if hepatic 

metabolism accounts for a substantial portion of the absorbed drug [19]. Numerous glucose-

lowering drugs are excreted as parent drug or as active metabolite via the kidneys [12]. 

Nevertheless, HI may also interfere with the PK of various glucose-lowering medications. 

Considering the high prevalence of diabetes among patients with CLD and of hepatic 

disturbances among patients with T2DM, the analysis of PK changes of various glucose-

lowering agents in patients with HI should deserve careful evaluation. Pharmacodynamic 

(PD) effects in this population may also be of interest, although rarely evaluated. 

 

3.1. Biguanides (metformin) 

Metformin, a biguanide compound, is considered as the first-line drug for the 

treatment of T2DM [21]. Chemically, it is a hydrophilic base which exists at physiological pH 

as the cationic species. Consequently, its passive diffusion through cell membranes is very 

limited as well as liver metabolism. No metabolites or conjugates of metformin have been 

identified [22]. The absence of liver metabolism clearly differentiates the PK of metformin 

from that of other biguanides, such as phenformin (withdrawn from the market because of 

lactic acidosis). Metformin undergoes renal excretion. The elimination is prolonged in 

patients with renal impairment and correlates with creatinine clearance, even in patients with 

HI [23]. In contrast, liver impairment stricto sensu should not interfere with PK of metformin. 

However, no PK studies are available in patients with CLD. Recent experimental data in 

animals showed that metformin sinusoidal efflux from the liver is consistent with negligible 

biliary excretion and absence of enterohepatic cycling [24]. 

3.2. Sulfonylureas  



Sulfonylureas remain largely used in the management of T2DM [25] and are currently 

positioned as second-line after failure of metformin monotherapy [21]. They are associated 

with a higher risk of severe hypoglycemia, compared with metformin and more recent 

glucose-lowering therapies [26], especially in the elderly population and in patients with renal 

or liver disease.  Among the possible extra-pancreatic effects of sulfonylureas, a reduction of 

the hepatic extraction of insulin has been reported, which could contribute to increase 

peripheral insulin concentrations [25]. 

 Due to hepatic metabolism and renal excretion of the parent drug and/or active 

metabolites, sulfonylureas are classically contraindicated in patients with liver or kidney 

disease [27]. However, PK data on sulfonylureas are very limited in cirrhotic patients.  

 

3.2.1. Tolbutamide 

 The PK data after tolbutamide intravenous injection were compared in patients with 

cirrhosis (diagnosis made by clinical symptoms, liver function tests and laparoscopic 

examination, but without score of severity), in T2DM patients and in patients with renal 

impairment. The disappearance rate of tolbutamide from the blood was reduced in five of ten 

cases with cirrhosis. Prolonged half-lives (from about 4 hours in normal subjects to 7.8 to 

11.2 hours) were measured in those subjects although no significant correlation was observed 

with the results of liver function tests. No severe renal impairment was noticed in these 

patients. Reduction in arterial glucose concentrations tended to be greater and more prolonged 

in some cirrhotic patients. However, such changes in arterial blood glucose were not 

attributable to the prolongation of half-life of tolbutamide [28]. In another study in 10 subjects 

with HI, hepatic dysfunction did not necessarily cause a prolongation in the rate of 

metabolism of tolbutamide, but there was an apparent prolongation of the half-life for 

metabolism of tolbutamide when renal function was impaired [29]. No similar study has been 

published regarding chlorpropamide. Nevertheless, these limited observations led to 

recommendation of cautious use of first-generation sulfonylureas in patients with CLD 

because of a potential high risk of hypoglycemia [13, 14]. 

 
3.2.2. Glibenclamide (glyburide) 

 

Experimental results showed that human cytochrome P450 3A4 (CYP3A4) is the 

major enzyme involved in the in vitro metabolism of glibenclamide [30]. Glibenclamide is 



inactivated by the liver to 4-trans-hydroxyglibenclamide and 3-cis-hydroxyglibenclamide. 

Elimination of the drug appears to be evenly divided between biliary and renal routes [31]. 

Glibenclamide should not be prescribed for patients with severe CLD [32], although no 

specific PK studies in patients with HI are available in the literature.  

   

3.2.3. Glimepiride 

Glimepiride has fewer and less severe adverse effects than glibenclamide. It is 

metabolized by CYP2C9 and its PK is mainly unaltered in patients with liver disease [33].  In 

11 patients with CLD, the PK of glimepiride was similar to those of healthy volunteers [34]. 

Thus, whereas the PK characteristics of glimepiride are altered in T2DM subjects with renal 

disease [12], they may not be seriously affected in patients with CLD. However, data were 

obtained from patients with liver disease of unspecified severity and are, therefore, of limited 

clinical usefulness. Administration of glimepiride in diabetic patients with severe CLD is not 

recommended, as is the case for other sulfonylureas.  

 

3.2.4. Glipizide 

 The PK properties, spectrum and severity of side effects and metabolism of glipizide 

are somewhat different from those of first-generation sulfonylureas or even glibenclamide 

[35].  The hepatic metabolism of glipizide involves CYP2C9 and to a lesser extent CYP2C19. 

There are no data on PK of glipizide in patients with CLD. However, a study showed that 

glipizide significantly increased the estimated hepatic uptake of insulin in cirrhotic patients 

but not in other patients without CLD [36]. In absence of clear-cut data, caution is 

recommended when considering the use of glipizide in patients with CLD. 

 

3.2.1. Gliclazide 

Gliclazide is metabolized by the liver to inactive metabolites, which are eliminated 

mainly in the urine (80%). CYP2C9 is the major contributor to gliclazide metabolic clearance, 

although CYP2C19 may also be involved in hydroxymethyl metabolite of gliclazide 

formation (the major metabolic pathway) [37]. There are no data on PK of gliclazide in 

patients with CLD. In absence of specific data, gliclazide should also be used with caution in 

patients with CLD. 

 

3.2.5. Gliquidone 



Gliquidone is metabolized in the liver and has no renal excretion, in contrast to other 

sulfonylureas. Because accumulation does not take place in patients with renal impairment, 

this sulfonylurea may be used in patients with stable chronic kidney disease [38]. Because of 

its specific hepatic metabolism, its use should not be recommended in patients with CLD and 

no data are available in this population.  

 

3.3. Meglitinides (glinides) 

Compared to sulfonylureas, glinides are characterized by shorter half-lives as well as 

by the absence of significant renal excretion [39, 40]. These compounds are exposed to drug-

drug interactions via significant interferences on hepatic metabolism [41]. Despite they are 

metabolized in the liver, there are no large scale studies having assessed both the efficacy and 

safety of repaglinide and nateglinide in T2DM patients with CLD [39]. However, PK 

characteristics have been evaluated in patients with HI. The influence of HI on drug exposure 

and elimination appears to differ between repaglinide (significant interference) and 

nateglinide (only minimal change) (Table 1). The reason of this discrepancy remains 

speculative. However, the two meglitinide compounds are metabolized by different CYP 

isoforms, 2C8 for repaglinide [43] and 2C9 for nateglinide [40]. Furthermore,  

SLCO1B1 (organic anion-transporting polypeptide 1B1) polymorphism exerts different 

effects on the PK/PD of repaglinide (significant PK changes) and nateglinide (PK unaffected) 

[42]. The SLCO1B1*1B/*1B genotype is associated with reduced plasma concentrations of 

repaglinide, consistent with an enhanced hepatic uptake by OATP1B1, but has limited effects 

on the PK of nateglinide [43]. 

 

3.3.1. Repaglinide 

Repaglinide is metabolized mainly in the liver and is eliminated rapidly via the biliary 

route [44]. Its PK may therefore be altered by hepatic dysfunction. An open, parallel-group 

study compared the PK and tolerability of a single 4 mg dose of repaglinide in healthy 

subjects and patients with CLD (Table 1). Values for area under the concentration-time curve 

(AUC) and maximum plasma concentration (Cmax) were significantly higher in CLD patients 

compared with healthy subjects. Values for time to reach Cmax (tmax) did not differ between the 

groups, but terminal elimination half-life (t1/2) was significantly prolonged in CLD patients 

compared with previously determined values in healthy subjects. The mean residence time 



was prolonged in CLD patients compared to healthy subjects [5.9±4.4 versus 1.2±0.4 hours; 

geometric mean ratio or GMR : 4.7 (90% confidence interval or CI : 1.6-7.8); p=0.005]. AUC 

was inversely correlated with caffeine clearance in CLD patients but not in healthy subjects. 

Thus, repaglinide clearance is significantly reduced in patients with HI so that this glucose-

lowering agent should be used with caution in patients with CLD and is contraindicated in 

diabetic patients with severe HI [45].  

 

3.3.2. Nateglinide 

The clinical PK of nateglinide, a rapidly-absorbed, short-acting insulinotropic agent, 

has been extensively reviewed [40]. No significant PK alterations occur in patients with mild 

HI. A single-dose, open-label, parallel-group study compared the PK of 120 mg doses 

of nateglinide in subjects with cirrhosis and matched healthy subjects. In both groups, plasma 

concentration peaked in a median of 0.5 hours, and mean t1/2 values were comparable. 

However, exposure tended to be slightly increased (+ 30 % for AUC and + 37 % for Cmax) 

(Table 1). Mean apparent total clearance and mean renal clearance of nateglinide were 

comparable in both groups. Mean protein-bound fractions were also equivalent. No 

statistically significant or clinically relevant alterations in PK parameters 

of nateglinide resulted from hepatic dysfunction; therefore, adjustment of nateglinide dosage 

is not required in subjects with mild to moderate cirrhosis [46]. No data are available in 

patients with severe HI. 

Nateglinide was tested in a pilot 20-week study in diabetic patients with NASH who 

were randomly divided into two groups, 5 patients treated with nateglinide (90 mg before 

each meal, i.e. 270 mg/day) and 5 patients non-treated with nateglinide used as control group. 

Postprandial blood glucose, glycated hemoglobin (HbA1c), a 75-g oral glucose tolerance 

test, liver function, abdominal ultrasound and computerized tomography imaging tests 

and liver histological findings were all improved after treatment with nateglinide. This 

medication was considered as useful and safe in the treatment of NASH in patients with 

T2DM [47]. 

 

3.3.3. Mitiglinide 



Mitiglinide is another rapid-acting insulin secretion-stimulating agent, which is approved 

in Japan for the treatment of T2DM [48].  Uridine diphosphate glucuronosyltransferase 

(UGT) isoforms UGT1A3 and UGT2B7 were found to be catalytic enzymes in mitiglinide 

carboxyl-glucuronidation in human liver [49] No PK study was specifically performed with 

mitiglinide in patients with CLD. 

 

3.4. Alpha-glucosidase inhibitors 

3.4.1. Acarbose 

Acarbose acts locally within the gastrointestinal tract and is characterized by a low 

systemic bioavailability [50]. Several results clearly documented the good tolerability and the 

absence of toxic effects of acarbose on liver, due to the lack of both intestinal absorption and 

hepatic metabolism of the drug at doses in the therapeutic range. Because of these 

characteristics, no PK studies are available with this compound in patients with CLD.  

However, several limited studies demonstrated the efficacy and safety of acarbose in diabetic 

patients with CLD [51], alcoholic cirrhosis [52], well-compensated non-alcoholic cirrhosis 

[53], and low-grade hepatic encephalopathy [54]. Acarbose has been also considered as a 

promising therapeutic strategy for the treatment of patients with NASH [55]. 

 

3.4.2. Miglitol and voglibose 

Miglitol is systemically absorbed but is not metabolized, and is rapidly eliminated by 

renal excretion as unchanged drug [56]. Voglibose is another alpha-glucosidase inhibitor 

commercialized in Japan. Only a minimal amount of drug is absorbed in unchanged form. 

One study reported that voglibose was an effective therapy for NASH in a patient with 

insufficient dietary and exercise therapy [57]. 

 

 

3.5. Thiazolidinediones  

Troglitazone was the first thiazolidinedione antidiabetic agent approved for clinical 

use in 1997 [58], but it was withdrawn from the market in 2000 due to serious idiosyncratic 

hepatocellular injury-type hepatotoxicity. Troglitazone contains the structure of a unique 

chroman ring of vitamin E, and this structure has the potential to undergo metabolic 

biotransformation to form quinone metabolites, phenoxy radical intermediate, and epoxide 

species [59]. Furthermore, troglitazone, unlike pioglitazone and rosiglitazone, induces the 



cytochrome P450 isoform 3A4, which is partly responsible for its metabolism, and may be 

prone to drug interactions [60]. The involvement of reactive metabolites in 

the troglitazone cytotoxicity has been proposed but still remains controversial [59]. 

Nevertheless, because troglitazone was withdrawn from the market because of hepatotoxicity, 

concern emerged about the use of other compounds of this pharmacological class in patients 

with CLD [60].  

 

3.5.1. Pioglitazone 

Pioglitazone and its active metabolites are excreted via the liver rather than the 

kidneys. It is metabolised mainly by CYP2C8 and to a lesser extent by CYP3A4 in vitro [61]. 

No study published the PK of pioglitazone in patients with CLD but some limited information 

could be found in the Food and Drug Administration report [62]. Compared with normal 

controls, subjects with impaired hepatic function (Child-Pugh class B/C) have an approximate 

45% reduction in pioglitazone mean peak concentrations but no change in the mean AUC 

values. In hepatic insufficiency, volume of distribution was increased, probably explaining 

why Cmax was reduced [63]. 

In a proof-of-concept study, the administration of pioglitazone, acting as an insuli-

sensitizer compound, led to metabolic and histologic improvement in subjects with NASH 

[64]. Further studies showed also favorable, although less convincing results, in NAFLD 

patients without diabetes [65]. Other findings suggest that long-term therapy with 

pioglitazone may be necessary to maintain improvements in disease activity in patients with 

NASH, although weight gain during treatment may ultimately limit its beneficial effects (see 

also section 4.5) [66]. 

3.5.2. Rosiglitazone 

Rosiglitazone is mainly metabolized by CYP2C8 into inactive metabolites, and < 1% 

of the parent drug appears in the urine in unchanged form [67]. No published study 

investigated the PK of rosiglitazone in patients with CLD but some data are available in the 

FDA report [68]. Unbound oral clearance of rosiglitazone was significantly lower in patients 

with moderate to severe liver disease (Child-Pugh class B/C) compared to healthy subjects. 

As a result, unbound Cmax and AUC∞ were increased 2- and 3-fold, respectively. Elimination 

half-life for rosiglitazone was about 2 hours longer in patients with CLD, compared to healthy 



subjects. Therefore, caution is required in patient with moderate HI and the drug should not be 

prescribed in patients with severe HI.  

In a study that compared the effects of rosiglitazone and metformin treatment, 

rosiglitazone but not metformin decreased liver fat, increased insulin clearance and 

augmented serum adiponectin concentrations (see also section 4.5) [69]. 

 

3.6. DPP-4  inhibitors  

DPP-4 inhibitors (gliptins) are a new class of OADs belonging to the incretin-based 

glucose-lowering agents. By inhibiting the inactivation of endogenous GLP-1, they improve 

glucose control without inducing hypoglycemia (in contrast to sulfonylureas) and are weight-

neutral [70]. Several molecules are already available, which are characterized by different PK 

properties [71, 72]. In contrast to previous glucose-lowering agents for which PK evaluation 

in patients with HI was almost absent (metformin, sulfonylureas) or scarce (repaglinide, 

nateglinide, glitazones), all five DPP-4 inhibitors already on the market were particularly well 

studied in patients with various degrees of HI as far as PK characteristics were concerned 

(Table 2). Furthermore, a recent intriguing paper suggests that DPP-4 may be a key player in 

CLD, a finding that may open new perspectives for the use of DPP-4 inhibitors in patients 

with CLD [73]. However, no clinical study with a chronic administration of a DPP-4 inhibitor 

in patients with CLD is available yet. 

   

3.6.1. Sitagliptin 

Sitagliptin is primarily excreted by renal elimination as unchanged drug, with only a 

small percentage (approximately 16%) undergoing hepatic metabolism. CYP3A4 has been 

shown to be the major cytochrome P450 isoenzyme responsible for the limited oxidative 

metabolism of sitagliptin, with some minor contribution from CYP2C8 [74]. The influence of 

moderate HI on the PK of sitagliptin should be minimal. In an open-label study, a single 100-

mg oral dose of sitagliptin was administered to patients with moderate CLD (Child-Pugh's 

scores ranged from 7 to 9) and healthy control subjects [75]. The mean AUC∞  and Cmax for 

sitagliptin were numerically, but not significantly, higher in patients with moderate HI 

compared with healthy matched control subjects (by 21% and 13%, respectively) (Table 2). 

These slight differences were not considered to be clinically meaningful. Furthermore, 

moderate HI had no statistically significant effect on the Tmax, apparent terminal t1/2 and renal 



clearance of sitagliptin. Thus, moderate HI has no clinically meaningful effect on the PK of 

sitagliptin [75]. 

The efficacy and safety of sitagliptin therapy has been shown in patients with diabetes 

complicated by NAFLD [76-78], NASH [79] or CLD caused by hepatitis C virus [80]. 

However, it has been also reported that NAFLD adversely affects the glycemic control 

afforded by sitagliptin [81]. 

 

3.6.2. Vildagliptin 

Vildagliptin is primarily metabolized via hydrolysis and the inactive metabolites are 

predominantly excreted by the kidneys [82]. An open-label, parallel-group study compared 

the PK of vildagliptin in patients with mild, moderate or severe CLD and in healthy subjects. 

All subjects received a single 100-mg oral dose of vildagliptin, and plasma concentrations 

of vildagliptin were measured up to 36 h post-dose. Exposure to vildagliptin (AUC∞ and Cmax) 

decreased non-significantly by 20 and 30%, respectively, in patients with mild HI. Exposure 

to vildagliptin was also decreased non-significantly in patients with moderate HI, by 8 and 23 

%, respectively. In patients with severe HI, Cmax was 6% lower than that in healthy subjects, 

whereas AUC∞ was numerically increased by 22% (Table 2). Because there was no 

significant difference in exposure to vildagliptin in patients with mild, moderate or severe HI, 

the conclusion was that no dose adjustment of vildagliptin is necessary in patients with CLD 

[83]. 

 

3.6.3. Saxagliptin 

Saxagliptin is metabolized in vivo to form an active metabolite (2-fold less potent than 

its parent molecule), and both parent drug and metabolite are excreted primarily via the 

kidneys [59, 72]. Saxagliptin is largely metabolized by CYP3A4 and CYP3A5 isoforms. The 

PK of saxagliptin and its pharmacologically active metabolite, 5-hydroxy saxagliptin, were 

compared in nondiabetic subjects with mild, moderate or severe CLD and in healthy adult 

subjects in an open-label, parallel-group, single-dose (10 mg saxagliptin) study. As compared 

with healthy subjects, the AUC∞ values for saxagliptin were 10%, 38% and 77% higher in 

subjects with mild, moderate or severe HI, respectively (Table 2). The corresponding values 

were 22%, 7% and 33% lower, respectively, for 5-hydroxy saxagliptin, compared with 

matched healthy subjects. Saxagliptin Cmax values were 8% higher, 16 % higher and 6 % 

lower in patients with mild, moderate and severe HI, respectively, compared to controls 



(corresponding values for 5-hydroxy saxagliptin : -17%, -16% and -59%, respectively).  

According to these results, i.e. increase of saxagliptin exposure compensated for by a 

corresponding decrease of the exposure to its active metabolite, no dose adjustment is 

recommended for patients with any degree of HI [84]. 

 

3.6.4. Linagliptin 

In contrast to other DPP-4 inhibitors whose main route of elimination is the kidney 

[71, 72], the elimination of linagliptin is primarily non-renal [85]. Linagliptin undergoes 

enterohepatic cycling with a large majority (85%) of the absorbed dose eliminated in faeces 

via biliary excretion [72]. Therefore, a potential effect of HI on the PK of linagliptin may 

have important implications for dosing recommendations. This was the rationale for a 

multiple dose rather than a single dose study (as with other DPP-4 inhibitors described above) 

in patients with CLD.  

An open label, parallel group, study enrolled patients with mild, moderate or severe CLD 

and healthy subjects to investigate whether HI affects linagliptin PK, PD and tolerability [86]. 

Primary endpoints were linagliptin exposure following 5 mg linagliptin once daily for 7 days 

in patients with mild and moderate HI vs. healthy subjects or after a single 5 mg dose for 

patients with severe HI vs. healthy subjects. In patients with mild and moderate HI, steady-

state linagliptin exposure was slightly lower than in healthy subjects (Table 2). After a single 

dose, AUC(0,24 h) in patients with severe HI was similar to that in healthy subjects and Cmax 

tended to be lower (Table 2). Accumulation based on AUC or Cmax and renal excretion of 

unchanged linagliptin (≤ 7%) were comparable across groups. Median plasma DPP-4 

inhibition was similar in healthy subjects (91%), and patients with mild (90%) and moderate 

(89%) HI at steady-state trough concentrations, and in patients with severe HI 24 h after a 

single dose (84%). Thus, mild, moderate or severe HI did not result in any increase 

in linagliptin exposure after single and multiple dosing compared with normal hepatic 

function. The conclusion was that dose adjustment with linagliptin is not required in patients 

with HI [86].  

 

3.6.5. Alogliptin 

Alogliptin is metabolized into 2 identified minor metabolites: M-I, an N-demethylated 

active metabolite via CYP2D6, and M-II, an N-acetylated inactive metabolite. CYP3A4 may 

also be involved in the formation of other unidentified minor metabolites. Exposure to these 2 



metabolites in plasma, relative to unchanged drug, are <1% and <6%, respectively. 

Metabolism represents only a small part of the elimination of alogliptin, which is mainly 

excreted through the kidneys [71, 72]. 

After a single oral administration of 25 mg alogliptin, no clinical significant differences 

in AUC and Cmax exposure to the parent drug and its main metabolite M1 were observed in 

subjects with moderate HI (Child-Pugh 7-9) compared with healthy subjects. The elimination 

of both alogliptin and M1 was 2.5 hours longer in patients with moderate HI than in normal 

subjects. However, the magnitude of these increases was not considered clinically significant. 

Therefore, no dose adjustment is necessary for patients with mild to moderate HI (classes A 

and B)  [87]. However, these data were reported only as an abstract so that caution is 

recommended. Subjects with severe HI were not evaluated [87].  

   

 

3.7. SGLT2 inhibitors 

 SGLT2 inhibitors improve glycemic control in an insulin-independent fashion 

through inhibition of glucose reuptake in the kidney and offer a new option for the 

management of T2DM  A  recent review summarized the PK and toxicological characteristics 

of this novel pharmacological class [88]. 

 

3.7.1. Dapagliflozin 

Dapagliflozin is the SGLT2 inhibitor with the most clinical data available to date [89] 

and its PK properties have been extensively described in a recent review [90]. 

Dapagliflozin elimination is primarily via glucuronidation to an inactive main 

metabolite, dapagliflozin 3-O-glucuronide. An open-label, parallel-group study compared the 

PK of a single 10-mg oral dose of dapagliflozin in patients with various degrees of HI and in 

healthy control subjects. In those with mild, moderate, or severe HI, dapagliflozin mean Cmax 

values were 12% lower and 12% and 40% higher than healthy subjects, respectively. 

Mean dapagliflozin AUC∞ values were 3%, 36%, and 67% higher compared with healthy 

subjects, respectively (Table 3). These values were highly dependent on the calculated 

creatinine clearance of each group. Compared with healthy subjects, systemic exposure 

to dapagliflozin in subjects with CLD was correlated with the degree of HI. Due to the 

higher dapagliflozin exposures in patients with severe HI, the benefit:risk ratio should be 

individually assessed because the long-term safety profile and efficacy of dapagliflozin have 



not been specifically studied in this population [91]. Caution should be even greater when HI 

is combined with some degree of renal impairment [90]. 

 

3.7.2. Canagliflozin 

The PK and metabolism, the PD and the efficacy and safety of canagliflozin were 

recently reviewed [92].  One study (still unpublished) more specifically investigated the PK of 

canagliflozin in patients with CLD following administration of a single 300 mg dose of the 

drug. Relative to subjects with normal hepatic function, the geometric mean ratios for Cmax 

and AUC∞ of canagliflozin were 107% and 110%, respectively, in subjects with Child-Pugh 

class A (mild HI) and 96% and 111%, respectively, in subjects with Child-Pugh class B 

(moderate HI) (Table 3). These differences are not considered to be clinically meaningful. 

There is no clinical experience in patients with Child-Pugh class C (severe) HI [93]. 

 

3.7.3. Empagliflozin 

The PK/PD properties of empagliflozin have been recently reviewed [94]. The effect of 

HI on the PK of empagliflozin was investigated in an open-label, parallel-group study of 

subjects with mild, moderate, or severe HI and in matched controls with normal hepatic 

function who received a single dose of empagliflozin 50 mg [95]. Compared with subjects 

with normal hepatic function, exposure to empagliflozin (both Cmax and AUC∞) progressively 

increased with the severity of HI (Table 3) [95]. However, as the increase in empagliflozin 

exposure was less than two-fold in patients with impaired liver function, it was concluded that 

no dose adjustment of empagliflozin is required in these patients [95]. 

 

3.7.4. Ipragliflozin 

Ipragliflozin, a SGLT2 inhibitor in clinical development, is primarily eliminated via 

conjugation by the liver as five pharmacologically inactive metabolites. In an open-label, 

single-dose, parallel-group study, eight subjects with moderate HI [Child-Pugh score 7-9] and 

eight healthy, matched controls received a single oral dose of 100-mg ipragliflozin to evaluate 

the effect of moderate HI on the PK of ipragliflozin and its metabolites. Only a trend for a 

mild increased exposure was observed in patients with moderate HI versus controls (Table 3). 

No changes in elimination t1/2 and protein binding of ipragliflozin were observed in moderate 

HI subjects. Thus, moderate HI had no clinically relevant effects on the single-dose PK of 

ipragliflozin [96]. 



  

3.8. GLP-1 receptor agonists 

When oral therapy is not sufficient to control blood glucose, injectable agents may be 

used. Besides insulin therapy, GLP-1 receptor agonists (exenatide, liraglutide, lixisenatide) 

offer new opportunities for the management of T2DM [21]. A recent review describes 

the PK and safety aspects of the currently available GLP-1 receptor agonists [97].  

 

3.8.1. Exenatide 

 The kidney appears to be the primary route of elimination and degradation 

of exenatide [98]. No PK studies have been done in patients with CLD; however, because 

exenatide is cleared primarily by the kidney, HI is not expected to affect blood levels and PD 

effects on glucose control. 

 

3.8.2. Liraglutide 

Liraglutide is metabolized in vitro by DPP-4 and neutral endopeptidase in a manner 

similar to that of native GLP-1, although at a much slower rate. The metabolite profiles 

suggest that both enzymes are also involved in the in vivo degradation of liraglutide. The lack 

of intact liraglutide excreted in urine and feces and the low levels of metabolites in plasma 

indicate that liraglutide is completely degraded within the body [99]. 

A parallel group, open label trial compared the PK of a single-dose (0.75 mg injected 

subcutaneously) of liraglutide in four groups of six subjects with healthy, mild, moderate and 

severe HI, respectively [100]. Exposure to liraglutide was not increased by HI. On the 

contrary, mean AUC∞ was highest for healthy subjects and lowest for subjects with severe HI 

(severe/healthy: 0.56, with 90% CI 0.39, 0.81). Cmax also tended to decrease with HI 

(severe/healthy: 0.71, with 90% CI 0.52, 0.97), but tmax was similar across groups (11.3-13.2 

h). According to the authors, because the half-life of liraglutide was not affected by HI, the 

differences in the overall exposure (AUC∞) of liraglutide might result primarily from 

differences in absorption of the drug from the subcutaneous depot rather than differences in 

its subsequent metabolism. Nevertheless, because the vast majority of liraglutide molecules 

are reversibly bound to plasma albumin, a decrease in albumin concentration as seen in 

patients with severe CLD may also result in an increased rate of metabolism of liraglutide by 

various enzymes. However, this PK effect, resulting in lower plasma levels, might be 

compensated for by a possible enhanced PD effect in the setting of reduced circulating 



albumin concentrations that leads to an increased free fraction of liraglutide able to interact 

with GLP-1 receptors. Because of these diverse effects, data are not conclusive to suggest a 

dose increase of liraglutide. Thus, the results indicate that patients with T2DM and CLD can 

use standard treatment regimens of liraglutide. There is, however, currently limited clinical 

experience with liraglutide in patients with HI [100]. 

 

In a Japanese study, the effectiveness of liraglutide in NAFLD patients with T2DM 

was compared to sitagliptin and pioglitazone. Administration of liraglutide improved T2DM 

but also resulted in improvement of liver inflammation, alteration of liver fibrosis, and 

reduction of body weight and compared favorably with sitagliptin and pioglitazone [101]. In a 

case report, a patient who had suffered from T2DM and from concomitant cryptogenic 

cirrhosis was treated with liraglutide, obtaining an optimal metabolic control associated with 

an improved clinical condition for the cirrhosis [102]. Because of these preliminary promising 

results, LEAN (“Liraglutide Efficacy and Action in NASH”), a phase II, multicentre, double-

blinded, placebo-controlled, randomized clinical trial, has been designed to investigate 

whether a 48-week treatment with 1.8 mg liraglutide will result in improvements in liver 

histology in patients with NASH [103]. The results are not available yet. 

 

3.8.3. Lixisenatide 

The elimination of lixisenatide is expected to follow that of endogenous peptides with 

renal filtration followed by tubular reabsorption and subsequent metabolic catabolism. 

The influence of HI on lixisenatide PK has not been evaluated. No dose adjustment is 

needed in patients with HI as hepatic dysfunction is not expected to affect the PK of 

lixisenatide [104].  

 

3.9. Other glucose-lowering agents 

Some other glucose-lowering agents are only approved in the US : bile acid 

sequestrants (colesevelam), bromocriptine and pramlintide. Because these drugs are either not 

absorbed or not investigated in patients with CLD, they will not be considered in the present 

review. 

 

3.10. Insulin and insulin analogs 

To study the mechanisms of glucose intolerance and hyperinsulinism in cirrhosis, our 

group compared the plasma glucose, insulin, and C-peptide levels during a frequently 



sampled intravenous glucose tolerance test in 9 compensated cirrhotic patients and 9 matched 

healthy volunteers. Cirrhosis was characterized by an important peripheral hyperinsulinism, 

resulting from both a higher insulin secretion rate and a markedly reduced insulin hepatic 

clearance [105]. Portosystemic/intrahepatic shunting may also play a role in some cirrhotic 

patients [6]. When exogenous insulin is necessary, the daily dose required to control blood 

glucose is difficult to predict because of the opposite influence of various factors. In patients 

with decompensated liver disease, the requirement may be decreased due to reduced capacity 

for gluconeogenesis, resulting in lower hepatic glucose output, and reduced hepatic 

breakdown of insulin. However, patients with impaired hepatic function may also have an 

increased need for insulin to compensate for insulin resistance [14]. 

Exogenous insulin uptake by the human cirrhotic liver was studied in 6 patients with 

Laennec's cirrhosis, and the result was compared with that found in 10 control patients with 

varying diseases affecting the biliary system. The fractional hepatic extraction of insulin was 

only 13±5% in cirrhotic patients and differed significantly from the fractional hepatic 

extraction found in controls (51±5%; P<0.001) [106].  

Insulin therapy can be used at any stage of HI, although clinical studies are scarce in 

insulin-treated diabetic patients with CLD [13, 14]. In a small case series of four cirrhotic 

patients with T2DM and inadequate blood glucose control with conventional insulin therapy, 

initiation of continuous subcutaneous insulin infusion with a portable pump was beneficial in 

controlling blood glucose values [107]. There is no single study reporting extensive 

experience with insulin analogs in patients with CLD. 

4. Toxicological considerations 

Many patients with T2DM are treated by several medications, not only glucose-lowering 

agents, but also pharmacological compounds to manage comorbidities such as hypertension, 

dyslipidemia and cardiovascular diseases [108].  In case of the occurrence of hepatic 

disturbances in a patient with T2DM, and after exclusion of a viral or metabolic origin, it may 

not be easy to decide which drug might be responsible for hepatotoxicity. Furthermore, while 

some medications have predictable hepatotoxicity, many more have associated idiosyncratic 

reactions [109]. To our knowledge, there is no obvious information supporting a greater risk 

of severe hepatotoxicity in diabetic patients with mild liver disturbances (NAFLD) receiving 

any type of glucose-lowering agents. 



4.1.Metformin 

The use of metformin has been limited in many diabetic patients considered as at risk 

of complications, especially lactic acidosis [110]. Manufacturer prescribing information and 

some current literature caution against metformin use in patients with CLD [111]. This 

recommendation is interpreted variably by different prescribers, with some believing that the 

caution implies metformin can cause or worsen liver injury [112] and others rather believing 

that liver disease predisposes patients to developing lactic acidosis [113]. Metformin does not 

appear to cause or exacerbate liver injury and, indeed, may be beneficial in patients with 

NAFLD [17, 114]. NAFLD frequently presents with transaminase elevations (alanine 

aminotransferase or ALT) but should not be considered a contraindication to metformin use. 

The liver appears to be a key organ not only for the antidiabetic effect of metformin but also 

for the development of lactic acidosis [115]. Literature evidence of liver disease being 

implicated with metformin-associated metabolic acidosis is largely represented by case 

reports [113, 115]. Most such patients had cirrhosis, with some degree of renal impairment. 

For this reason, it seems reasonable to use metformin with caution in patients with moderate 

CLD and to avoid its use in patients with severe CLD (Table 4). Furthermore, identifying 

patients with cirrhosis and controlling renal function before initiating metformin seem prudent 

[111]. Any circumstance favoring dehydration should promote the interruption of metformin, 

especially in such fragile patients [113].  

Finally, and interestingly, metformin therapy is associated with a reduced risk of 

hepatocellular carcinoma [116], especially in patients with hepatitis C virus [117], and seems 

to have a protective effect on hepatocellular carcinoma progression [118] and liver-related 

death or need for hepatic transplantation [119]. Further long-term, randomized controlled 

trials are needed to adequately assess the safety and efficacy of metformin therapy in patients 

with comorbid diabetes and chronic hepatitis C virus [117]. 

 

4.2.Sulfonylureas 

Although the major risk associated with sulfonylureas is hypoglycemia and this risk is 

known to be increased in more fragile patients, no such observations were specifically 

described in patients with CLD in contrast to what has been reported in patients with chronic 

kidney disease [12]. Poor nutrition can be an issue in patients with CLD, which may have an 

impact on the development of hypoglycemia. Patients who are not abstinent from alcohol 



should be very cautious when taking sulfonylureas, because alcohol increases the risk of 

hypoglycemia by inhibiting hepatic gluconeogenesis. 

Drug-induced hepatotoxicity has been reported infrequently with various sulfonylureas 

used as glucose-lowering agents for the management of T2DM : chlorpropamide [120], 

tolazamide [121], glibenclamide (glyburide) [122-124], glimepiride [125], and gliclazide 

[126, 127]. 

 

4.3.Meglitinides (glinides) 

As with sulfonylureas, rare case reports of hepatotoxicity associated with repaglinide 

have been reproted, either acute hepatotoxicity [128] or cholestatic hepatitis [129]. 

4.4.Alpha-glucosidase inhibitors 

Acarbose has been used safely in patients with CLD in one clinical trial, although the 

risk of hyperammonemia was increased [51]. A case report described a patient with possible 

acarbose-induced hepatotoxicity and compared other reported cases from the literature [130]. 

Another case of hepatotoxicity has been reported with migitol [131] as well a case of hepatic 

necrosis with cholestasis associated with long-term voglibose administration [132]. 

 

4.5.Thiazolidinediones 

Troglitazone was the first thiazolidinedione antidiabetic agent approved for clinical 

use, but it was rapidly withdrawn from the market due to serious idiosyncratic hepatotoxicity, 

as already discussed [59]. Clinical evidence supports the conclusion that rosiglitazone and 

pioglitazone do not share the hepatotoxic profile of troglitazone [60]. In a randomized, 3-year, 

double-blind, hepatic safety study in the US in which 2,097 patients with T2DM received 

either pioglitazone or glibenclamide (glyburide), the hepatic safety profile of pioglitazone was 

similar to that of glibenclamide in long-term use in patients with poorly controlled T2DM 

[133].No evidence of hepatotoxic effects was observed in studies that involved 5,006 patients 

taking rosiglitazone as monotherapy or combination therapy for 5,508 person-years [134]. All 

together, these findings suggest that the idiosyncratic liver toxicity observed with troglitazone 

is unlikely to be a thiazolidinedione or a PPAR-gamma agonist class effect [60]. On the 



contrary, poorly controlled patients with T2DM may have moderate elevations of serum ALT 

(reflecting NAFLD) that will decrease with improved glycemic control during treatment with 

pioglitazone or rosiglitazone. These results are in agreement with the favorable effects of 

glitazones initially reported in patients with NAFLD [64, 65], although less convincing results 

were reported afterwards. These positive results may be at least partly explained by the 

glitazone-induced increase in adiponectin, which exerts an important metabolic role at the 

level of the liver and seems critical to reverse insulin resistance and improve liver histology in 

NASH patients [135]. It has been suggested that thiazolidinediones may in the future be 

increasingly used in patients with NASH [136].  However, so far there is no proof that any 

oral antidiabetic agent helps patients with NASH by a direct hepatic effect in the long run. 

Two randomized placebo-controlled trials investigated the effects of pioglitazone in 

patients with insulin resistance and hepatitis C treated with peginterferon-alpha-2b and 

ribarivin and reported contrasted results. In patients with chronic hepatitis C genotype 4, a 

combination of pioglitazone, peginterferon-alpha-2b and ribavirin increased virological 

response and decreased insulin resistance, compared with patients not receiving pioglitazone, 

without an increase in adverse events [137]. However, in another study in patients with  

insulin resistance and chronic hepatitis C genotype 1, treatment with pioglitazone before and 

during treatment with peginterferon alpha-2a plus ribavirin improved several indices of 

glycemic control, but did not improve virologic response rates compared with peginterferon 

alpha-2a plus ribavirin alone [138]. 

According to the official labeling, pioglitazone should not be prescribed to patients 

suffering from liver disease or in case of an increase in alanine aminotransferase (ALT) 

enzyme 2.5 times above the limit. If liver enzymes increase and continue to stay high (2.5 

times the upper limit of normal) after administration of pioglitazone, it is usually an obvious 

sign of liver damage. If the ALT test shows that the enzyme level is 3 times higher than the 

norm, the reanalysis should be undergone as quickly as possible. In case the second test 

reveals the same high level of enzymes, pioglitazone should be immediately discontinued. 

4.6.DPP-4 inhibitors 

The overall safety profile of DPP-4 inhibitors is generally good, even if some concern 

about possible exocrine pancreatic alterations have been reported [139]. Especially, no 

hepatotoxicity has been reported in large clinical trials. This has been shown in a pooled 



analysis of 25 clinical studies and 14,611 patients (n = 7,726 : sitagliptin group; n = 6,885 : 

non-exposed group) for sitagliptin [140] and in a similar pooled analysis of 38 studies 

with vildagliptin (> 7000 subject-years of exposure to vildagliptin 50 mg bid and > 6500 

subject-years of exposure to all comparators). For mild hepatic enzyme elevations with and 

without elevated bilirubin levels, the odds ratio for vildagliptin 50 mg bid were 1.24 (95% CI: 

[0.80, 1.93]) and 1.19 (95% CI: [0.29, 4.90]), respectively. The exposure-adjusted incidences 

of markedly elevated hepatic enzymes and for enzyme elevations with bilirubin ≥2 times the 

upper limit of normal with vildagliptin were similar or lower than those in the all comparator 

group. For hepatic-related adverse events, the odds ratio for vildagliptin was 0.87 (95% CI: 

[0.64, 1.19]) [141]. These data were confirmed in another pooled analysis showing 

that vildagliptin was overall well tolerated in clinical trials of up to >2 years in duration [142]. 

Reassuring hepatic safety data have also been reported with saxagliptin [143] and linagliptin 

[144]. In a systematic review and meta-analysis about the longer term safety of DPP-4 

inhibitors in patients with T2DM, hepatotoxicity was not considered as a concern [139]. 

Nevertheless, a few cases of drug-induced hepatic injury associated with sitagliptin [145] or 

of elevated hepatic enzymes potentially associated with sitagliptin [146] have been reported. 

The causal relationship remains, however, uncertain because of the complex medical history 

of many case reports. 

In the only study where a DPP-4 inhibitor (5 mg linagliptin) was administered once 

daily for 7 days in patients with mild and moderate HI, the DPP-4 inhibitor was well tolerated 

[86]. 

4.7.SGLT-2 inhibitors 

  Available data from large phase II-III trials showed that dapagliflozin [147], 

canagliflozin [148] and empagliflozin [94] do not cause hepatotoxicity. No case reports 

describing alterations of liver tests with SGLT-2 inhibitors have been reported so far.    

4.8.GLP-1 receptor agonists 

An interim analysis of data from the open-label, uncontrolled extension of three 

double-blind, placebo-controlled trials examined the metabolic effects of 2 years of exenatide 

treatment in patients with T2DM. Patients with normal baseline ALT had no significant ALT 



change. However, patients with elevated ALT at baseline had a slight but significant reduction 

of ALT from baseline and 39% achieved normal ALT by week 104 [149]. A trial was 

specifically designed to investigate the effects of exenatide on liver biochemistry, liver 

histology and lipid metabolism in patients with NAFLD (ClinicalTrials.gov Identifier: 

NCT00529204), but the results are not available yet. Individual patient data meta-analysis of 

the LEAD program showed that a 26-week therapy with liraglutide 1.8 mg is safe, well 

tolerated and improves liver enzymes in patients with T2DM. This effect appears to be 

mediated by its favorable action on weight loss and glycemic control [150]. No such specific 

analysis has been performed yet with lixisenatide, but no liver safety concern has been 

reported with this new GLP-1 receptor agonist [151]. 

 

4.9.Insulin and insulin analogs 

Insulin can be used in patients with all stages of CLD and does not exert hepatotoxic 

effects. However, the dose of insulin required in cirrhotic patients for optimal glucose control 

without hypoglycemia should be carefully adjusted upon an individual basis and blood 

glucose monitoring. 

5. Conclusion 

The increasing prevalence of patients with T2DM and CLD, especially among obese 

individuals, requires appropriate selection and dosing of glucose-lowering agents (Table 4). 

Old antidiabetic drugs (metformin, sulfonylureas) were poorly investigated in patients with HI 

so that their use is classically contraindicated in patients with moderate to severe HI because 

of a possible higher risk of lactic acidosis (with metformin) and of hypoglycemia (with 

sulfonylureas). Glitazones were also poorly studied in this population after the withdrawal of 

troglitazone because of hepatotoxicity and should be used with caution even if pioglitazone 

and rosiglitazone are not hepatotoxic. Better PK data have been published specifically in 

patients with various degrees of HI with glinides, DPP-4 inhibitors and SGLT-2 inhibitors and 

overall the results were almost reassuring, with some limited PK changes probably without 

clinical relevance in most cases. A benefit/risk balance should be considered when prescribing 

a glucose-lowering medication in diabetic patients with CLD. Whereas NAFLD is generally 

improved by the use of glucose-lowering agents, via a better glucose control especially when 

insulin resistance is reduced, the problem of controlling effectively and safely blood glucose 



becomes more crucial in patients with advanced cirrhosis.    

 

EXPERT OPINION SECTION 

Type 2 diabetes mellitus (T2DM) and chronic liver disease (CLD) are common long-

term conditions in our modern society and the two conditions often coexist. There are strong 

arguments to support a bidirectional relationship : diabetes predisposes to liver disease and 

conversely liver disease  predisposes to diabetes (“hepatogenous diabetes”). Furthermore, 

there is evidence to suggest that diabetes can have a significant adverse effect on patients with 

CLD, leading to increased complications and premature mortality. While type 2 diabetes, 

nonalcoholic fatty liver disease (NAFLD), steatosis and nonalcoholic steatohepatitis (NASH), 

appears to have common origins related to abdominal obesity and insulin 

resistance, diabetes is also common among patients with alcoholic and viral CLD. 

In patients with NAFLD and NASH, improvement in metabolic indices, with lifestyle changes 

but also via pharmacological approaches, appears to reduce the progression of CLD. 

Interestingly this effect seems more favorable with insulin-sensitizing agents than with 

strategies increasing insulin concentrations, although more recent studies with 

thiazolidinediones were more disappointing than initially reported observations. However, it 

is not clear whether improving glycemic control in other more advanced forms of CLD, 

especially cirrhosis, also leads to improved clinical outcomes and overall prognosis.  

Managing diabetes in patients with CLD can be challenging because many glucose-

lowering therapies are contraindicated or must be used with care. However, such precautions 

generally result from the fear of complications (as lactic acidosis with metformin and 

hypoglycemia with sulfonylureas) rather than from well-documented observations from 

controlled clinical studies. Indeed, only a paucity of data are available in the literature 

regarding the PK characteristics, the efficacy and the safety of commonly prescribed glucose-

lowering agents such as metformin, sulfonylureas, alpha-glucosidase inhibitors (acarbose) and 

thiazolidinediones (pioglitazone and rosiglitazone) in diabetic patients with CLD. A few case 

reports have been published about a possible hepatotoxicity of some of these compounds but 

the causal relationship remains doubtful in most instances. Metformin may be useful 

in patients with NAFLD (detected by mild to moderate increases in transaminase liver 

enzymes), and even might reduce the progression to and the severity of hepatocellular 

carcinoma. However, in case of advanced cirrhosis, caution is recommended, especially 



because the possibility of associated renal impairment and reduced tissue perfusion that could 

favor lactic acidosis. Pioglitazone, a well-known insulin sensitizer, has been shown to have 

the capacity to reduce fatty liver, at least in some studies, but its use in more advanced stages 

of CLD is not documented.  

Sulfonylureas and insulin must be used with caution in patients with advanced CLD, 

as hypoglycemia may be a concern. In diabetic patients with moderate to severe stages of 

cirrhosis, it is probably prudent not to use sulfonylureas, and insulin doses must be carefully 

adjusted according to results of blood glucose monitoring in those patients. Glinides may 

represent an alternative to sulfonylureas, with a preference for nateglinide compared to 

repaglinide.  

Newer antihyperglycemic agents have not been widely used in diabetic patients with 

CLD. Nevertheless, the recent literature offers more detailed specific PK studies with these 

medications in patients with various degrees of HI than the scarce data (if any) available with 

older compounds. No clinically relevant increase in systematic exposure to DPP-4 inhibitors 

(gliptins) has been reported so that no dose reduction is recommended in patients with HI, 

including with linagliptin whose specific hepatic metabolism is well known. This contrasts 

with the reduction of the daily dose according to the glomerular filtration rate in patients with 

chronic kidney disease (for sitagliptin, vildagliptin, saxagliptin and alogliptin, characterizd by 

renal elimination). Another advantage of DPP-4 inhibitors compared to sulfonylureas is the 

very limited risk of hypoglycemia. Similar favorable PK results were reported with GLP-1 

receptor agonists, especially liraglutide, in patients with various degrees of HI, and liraglutide 

has been also shown to improve liver prognosis of patients with NAFLD. No signs of 

hepatotoxicity have been reported so far with incretin-based therapies, contrasting with some 

concern and controversy regarding exocrine pancreas. 

Only limited data have been published regarding the use of SGLT2 inhibitors in 

diabetic patients with CLD. Available PK data suggested an increase in exposure to 

dapagliflozin, canagliflozin and empagliflozin in patients with mild to severe HI. Because the 

increase was less than two-fold, no dose reduction is recommended. However, caution is 

necessary in absence of larger clinical studies in such a fragile population with advanced 

CLD. 



Finally, since CLD patients are commonly treated with multiple-drugs, the drug-drug 

interactions in diabetic patients with CLD are important considerations in selecting the most 

appropriate glucose-lowering medications. 

In conclusion, the management of patients with diabetes and CLD represents a 

challenge for the clinician. Clinical success may be enhanced by selecting the most 

appropriate glucose-lowering medications and using a multidisciplinary approach if 

necessary. 
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Article highlights 

- Diabetes predisposes to chronic liver disease (CLD), especially non-alcoholic fatty liver 

disease that may progress to non-alcoholic steatohepatitis and cirrhosis. 

- CLD, especially cirrhosis, predisposes to diabetes, which may require specific therapy 

for appropriate glucose control. 

- Besides kidneys, liver contributes to the elimination of several glucose-lowering agents 

and CLD may render more difficult the management of diabetes. 

- Overall, the influence of CLD on PK/PD of glucose-lowering agents is less well 

documented in the literature than the influence of chronic kidney disease. 

- Almost no specific PK studies with classical antidiabetic agents (metformin, 

sulfonylureas, glitazones, alpha-glucosidase inhibitors) have been published in subjects 

with hepatic impairment (HI).  

- Metformin, which is not metabolized but excreted unchanged by the kidneys, can be used 

in patients with HI and may exert various favourable effects. 



- Caution is recommended with the use of sulfonylureas in absence of well-documented 

studies in patients with CLD and because of a potential higher risk of hypoglycemia. 

- Specific PK studies in patients with HI showed no clinically relevant changes in exposure 

to DPP-4 inhibitors and liraglutide, arguing for no need of dose adjustment (in contrast to 

the reduction recommended in case of renal impairment).  

- Specific PK studies in patients with HI have been performed with SGLT2 inhibitors. 

Only limited increase in overall exposure was observed, presumably without clinical 

relevance. 

- Considering the increasing prevalence of patients combining CLD or HI and diabetes, 

there is a crucial need for more clinical studies to evaluate the efficacy/safety balance of 

the various available glucose-lowering strategies in this special population.  

 

 

Figure 1 : Illustration of the two-way relationship between diabetes and chronic liver disease. 

T2DM : type 2 diabetes mellitus. NAFLD : non-alcoholic fatty liver disease (steatosis). 

NASH : non alcoholic steatohepatitis.  



Table 1 : PK characteristics of repaglinide and nateglinide in healthy subjects and patients 

with chronic liver disease (CLD).  

 Healthy 

subjects 

CLD patients GMR (90% CI) P value 

Repaglinide [45]  

Single dose : 4 mg 

N 

AUC (ng.h/ml) 

Cmax (ng/ml) 

Tmax (h) 

T1/2 (h) 

 

 

12 

91.6 ± 67.0 

46.7 ± 24.3 

0.8 (0.5-1.1) 

0.8 ± 0.2 

(Child-Pugh : 7 to 

< 11 points) 

12  

368.9 ± 233.4 

105.4 ± 31.6 

0.8 (0.5-1.0) 

3.3 ± 2.3 

 

 

 

4.34 (2.29-8.23) 

2.46 (1.68-3.62) 

NA 

NA 

 

 

 

< 0.001 

< 0.001 

NS 

< 0.001 

Nateglinide [46]  

Single dose : 120 mg 

N 

AUC (ng.h/ml) 

Cmax (ng/ml) 

Tmax (h) 

T1/2 (h) 

 

 

8 

14,170 ± 

2060 

5620 ± 1310 

0.5 (0.5-2.0) 

2.91 ± 1.84 

(Child-Pugh :  ≥5 

to ≤11 points) 

8  

18,470 ± 7510 

7700 ± 4890 

0.5 (0.5-0.75) 

2.62 ± 1.42 

 

 

1.30 (0.93-1.61) 

1.37 (0.70-2.05) 

NA 

NA 

 

 

0.20 

0.54 

NS 

NS 

 

Results are expressed as mean ± SD  (except for Tmax : median, range) and by geometric mean 

ratio (GMR) CLD/healthy subjects function (90% confidence intervals). NA : data not 

available. NS : not statistically significant. Cmax : maximum plasma concentration. AUC : area 

under the concentration-time curve. Tmax : time to reach Cmax. T1/2 : terminal elimination half-

life. 



Table 2 : Drug exposure of DPP-4 inhibitors in subjects with various degrees of chronic liver 

disease (CLD) (according to Child-Pugh staging) compared with subjects with normal liver 

function.  

 Reference Exposure Mild CLD 

GMR (90% CI) 

Moderate CLD  

GMR (90% CI) 

Severe CLD 

GMR (90% CI) 

Sitagliptin 

(single dose 

of 100 mg) 

Migoya et 

al 2009 

[75] 

Cmax 

AUC∞ 

NA 

NA 

1.13 (0.91-1.42) 

1.21 (1.01-1.46) 

NA 

NA 

Vildagliptin 

(single dose 

of 100 mg) 

He et al 

2007 [83] 

Cmax 

AUC∞ 

0.70 (0.46- 1.05) 

0.80 (0.60-1.06) 

0.77 (0.51- 1.17) 

0.92 (0.69-1.23) 

0.94 (0.59-1.49) 

1.22 (0.89-1.68) 

Saxagliptin

(single dose 

of 10 mg)  

Boulton et 

al 2011 

[84] 

Cmax 1.077  

(0.763, 1.519) 

1.016 

 (0.720, 1.432) 

0.941 

 (0.667, 1.328) 

 

AUC∞ 1.097  

(0.828, 1.453) 

1.383 

 (1.044, 1.832) 

1.767 

 (1.334, 2.341) 

5-hydroxy-

saxagliptin 

(active 

metabolite) 

Cmax 0.83 (NA) 0.84 (NA) 0.41 (NA) 

AUC∞ 0.78 (NA) 0.93 (NA) 0.67 (NA) 

Linagliptin 

(5 mg once 

daily for 7 

days) (*) 

Graefe-

Mody et al 

2012 [86] 

Cmax 

AUCt 

64.4 (43.2-96.0) 

75.5 (61.6-92.5) 

 

92.3 (62.8- 135.6) 

85.5 (70.2- 104.2)  

 

77.0 (44.9-132.3) 

100.4 (75.0- 134.3) 

 

Alogliptin 

(single dose 

of 25 mg) 

Karim et 

al 2007 

[87] 

Cmax 

AUC∞ 

NA 

NA 

92 (NA, NS) 

90 (NA, NS) 

NA 

NA 



 

Results are expressed as % changes versus subjects with normal liver function or as geometric 

mean ratio (GMR) CLD/healthy subjects function (90% confidence intervals). NA : data not 

available. NS : not statistically significant. Cmax : maximum plasma concentration. AUC∞ : 

area under the concentration-time curve from zero to infinity (*) : Single dose of 5 mg in 

patients with severe HI. 



Table 3 : Drug exposure of SGLT-2 inhibitors in subjects with various degrees of chronic 

liver disease (CLD) (according to Child-Pugh staging) compared with subjects with normal 

liver function.  

 

 Reference Exposure Mild CLD 

GMR (90% 

CI) 

Moderate CLD  

GMR (90% CI) 

Severe CLD 

GMR (90% CI) 

Dapagliflozin 

(single dose of 

10 mg) 

Kasicha-

yanula et 

al 2011  

[91] 

Cmax 

AUC∞ 

88 (NA) 

103 (75-143) 

(*) 

112 (NA) 

136 (101-187) 

(*) 

140 (NA) 

167 (124-232) (*) 

Canagliflozin 

(single dose of 

300 mg) 

Janssen 

Pharma-

ceuticals 

Inc [93] 

Cmax 

AUC∞ 

107% 

110% 

96% 

111% 

NA 

NA 

Empagliflozin 

(single dose of 

50 mg) 

Macha et 

al 2013 

[95] 

Cmax 

 

AUC∞ 

103.8 (82.3–

131.0) 

123.2 (98.9-

153.4) 

123.3 (97.7–

155.6) 

147.0 (118.0-

183.0) 

148.4 (117.7–187.2) 

174.7 

(140.3-217.5) 

Ipragliflozin 

(single dose of 

100 mg) 

Zhang et 

al 2013 

[96] 

Cmax 

AUC∞ 

NA 

NA 

127  (93-173) 

125 (94-166) 

 

NA 

NA 

 

Results are expressed as % changes versus subjects with normal liver function or as geometric 

mean ratio (GMR) CLD/healthy subjects function (90% confidence intervals). NA : data not 

available. Cmax : maximum plasma concentration. AUC∞ : area under the concentration-time 

curve from zero to infinity. (*) : 90% CI derived from data shown graphically. 



Table 4 : Clinical practice recommendations regarding the use of glucose-lowering agents in 

diabetic patients with various degrees of hepatic impairment (HI). Please note that the 

reported experience with any of these pharmacological classes is very limited and the absence 

of official guidelines; therefore caution and careful clinical supervision are recommended in 

all diabetic patients with HI, especially when moderate or severe.  

 

Medications 

Mild  

HI 

Moderate  

HI 

Severe 

 HI 

 

Feared adverse event 

Biguanides 

- Metformin  

 

Yes (*) 

  

Caution 

 

No use 

 

Lactic acidosis (***) 

Sulfonylureas 

- Glibenclamide (glyburide), 

glimepiride, glipizide, 

gliclazide, gliquidone 

 

Yes 

 

 

Caution 

 

 

No use 

 

 

Hypoglycemia 

Glinides 

- Repaglinide, nateglinide 

 

Yes 

 

Caution 

 

No use 

 

Hypoglycemia 

Alpha-glucosidase inhibitors 

- Acarbose, miglitol, 

voglibose 

 

Yes 

 

 

Probably 

yes 

 

Probably 

yes 

 

 

Hyperamonemia 

Thiazolidinediones 

- Pioglitazone, rosiglitazone 

 

Yes (**) 

 

Caution 

(check 

liver 

enzymes) 

 

No use 

 

Hepatotoxicity ( ?) 

DPP-4 inhibitors 

- Sitagliptin, vildagliptin, 

  

Probably 

  

Unknown (but no 



saxagliptin, linagliptin, 

alogliptin 

Yes yes 

 

Caution clinical experience) 

SGLT2 inhibitors 

- Dapagliflozin, 

canagliflozin, empagliflozin 

 

Yes 

 

Caution 

 

No use 

 

Unknown (but no 

clinical experience) 

GLP-1 receptor agonists 

- Exenatide, liraglutide, 

lixisenatide 

 

Yes 

 

Probably 

yes 

 

Caution or 

no use 

 

Unknown (but no 

clinical experience) 

Insulin & insulin analogs Yes Yes  Yes with 

caution 

Hypoglycemia 

 

(*) Favorable effects on NAFLD (steatosis and NASH) and possible protective effects against 

hepatocelluar carcinoma 

(**) Favorable effects on NAFLD (steatosis and NASH) and liver inflammation 

(***) Caution, check also the renal function 
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