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Catalina Bolancé1, Michel Denuit2, Montserrat Guillén3 and Philippe Lambert4

Abstract. This paper proposes a generalization of the merit
rating system described in Dionne & Vanasse (1989,1992).
The model takes into account explanatory variables as well as
possible modifications in the policyholders unobservable risk
characteristics. It is based on the analysis of time series for
count observations proposed by Harvey & Fernandes (1989).
Numerical results obtained with a Spanish panel databasis for
motor insurance illustrate the approach described in this pa-
per.
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1 Introduction and Motivation

In many European and Asian countries, as well as in
North American states or provinces, insurers relate premium
amounts to individual past experience in motor insurance.
More specifically, they penalize insured drivers responsible
for one or more accidents by premium surcharges (or maluses)
and reward claim-free policyholders by awarding them dis-
counts (or bonuses).

Insurers also base risk classification on variables easy to
observe, such as age, gender, type of vehicle, and so on. How-
ever, the tariff classes they obtain are not homogeneous and
this may generate a ratemaking structure that is unfair to the
insured drivers. In order to match individual’s premium to risk
and to increase incentives for road safety, the past record is
then taken into consideration under a merit rating scheme.
These two forms of ratemaking can be justified by asymmet-
rical information between the insurance company and the pol-
icyholders.

In this paper, we aim to construct a no-claim discount sys-
tem in an empirical Bayesian framework: Bayesian analysis
is used to compute the posterior distribution of the claim fre-
quency for policyholders who experienced similar histories.
Such a system is fair: Any insured has to pay at each re-
newal an amount of premium proportional to the estimate of
his claim frequency taking into account, through Bayes theo-
rem, all the information gathered in the past.
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The claims history of each policyholder consists in a short
integer-valued sequence of yearly claim counts. The basic
model used for experience rating is based on the Negative
Binomial distribution. This probability law can be seen as a
Poisson mixture distribution with Gamma mixing. Therefore,
it accomodates for serial dependence of claim counts, by in-
troducing Gamma-distributed unobserved individual hetero-
geneity. The serial dependence in claim counts sequences is
generated by integrating the unobserved factor, and by up-
dating its prediction when individual information increases.
Alternative models with LogNormal of Inverse Gaussian un-
observed heterogeneity have also been considered in the actu-
arial literature.

The vast majority of the papers appeared in the actuarial lit-
erature considered time-independent heterogeneous models.
The model considered in this paper includes an unknown un-
derlying random parameter that develops over time: Instead
of assuming that the risk characteristics are given once and
for all by a single risk parameter, we suppose that the un-
known risk characteristics of each policy are described by dy-
namic random effects. In the terminology of Jewell (1975),
these are evolutionary credibility models, which means that
the underlying risk parameter is allowed to vary in succes-
sive periods (in other words, the structure function is allowed
to be time dependent). Evolutionary credibility models for
claim amounts have been considered, e.g., in Gerber & Jones
(1975), Jewell (1975,1976) and Sundt (1981,1983,1988). In
this paper, following Albrecht (1985), we consider evolution-
ary, or dynamic, credibility models for claim numbers. We
are in line with recent contributions by Pinquet, Guillén &
Bolancé (2001), Bolancé, Pinquet & Guillén (2003) and Pur-
caru, Guillén & Denuit (2004).

Other approaches have also been considered in the litera-
ture. Gouriéroux & Jasiak (2004) have applied the integer val-
ued autoregressive (so-called INAR) model to account for se-
rial dependence in count processes. See also Brannas & Hell-
strom (2001), Freeland & McCabe (2004) and the references
therein. Gouriéroux & Jasiak (2004) also extended INAR
models to accomodate for unobserved heterogeneity, typically
present in motor insurance. Other models applied in medical
studies could also be contemplated by actuaries. In that re-
spect, let us mention the zero-inflated Poisson mixed auto-
regressive model for analyzing time series of count events
with excess zeros. See Yau, Lee & Carrivick (2004) for an
illustration and for useful references.

Let us now detail the contents of this paper. Section 2 de-
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scribes the time series model for count data proposed by Har-
vey & Fernandes (1989). Section 3 discusses the resulting
merit-rating system. It will be seen there that we get credi-
bility estimators with geometric weights, already encountered
in the actuarial literature. The estimation of the dependence
parameter will be carefully examined. Section 4 is devoted
to a numerical illustration. Considering the Spanish databasis
analyzed by Pinquet, Guillén & Bolancé (2001) and Bolancé,
Pinquet & Guillén (2003), we apply the merit rating system
designed in Section 3 to a panel of 80 894 policyholders fol-
lowed from 1991 to 1997. The effects of the implementation
of this experience rating mechanism are carefully examined,
in particular the high bonus-hunger effect induced by the dy-
namic mixed Poisson model.

To end with, let us briefly present the notations used in this
paper. We consider a portfolio consisting of n policies. For the
ith policyholder, i = 1, 2, . . . , n, let Ti be the number of years
elapsed since this policy has been issued, and let Nit, t =
1, 2, . . . , Ti, denote the number of claims reported by this pol-
icyholder during the t-th period of insurance. Let Poi(θ), θ >
0, denote the Poisson distribution with mean θ, i.e. Poi(θ)
has discrete probability density function exp(−θ)θk/k!, k =
0, 1, 2, . . ., and let Gam(a, τ), a, τ > 0, denote the Gamma
distribution with mean a/τ and variance a/τ2, i.e. Gam(a, τ)
has density function τa exp(−τx)xa−1/Γ(a), x ≥ 0.

2 Harvey-Fernandes model
Suppose that we observe independent series of claim counts
{Ni1, Ni2, . . . , NiTi

}, i = 1, 2, . . . , n, on the n policies of a
portfolio. Let Fit be the claim history for policy i up to time
t. Formally, Fit is the sigma algebra generated by the random
variables Ni1, Ni2, . . . , Nit. Our purpose is to define a model
for count data allowing the underlying mean of the process to
change over time. Following Harvey & Fernandes (1989), we
introduce an hyperparameter α discounting past observations
in making forecasts: The predictions can be constructed by a
sort of exponentially moving average procedure. For exten-
sions of this model, see Lambert (1996a,b).

A common problem for count data is that, even after allow-
ing for important explanatory variables using the Poisson re-
gression model, the fits obtained are rather poor. This indicates
that, conditional upon the explanatory variables included in
the final model, the variance of an observation is greater than
its mean, implying that the Poisson assumption is incorrect.
Most often, this is due to the fact that important explanatory
variables may not have been measured and are consequently
incorrectly excluded from the regression relationship.

A convenient way to take this phenomenon into account is
to introduce a random effect in this model. Let xit be the vec-
tor of all the relevant covariates for policyholder i during year
t (including age, gender and power of the car, for instance).
Here, we consider the following Poisson-Gamma model:

[Nit|Θit,β,Fi;t−1] ∼ Poi
(
Θit exp(β′xit)

)
(1)

where [Θit|Fit] ∼ Gam(ait, τit), the parameters ait and τit

being computed from the first t observations. We require that
the mean of [Θit|Fi,t−1] is the same as that of [Θi,t−1|Fi,t−1],
but the variance increases. This effect is induced by multiply-
ing the Gamma parameters by a factor α less than 1. We there-
fore suppose that

[Θit|Fi,t−1] ∼ Gam(ai,t|t−1, τi,t|t−1),

with parameters ai,t|t−1 and τi,t|t−1 such that{
ai,t|t−1 = αai,t−1

τi,t|t−1 = ατi,t−1

and 0 < α ≤ 1. Then,

E[Θit|Fi,t−1] =
ai,t|t−1

τi,t|t−1
=

ai,t−1

τi,t−1
= E[Θi,t−1|Fi,t−1]

whereas

Var[Θit|Fi,t−1] =
ai,t|t−1

τ2
i,t|t−1

= α−1Var[Θi,t−1|Fi,t−1].

The last formula expresses the type of correlation existing be-
tween the Nit’s for fixed i: values of claim counts during close
periods are closely related, but the strength of this dependence
decreases with time. This is the key formula in the Harvey-
Fernandes model, in that it links the variances of the random
effect before and after the addition of a new observation. The
appropriateness of this proportionality assumption of course
heavily depends on the data set under study.

Application of Bayes theorem then yields a posterior distri-
bution for [Θit|Fit] given by

dP[Θit ≤ θ|Fit] ∝ exp
(
− θ exp(β′xit)

)(
θ exp(β′xit)

)Nit

Nit!

τ
ai,t|t−1

i,t|t−1

exp(−τi,t|t−1θ)θai,t|t−1

Γ(ai,t|t−1)
.

3 Resulting merit rating system
Once the observation Nit becomes available, the posterior dis-
tribution of Θit is then given by the Gamma distribution with
parameters {

ait = αait−1 + Nit

τit = ατit−1 + exp
(
β′xit

) (2)

The initial prior distribution (that is, the distribution of Θi1)
is taken to be Gam (ai0, τi0), with ai0 = τi0. Indeed, we then
have E[Θi1] = 1 so that the premium for the first year re-
sults from a priori rating and equals exp

(
β′xi1

)
. Note that

the ai0’s are taken to be identical for all the policyholders in
the portfolio, so that ai0 = a0 for all i. The parameter a0

reflects the residual heterogeneity of the portfolio. Repeated
substitutions in (2) lead to

ait =
t−1∑
l=0

αlNi,t−l + αta0

τit =
t−1∑
l=0

αl exp
(
β′xit−l

)
+ αta0
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The expected annual claim frequency for year t + 1 is

E [Nit+1|Fit]

= exp
(
β′xi,t+1

)
E [Θit+1|Fit]

= exp
(
β′xi,t+1

) ait

τit

= exp
(
β′xi,t+1

) a0 +
t∑

l=1

α−lNil

a0 +
t∑

l=1

α−l exp
(
β′xil

) . (3)

This formula is somewat similar to credibility estimators with
geometric weights, as those considered, e.g., by Sundt (1988).

Note that whereas the total number of claims recorded in
the past is a sufficient statistic of the claim history when
reevaluating the claim frequency with static random effects,
this is no more true with dynamic heterogeneity. Formula (3)
shows that all the claim counts Ni1, Ni2, . . . , Nit have to be
kept by the company to compute the a posteriori claim fre-
quency.

The value of α can be estimated on the basis of historical
data, for instance choosing α̂ in order to maximize the log-
likelihood function of the Negative Binomial model. In order
to write down this likelihood, we introduce

Θ+
it = Θit exp(β′xit),

where
[Θ+

it|Fi,t−1] ∼ Gam(a+
i,t|t−1, τ

+
i,t|t−1),

with parameters a+
i,t|t−1 and τ+

i,t|t−1 given by

a+
i,t|t−1 = ai,t|t−1 = αait−1,

τ+
i,t|t−1 = exp

(
−β′xit

)
τi,t|t−1

= exp
(
−β′xit

)
ατit−1.

The log-likelihood to be maximized with respect to α is then
given by

log L (α) =
n∑

i=1

Ti∑
t=ξ+1

(
log (Γ (ait))− log (Γ (Nit + 1))

− log (Γ (αait−1))

+ αait−1 log
(
ατit−1 exp

(
−β′xit

))
− ait log

(
ατit−1 exp

(
−β′xit

)
+ 1

) )
,

where ξ is the index of the first non-zero observation. The
value of α controls the rate of convergence to the minimal
premium for claim-free policyholders. Of course, this value
can also be tuned inspired by commercial considerations.

4 Numerical illustrations
In this section, we compare the experience rating model built
in Section 3 to the classical approach pioneered by Dionne
& Vanasse (1989, 1992) who extended classical credibility

models to segmented tariffs. In their framework, the residual
heterogeneity for policyholder i is represented by a random
variable Θi ∼ Gam(a, a). Given Θi = θ, the Nit’s are inde-
pendent random variables, such that

Nit ∼ Poi
(
exp(β′xit)θ

)
. (4)

The optimal estimator of the claim frequency for year t + 1
given the past experience is

E[Ni,t+1|Fit] = exp(β′xi,t+1)
a +

∑t−1
`=0 Ni,t−`

a +
∑t−1

`=0 exp(β′xi,t−`)
.

(5)
In the Negative Binomial model with static heterogeneity, the
claims history enters the a posteriori claim frequency as an
unweighted average of observed past claims counts, whereas
(3) discounts old claims and thus recognizes that recent claim
counts are more predictive than older ones.

It is worth mentioning that (5) is a particular case of (3) for
α = 1 and ai0 ≡ a. Note that only a priori tarification is
used in the first period. Moreover, when the regression com-
ponent is limited to a constant (1, say), one finds the usual
Bayes estimator of the expected number of accidents caused
by policyholder i during the (t + 1)th coverage period.

4.1 The data

The working sample is the same used in Bolancé, Pinquet &
Guillén (2003). It contains 80 994 policyholders, which repre-
sent 10% of the portfolio of a major Spanish insurance com-
pany. We selected only policies covering cars for private use
and retained a balanced panel data set containing information
since 1991 until 1997. Hence, all individual histories have the
same duration. Table 1 contains the frequency of claims at
fault from the first to the seventh period, as well as the ob-
served claims distributions by year.

Period Mean 0 1 2 3 4 5
Frequency

1991 0.079 75 053 5 485 419 34 3 0
1992 0.070 75 716 4 910 351 16 1 0
1993 0.063 76 238 4 410 313 28 4 1
1994 0.064 76 267 4 340 356 30 1 0
1995 0.066 76 093 4 472 387 39 3 0
1996 0.069 75 847 4 751 354 33 9 0
1997 0.075 75 428 5 127 405 31 3 0
Total 0.069 530 642 33 495 2 585 211 24 1

Table 1. Claim distributions per calendar year.

We have twelve exogeneous variables that are kept in the
panel plus the yearly number of accidents. The explanatory
variables are detailed in Table 2. For every policy we have the
initial information at the beginning of the period and the total
number of claims at fault that took place whithin this yearly
period. Even if all the policies are observed for 7 years, some
of their characteristics vary. For instance, the driver (whose
gender, age, etc. are recorded in the databasis) may be re-
placed with another one, a new vehicle can be bought (more
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powerful than the preceding one), the policyholder may move
from one zone to another, etc. Table 3 shows the relative fre-
quencies of each regressor per period.

Variable Definition
X1 equals 1 for female drivers and 0 for males
X2 equals 1 when driving zone is in urban area,

0 otherwise
X3 equals 1 when driving zone is medium risk

(Madrid and Catalonia)
X4 equals 1 when driving zone is high risk

(Northern Spain)
X5 equals 1 if the driving license is between 4

and 14 years old
X6 equals 1 if the driving license is 15 or more

years old
X7 equals 1 if the policyholder has been in the

company between 3 and 5 years
X8 equals 1 if the policyholder is in the company

for more than 5 years
X9 equals 1 if the driver is 30 years old or

younger
X10 equals 1 if coverage includes comprehensive

(material damage only, fire excepted)
X11 equals 1 if coverage includes comprehensive

(material damage garantee and fire)
X12 equals 1 if the power of the vehicle is larger

than or equal to 5500cc

Table 2. Description of the explanatory variables included in the a priori
risk evaluation.

Period
1 2 3 4 5 6 7 Total

̂Pr[X1 = 1] 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.15
̂Pr[X2 = 1] 0.71 0.71 0.71 0.70 0.68 0.67 0.66 0.69
̂Pr[X3 = 1] 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
̂Pr[X4 = 1] 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19
̂Pr[X5 = 1] 0.44 0.40 0.36 0.32 0.28 0.26 0.23 0.33
̂Pr[X6 = 1] 0.52 0.57 0.61 0.66 0.70 0.72 0.74 0.64
̂Pr[X7 = 1] 0.37 0.36 0.31 0.36 0.26 0.14 0.00 0.26
̂Pr[X8 = 1] 0.27 0.37 0.54 0.64 0.74 0.86 1.00 0.63
̂Pr[X9 = 1] 0.22 0.19 0.16 0.13 0.11 0.09 0.08 0.14
̂Pr[X10 = 1] 0.17 0.17 0.16 0.16 015 0.16 0.16 0.16
̂Pr[X11 = 1] 0.22 0.24 0.27 0.30 0.33 0.35 0.37 0.30
̂Pr[X12 = 1] 0.71 0.74 0.76 0.78 0.79 0.81 0.82 0.77

Table 3. Descriptive statistics of rating factors per period.

4.2 The results

We proceed as follows. First, we use the observations relating
to 1991 to estimate the regression coefficients β0, β1, . . . , β12

involved in the models (1)-(4), as well as the dispersion pa-
rameter. To this end, we use the maximum likelihood method
in the Negative Binomial distribution. Table 4 presents the es-
timated regression coefficients and dispersion parameter in the
Negative Binomial model using the 1991 data. Then, the an-
nual expected claim frequencies are reevaluated through (3)-
(5) given the number of claims recorded in the databasis.

Table 5 displays summary statistics about the updating
coefficients in the model proposed by Dionne & Vanasse
(1989,1992), that is, the so-called relativities involved in (5)
and applied to the policyholders from 1992 to 1997. For each
period the following measures are calculated. The average rel-
ativity is presented in the first column. Note that in the first
period, i.e. year 1991, the relativity is equal to 100%. The fol-
lowing columns in Table 5 show the standard deviation, the

Parameter Estimate
β0 -2.2262
β1 0.0125
β2 -0.0645
β3 -0.0983
β4 0.2224
β5 -0.3297
β6 -0.3732
β7 -0.1357
β8 -0.2632
β9 0.1546
β10 0.2472
β11 0.0681
β12 0.0835

Dispersion 0.9899

Table 4. Parameter estimates in the Negative Binomial model for the 1991
data.

t Mean STD Q1 Median Q3 P90%
(25%) (P50%) (75%)

1991 1.000 - - - - -
1992 1.010 2.090 0.421 0.459 0.504 0.535
1993 0.940 1.887 0.047 0.056 0.875 3.521
1994 0.937 1.897 0.045 0.053 0.829 3.723
1995 0.937 1.888 0.042 0.050 0.789 3.696
1996 0.939 1.862 0.041 0.048 0.752 3.590
1997 0.943 1.825 0.039 0.046 1.036 3.505
1998 0.951 1.775 0.037 0.045 1.124 3.442

Table 5. Relativities in the model of Dionne & Vanasse (1989,1992).

first quartile, the median, the third quartile, and the 90% per-
centile. The average relativity decreases in the first periods
and then slightly increases. The median decreases with the
periods.

In Table 6 we present summary statistics about the average
relativities obtained with the procedure using the Bayesian ex-
perience rating with time dependent random effects, i.e. those
involved in (3). The maximum likelihood estimation of the
parameter α is 0.1. In the columns we see the first quartile,
the median, the third quartile, and the 90% percentile for each
yearly period, in the sample portfolio.

t Mean STD Q1 Median Q3 P90%
(25%) (P50%) (75%)

1991 1.000 - - - - -
1992 0.913 3.789 0.038 0.040 0.041 0.041
1993 0.984 3.913 0.001 0.002 0.002 0.598
1994 0.945 3.783 <0.001 <0.001 <0.001 0.612
1995 0.952 3.751 <0.001 <0.001 <0.001 0.596
1996 0.976 3.747 <0.001 <0.001 <0.001 0.589
1997 1.034 3.795 <0.001 <0.001 <0.001 0.610
1998 0.991 3.583 <0.001 <0.001 <0.001 0.603

Table 6. Relativities in the experience rating model with dynamic random
effects and α = 0.1.

The results obtained for the Bayesian experience rating
with time dependent random effects show a very marked
bonus-hunger effect compared to those derived in the model
proposed by Dionne & Vanasse (1989,1992). Since the esti-
mation of the α parameter is closer to zero than to one, every
policyholder is very much influenced by his/her own experi-
ence. So the higher relativities are suffered by those few who
had claims at fault. The average and median relativities are
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very small. After some yearly periods drivers with no acci-
dents pay a very moderate amount of premium. The conclu-
sion is that dynamic random effects produce premiums much
more disperse than those derived with a static random effect.

5 Conclusion

The results obtained in this paper show that the Bayesian
method with dynamic heterogeneity provides a neat separa-
tion of the policyholders. The relativies are so extreme that it
would not be possible to implement them in practice, because
a small subset of policyholders would pay extremely high pre-
mia while others would pay very small premia. The informa-
tion acquired after a claim induces a strong effect on the ex-
pected number of claims for the subsequent years. The effect
is magnified by the weighting parameter α. The approach pre-
sented here is useful for identifying those policyholders with
a bad claim record. It should not be recommended to price the
automobile insurance contract if the principle of risk sharing
(pooling) is to be perceived by consumers.

The α parameter can be used to compare the claiming ex-
perience in different portfolios, where a larger α would mean
that there is less dynamicity in the unobserved risk factors.

The prediction in the Harvey-Fernandes model has the same
weakness as in Sundt (1988): assuming that the total credibil-
ity converges towards unity as time goes on, an exponential
decay of the credibility of periods as a function of seniority
leads to overweight recent information.
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