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Abstract

In the analysis of survival data, it is usually assumed that any unit will experience
the event of interest if it is observed for a sufficiently long time. However, it can
be explicitly assumed that an unknown proportion of the population under study
will never experience the monitored event. The promotion time model, which has a
biological motivation, is one of the survival models taking this feature into account.
The promotion time model assumes that the failure time of each subject is generated
by the minimum of N independent latent event times with a common distribution
independent of N . An extension which allows the covariates to influence simultane-
ously the probability of being cured and the latent distribution is presented. The
latent distribution is estimated using a flexible Cox proportional hazard model where
the logarithm of the baseline hazard function is specified using Bayesian P-splines.
Introducing covariates in the latent distribution implies that the population hazard
function might not have a proportional hazard structure. However, the use of P-
splines provides a smooth estimation of the population hazard ratio over time. The
identification issues of the model are discussed and a restricted use of the model when
the follow up of the study is not sufficiently long is proposed. The accuracy of our
methodology is evaluated through a simulation study and the model is illustrated on
data from a Melanoma clinical trial.
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1. Introduction

A common hypothesis in the analysis of survival data is that any observed unit will
experience the monitored event if it is observed for a sufficient long time. For exam-
ple, in a cancer clinical trial, one implicitly assumes that all patients will be observed
to have a relapse if their follow up is long enough. Hopefully, this is not always a
realistic assumption and the consequences of such a wrong hypothesis on the results
of the analysis is more and more questioned in the survival literature.
Alternatively, one can explicitly acknowledge that an unknown and unidentified pro-
portion of the population under study is cured and will never experience the event of
interest. Such models are refered as cure survival models. There are two well known
families of cure survival models. The first one, often refered as the standard mixture
cure model, assumes that the population survival function is obtained as a mixture
of contributions due to susceptible and cured individuals :

Sp(t|x, z) = p(x)Su(t|z) + (1− p(x)), (1)

where p(x) is the probability of being susceptible and Su(t|z) is the survival function
of the susceptible individuals. This family of cure models was first introduced by
Berkson and Gage (1952). They consider p(x) as an unknown constant and Su(t|z)
is related to a parametric model. Farewell (1982 and 1986) extends the model by
letting the covariates influence the probability of being susceptible through a logistic
regression. Besides that specification for p(x), many authors propose a semipara-
metric model for the susceptible survival function, see for example Kuk and Chen
(1992), Taylor (1995), Peng and Dear (2000), Sy and Taylor (2000), Li and Taylor
(2002), Peng (2003), Lu (2010) and Zhang, Peng and Li (2013). Wang, Du and Liang
(2012) propose the first completely nonparametric mixture cure model.
The second family, often refered as the promotion time (cure) model or as the non-
mixture cure model, was developed and studied by Yakovlev and Tsodikov (1996),
Tsodikov (1998) and Chen, Ibrahim and Sinha (1999). The promotion time model
is motivated using biological mechanisms in the development of cancer. The model
argues that each subject is exposed to a number N ∼ Pois(θ) of carcinogenic cells.
For each cell, Y is defined as the time necessary for it to yield a detectable cancer
mass. The Y ′i s are often refered as the latent event times. We assume that the
cancer mass in each cell is detected independently from each other and that only one
cell needs to be activated for a subject to fail. The latent event times {Y1, ..., YN}
are independent with a common proper distribution F (t) independent of N and the
observed failure time is defined as T = mini{Yi}. If the subject is not exposed to
carcinogenic cells (if N = 0), he or she is considered as cured. Using the biological
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derivation (Yakovlev and Tsodikov (1996) and Chen et al. (1999)) or the mathemat-
ical properties (Tsodikov (1998)) of the model, one can show that the population
survival function is given by :

Sp(t) = exp [−θF (t)] = exp [−θ(1− S(t))] . (2)

Note that, since F (t) is a proper cumulative distribution function, the probability of
being cured is given by P (N = 0) = limt→∞ Sp(t) = exp(−θ).
When the covariates only influence the probability of being cured, the log-link is
usually used on the parameter θ. Many approaches were proposed to specify the
latent distribution F (t), see for example Ibrahim, Chen and Sinha (2001), Zeng, Yin
and Ibrahim (2006) and Liu and Shen (2009).
Since the covariates might jointly influence the probability to be cured and the time
necessary for a cell to yield a detectable tumor, a Cox proportional hazard model can
be suggested for the latent distribution : F (t|z) = 1 − S0(t)

exp(zT γ), where S0(t) is
the baseline survival function. Using these two covariates structures, the population
survival function defined in (2) becomes :

Sp(t|x, z) = exp [−θ(x)F (t|z)]

= exp
[
− exp

(
β0 + xTβ

) (
1− S0(t)

exp(zT γ)
)]
. (3)

Model (3) was already studied, for example by Tsodikov (2002) in a frequentist frame-
work and by Yin and Ibrahim (2005) in a Bayesian framework. Yin and Ibrahim
(2005) assume a piecewize exponential distribution for the baseline survival function
S0(t). They use the conditional predictive ordinate criterion to select the appropriate
number of intervals.
In this paper, we propose a flexible estimation of the baseline distribution that does
not require a reference to a model selection criterion. We suggest to specify the
baseline log-hazard function as a linear combination of cubic B-splines associated to
a predefined (large) number of equidistant knots. A roughness penalty will be used
to counterbalance the flexibility of the B-splines (Eilers and Marx, 1996). The use of
P-splines provides a smooth estimation of the hazard ratio (of the whole population
or of the susceptible population) over time when the model does not have a propor-
tional hazard structure.
To the best of our knowledge, this is the first time that P-splines are used in a pro-
motion time model. Moreover, since we propose a Bayesian estimation procedure,
the confidence bounds of the functional part of the model are directly obtained from
the posterior chains.
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When working with cure survival models, it is usually stressed that the follow up
should be sufficiently long. We investigate the identifiability issues when that as-
sumption is not satisfied and propose a restricted use of the model.
The remainder of the paper is organised as follows. Section 2 investigates the prop-
erties of the proposed model : the hazard ratio and identification issues. A flexible
specification of the latent distribution is presented in Section 3. Section 4 is devoted
to the Bayesian inference. A simulation study and an application on data from the
phase III Melanoma e1684 clinical trial are reported in Section 5 and 6, respectively.
A discussion concludes the paper.

2. Model properties

Consider the promotion time (cure) model with covariates (x and z) introduced in
Section 1. The population survival function is given by equation (3) where the cure
probability is exp [−θ(x)]. Although a Cox model was used to describe the time
necessary for a cancerous cell to develop a detectable tumor, the survival function
at the patient level is usually not of a proportional hazards type (see below).

2.1. Hazard ratio issues

The population hazard function hp(t|x, z) is defined by

hp(t|x, z) =
−d (log [Sp (t|x, z]))

dt
= θ(x)f(t|z)

=
exp(β0 + xTβ) exp(zTγ)f0(t)S0(t)

exp(zT γ)

S0(t)
,

where f0(t) is the baseline density function.
The population hazard ratio comparing groups 1 and 2 is given by :

HRp =
hp(t|x1, z1)

hp(t|x2, z2)

= exp
(
(xT1 − xT2 )β

)
exp

(
(zT1 − zT2 )γ

)
S0(t)

(exp(zT1 γ)−exp(zT2 γ)).

Thus, the population hazard ratio HRp remains constant over time if exp(zT1 γ) −
exp(zT2 γ) = 0, i.e. if z1 = z2. In practice, this means that the population hazard
ratio is constant provided that the contrasted groups share the same values for the
covariates affecting the development of cancerous cells in the biological model.
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As mentioned in Chen et al. (1999), the hazard function of the susceptible individ-
uals, given in (4), does not have a proportional hazard structure. Indeed, one can
show that the susceptible survival function is given by :

Su(t|x, z) = P (T > t|N ≥ 1,x, z)

=
Sp(t|x, z)− exp [−θ(x)]

1− exp [−θ(x)]
,

and the susceptible hazard function is given by :

hu(t|x, z) =
−d (log [Su (t|x, z)])

dt

=
Sp(t|x, z)

Sp(t|x, z)− exp [−θ(x)]
hp(t|x, z) (4)

=
hp(t|x, z)

P (T < +∞|T > t,x, z)
.

It is straightforward to see that expression (4) does not have a proportional hazard
structure.

2.2. Identification issues

Theoretically, the follow up of a study is said to be sufficiently long if the largest
censoring time is greater than the largest failure time, i.e. if the follow-up time of any
susceptible unit was sufficiently long to observe its failure. In practice, if a plateau is
present in the right tail of the estimated population survival function (for example,
in the Kaplan Meier estimated curve), the sufficient follow up assumption seems to
be reasonable.

Lemma 1.

Assumptions :

A1 The vector z of covariates does not include an intercept.

A2 XTX and ZTZ are full rank matrices, where X and Z are the design matrices
corresponding to covariate vectors x and z, respectively.

A3 The baseline cumulative distribution function F0(t) = 1− S0(t) is proper.

Under A1, A2 and A3, we have :

1) If the follow up of the study is sufficiently long, then model (3) is identifiable.
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2) If the follow up of the study is not sufficiently long and if vectors x and z do
not share some components, then only the estimations of the covariate effects
on the cure probability and on failure time for a cancerous cell are identifiable.

The proof of this lemma is in appendix: it is based on the proof proposed by Liu
and Shen (2009) showing the identifiability of the promotion time model when the
covariates only influence the probability to be cured.

3. Flexible specification of the baseline distribution

We assume some familiarity with P-splines from the reader. If not, information about
P-splines can be found in Eilers and Marx (1996) and in Lang and Brezger (2004).
In order to estimate the baseline survival function S0(t) in (3), we suggest to write
the baseline log-hazard as a linear combination of cubic B-splines:

h0(t) = exp

(
K∑
k=1

bk(t)φk

)
, (5)

where {bk(.), k = 1, ..., K} denotes the cubic B-splines basis associated to a predefined
number of equidistant knots on [0, tRcens], where tRcens is the upper bound of the
follow up.
To ensure enough flexibility, Eilers and Marx (1996) suggest to choose a large number
of B-splines and to counterbalance the flexibility by adding to the log-likelihood
a roughness penalty based on finite differences of adjacent B-spline parameters :
τ
∑

k(∆
rφk)

2 = τφTDTDφ, where τ is the penalty parameter and D is the rth

difference penalty matrix. For example, when a third order penalty is specified, the
matrix D is defined as :

D =


1 −3 3 −1 0 ... 0
0 1 −3 3 −1 ... 0
...

...
. . . . . . . . . . . .

...
0 0 ... 1 −3 3 −1

 .
P-splines were already used in many different contexts, see for example Eilers and
Marx (1996) and Eilers (2007) in a frequentist framework and Lang and Brezger
(2004), Lambert and Eilers (2005), Lambert (2007, 2013) and Cetinyurek and Lam-
bert (2011) in a Bayesian framework. As mentioned in all these references, if K is
chosen large enough (between 10 and 20, say), no model selection criterion is needed
since all the K’s give similar results.
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Knowing the relation between the survival function and the hazard function and
using (5) as expression for the hazard function, the baseline survival function S0(t)
is specified as :

S0(t) = exp

(
−
∫ t

0

exp

[
K∑
k=1

bk(u)φk

]
du

)
. (6)

The integral in (6) has no analytic form and needs to be evaluated numerically.
Knowing that our observations are contained in the interval [0, tRcens], we partition
[0, tRcens] into J (300, say) small bins (of equal width, for simplicity) Jj = [τj−1, τj]
where 0 = τ0 < τ1 < ... < τJ = tRcens. Let uj and δj denote the midpoint and the
width of Jj, respectively. Then, using the rectangle method, (6) can be approximated
by :

S0(t) ≈ exp

− j(t)∑
j=1

exp

[
K∑
k=1

bk(uj)φk

]
δj

 , (7)

where j(t) indexes the interval containing t.
For identifiability purpose (see Section 2.2), we fix the last spline parameter φK to
a large enough value (10, say). In this way, we force the estimated baseline survival
function Ŝ0(.) to be 0 at the end of the follow up.

4. Bayesian inference

4.1. Likelihood

For the ith subject under study, we observe the failure or the censoring time ti, the
event indicator νi and two sets of covariates xi and zi. We denote these observable
variables by Di = (ti, νi,xi, zi). The set of parameters specific to the chosen model
is written as Φ. Then, the data likelihood is given by :

L(Φ|D) =
I∏
i=1

hp(ti)
νiSp(ti).

4.2. Bayesian Model

In a Bayesian setting, the roughness penalty is translated into a prior distribution
for the spline parameters (Lang and Brezger, 2004):

π(φ|τ) ∝ τ
K
2 exp

(
−τ

2
φTPφ

)
,
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where P = DTD + εIK is a full rank matrix for some small quantity ε (10−6, say).
In other words, a normal distribution with mean 0 and variance-covariance matrix
P−1 for the spline parameters is considered. As suggested by Jullion and Lambert
(2007), we take a robust specification for the roughness penalty prior distribution :

τ |δ ∼ G(
ν

2
,
νδ

2
),

δ ∼ G(aδ, bδ),

where G(a, b) denotes a Gamma distribution with mean a
b

and variance a
b2

.
They showed that if a small value is chosen for aδ and bδ (10−4, say), then the choice
of ν (here, set equal to 2) does not affect the shape of the estimated curve. If prior
knowledge (such as monotonicity) is available about the baseline hazard, it can be
expressed during the prior elicitation for the spline parameters. If nothing is known
a priori about the covariate effects, a large variance normal prior distribution can be
used for all the regression parameters.
Using Bayes’ theorem, the joint posterior distribution is given by :

π(Φ|D) ∝ L(Φ|D)π(φ|τ)π(τ |δ)π(δ)π(β0, β)π(γ). (8)

Given that all the prior distributions are proper, the posterior distribution π(Φ|D)
is proper. Only the conditional posterior of τ and δ belong to known families of
distributions :

τ |φ, δ,D ∼ G

(
ν +K

2
,
νδ + φTPφ

2

)
,

δ|τ,D ∼ G(aδ +
ν

2
, bδ +

ντ

2
).

4.3. Posterior sample using MCMC

A Metropolis step will be used to sample the other conditional distributions. As
shown by Lambert (2007), the mixing of the chains can be improved by applying
the Metropolis algorithm on a reparametrized posterior distribution. An adequate
reparametrization can be suggested by a frequentist estimation of the correlation
structure of the spline parameters. To reach that goal, one could use a nonlinear
optimizer to compute the mode of the joint posterior distribution in (8), for a fixed
value of δ. At convergence, the hessian matrix can be used to assess the posterior
correlation between the parameters and to suggest a reparametrization yielding less
dependent components (see Lambert, 2007, for more details).
Let β̃ = (β0, β) and (φ(0), τ (0), δ(0), β̃(0), γ(0)) be the initial values of the chain selected,
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for example, using the optimization step described above. The MCMC algorithm
consists in five main steps to sample the parameters from the posterior. Iteration m
proceeds as follows :

• Draw φ(m) from π(φ|τ (m−1), δ(m−1), β̃(m−1), γ(m−1)) using univariate Metropolis
steps (along directions suggested by the reparametrization) ;

• Draw τ (m) from G
(
ν+K
2
, νδ

(m−1)+φ(m)T Pφ(m)

2

)
in a Gibbs step ;

• Draw δ(m) from G(aδ + ν
2
, bδ + ντ (m)

2
) in a Gibbs step ;

• Draw β̃(m) from π(β̃|φ(m), τ (m), δ(m), γ(m−1)) using univariate Metropolis steps ;

• Draw γ(m) from π(γ|φ(m), τ (m), δ(m), β̃(m)) using univariate Metropolis steps ;

The variances of the proposal distributions in the Metropolis steps are tuned auto-
matically using the adaptive procedure proposed by Haario, Saksman and Tamminen
(2001) during the burnin to achieve the targeted optimal acceptance rate (Gelman,
Roberts and Gilks, 1996 and Roberts and Rosenthal, 2001).

5. Simulation study

5.1. Sufficiently long follow up

The accuracy of the proposed methodology was evaluated using simulations when
the follow up is sufficiently long (see Section 2.2). In each setting, the baseline
distribution in (3) corresponds to a Weibull with mean 8 and standard deviation
4.18. Two covariates were included in the regression parts : W1 ∼ N(0, 1) and
W2 ∼ Bernoulli(0.5). Since the sufficient follow up assumption is satisfied, both
covariates can be used simultaneously to model the probability of being cured and the
time necessary for a cell to yield a detectable tumor without causing an identifiability
problem. Thus, we set X = {W1,W2} = Z. The regression coefficients associated to
W1 and W2, in the Cox PH model, are set to 0.4 and -0.4, respectively. The upper
bound for the observed failure time was set at 23 as more than 99% of the events
occur before that time under the chosen Weibull distribution. Three percentages
were considered for the proportion of cured individuals : 15%, 25% and 40%. The
value of the regressors (β0, β) were tuned to get these percentages. Each dataset was
generated using the biological motivation of the model as follows : For each subject
:

1) Generation of the number of carcinogenic cells using N ∼ Pois(θ(x)) with θ(x)
= exp(β0 + xTβ) ;

9



2) If N 6= 0, N latent event times Y1, ..., YN are generated using the Cox propor-
tional hazard model. The observed failure time is defined as T = min(Y1, ..., YN).
This step is repeated until T < 23. Note that it had to be repeated more than
once in less than 1% of the cases. If N = 0, the failure time for the cured
individual is set to an arbitrary large value (999, say).

3) The global right censoring rate is controlled by one of the two following cen-
soring distributions :

a) setting 1 : an uniform distribution on [20, 25]. This censoring distribution
ensures that almost all the right censored subjects are cured and identifi-
able (since their censoring time are located in the plateau of the Kaplan
Meier estimate of the survival distribution).

b) setting 2 : a Weibull distribution with mean 22.28 and standard deviation
8.08 truncated at 25. Using this censoring distribution, the censoring time
of only 25% of the cured subjets are located in the plateau of the Kaplan
Meier estimate and 4% of the suceptible individuals are right censored.

We use the model described in Section 3 with a cubic B-splines basis associated
to 12 equidistant knots on [0, tRcens], where tRcens is equal to 25 and a third order
roughness penalty to counterbalance the flexibility of the B-splines. The simulations
were performed on S = 500 replicates of sample size n = 300 and 600.
Using the procedure described in Section 4.3, we construct a chain of length 23000
(including a burnin of 3000) to explore the joint posterior distribution. The behavior
and the convergence of the chains were assessed by an examination of the trace plots
and using diagnostics tools such as in Geweke (1992).
For the sake of brevity, we only report the results when the percentage of cured
individuals is 25% and 40%. Tables 1 and 2 summarize the simulation results for
the regression parameters. One can see that the posterior medians (as estimators)
of the regression coefficients show a negligible bias whatever the setting. The empir-
ical standard error and RMSE of the posterior median of the regression parameters
decrease slighly when the sample size increases and increase when the proportion of
cured individuals with a censoring time greater than the maximum observed failure
time decreases and when the percentage of right censoring in the non cured popula-
tion increases.
In each setting, the coverage probabilities of the 90% and 95% credible intervals are
close to their nominal value. The numerical results suggest that the proportion of
cured individuals does not affect the accuracy of the estimates.
The estimates of the baseline survival function are plotted in Figures 1 (when n =
300) and 2 (when n = 600). The variability of the estimated baseline distribution
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increases slightly when the proportion of cured individuals with a censoring time
greater than the maximum observed failure time decreases and when the percentage
of right censoring in the non cured population increases and decreases when the sam-
ple size increases. A limited bias decreasing with sample size seems to appear in the
estimation of the right tail of S0(t) when the proportion of cured individuals with a
censoring time greater than the maximum observed failure time decreases and when
the percentage of non cured right censored subjects increases. As for the regression
parameters, the percentage of immune individuals does not affect the accuracy of
the estimates. The same conclusions as for the regression parameters and for S0(t)
hold for the population log-hazard ratio (see Figures 3, when n = 300, and 4, when
n = 600), while the log-hazard ratio of the susceptible individuals is properly esti-
mated whatever the setting (see Figure 5, when n = 300). These hazard ratios are
obtained by contrasting the groups induced by the binary covariate (for a median
value of the continuous covariate).
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Table 1: Simulation results for S = 500 replicates and a sample size of n = 300 when the follow up
is sufficiently long. The percentage of cured individuals, the considered setting and the true value
of the regression parameters are defined in the first three columns. The bias, the coverage of the
90% and 95% credible intervals, the empirical standard error (ESE) and the RMSE of the posterior
median of the regression parameters are presented for each scenario.

Cure Setting Parameters Bias CV90% CV95% ESE RMSE

25%

1

β0 = 0.75 0.028 88.4 93.8 0.130 0.018
β1 = 0.80 0.016 90.8 94.8 0.112 0.013
β2 = -0.50 -0.013 91.6 96.6 0.172 0.030
γ1 = 0.40 -0.035 91.0 95.8 0.138 0.142
γ2 = -0.40 0.008 87.4 94.2 0.221 0.221

2

β0 = 0.75 0.052 85.8 92.6 0.162 0.030
β1 = 0.80 -0.003 93.4 97.8 0.129 0.017
β2 = -0.50 0.017 88.6 94.0 0.209 0.044
γ1 = 0.40 0.001 92.8 95.8 0.171 0.171
γ2 = -0.40 -0.029 88.2 93.6 0.283 0.282

40%

1

β0 = 0.30 0.006 90.6 94.0 0.128 0.017
β1= 1.00 0.013 90.6 95.0 0.119 0.014
β2 = -0.75 -0.008 90.6 94.4 0.182 0.033
γ1 = 0.40 -0.021 90.0 95.6 0.150 0.151
γ2 = -0.40 0.003 92.0 96.8 0.215 0.215

2

β0 = 0.30 0.043 86.2 91.8 0.155 0.027
β1 = 1.00 -0.014 93.6 97.0 0.137 0.019
β2 = -0.75 0.024 88.0 93.4 0.222 0.049
γ1 = 0.40 0.005 91.8 96.4 0.183 0.183
γ2 = -0.40 -0.025 90.4 94.4 0.276 0.276
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Table 2: Simulation results for S = 500 replicates and a sample size of n = 600 when the follow up
is sufficiently long. The percentage of cured individuals, the considered setting and the true value
of the regression parameters are defined in the first three columns. The bias, the coverage of the
90% and 95% credible intervals, the empirical standard error (ESE) and the RMSE of the posterior
median of the regression parameters are presented for each scenario.

Cure Setting Parameters Bias CV90% CV95% ESE RMSE

25%

1

β0 = 0.75 0.020 90.2 94.0 0.087 0.008
β1 = 0.80 0.017 90.4 95.2 0.077 0.006
β2 = -0.50 -0.020 91.6 95.8 0.115 0.014
γ1 = 0.40 -0.038 87.6 93.6 0.097 0.106
γ2 = -0.40 0.022 89.8 96.4 0.139 0.141

2

β0 = 0.75 0.036 87.2 92.8 0.107 0.013
β1 = 0.80 0.009 93.2 97.2 0.090 0.008
β2 = -0.50 -0.011 88.6 93.6 0.150 0.023
γ1 = 0.40 -0.023 91.0 96.0 0.115 0.118
γ2 = -0.40 0.018 91.6 95.0 0.182 0.183

40%

1

β0 = 0.30 0.005 91.2 95.2 0.087 0.008
β1 = 1.00 0.016 91.2 95.6 0.079 0.006
β2 = -0.75 -0.003 91.6 95.6 0.119 0.014
γ1 = 0.40 -0.027 91.2 95.0 0.098 0.101
γ2 = -0.40 0.036 92.4 95.2 0.142 0.146

2

β0 = 0.30 0.021 89.4 94.8 0.094 0.009
β1 = 1.00 -0.004 92.8 95.4 0.093 0.009
β2 = -0.75 0.010 91.2 95.8 0.142 0.020
γ1 = 0.40 -0.002 93.6 97.8 0.115 0.115
γ2 = -0.40 0.025 92.6 96.4 0.184 0.184
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Figure 1: Simulation results when the follow up is sufficiently long : estimation of the baseline
distribution S0(t) for S = 500 replications (one grey curve per data set) and sample size n = 300.
Each row refers to a percentage of cured individuals (row 1 : 25%, row 2 : 40%) with different
global right censoring rates (left : setting 1 ; right : setting 2). The solid line corresponds to the
true function and the dashed line is the pointwize median of the 500 estimated curves.
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Figure 2: Simulation results when the follow up is sufficiently long : estimation of the baseline
distribution S0(t) for S = 500 replications (one grey curve per data set) and sample size n = 600.
Each row refers to a percentage of cured individuals (row 1 : 25%, row 2 : 40%) with different
global right censoring rates (left : setting 1 ; right : setting 2). The solid line corresponds to the
true function and the dashed line is the pointwize median of the 500 estimated curves.
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Figure 3: Simulation results when the follow up is sufficiently long : estimation of the population
log-hazard ratio log(HRp(t)) for S = 500 replications (one grey curve per data set) and sample size
n = 300. Each row refers to a percentage of cured individuals (row 1 : 25%, row 2 : 40%) with
different global right censoring rates (left : setting 1 ; right : setting 2). The solid line corresponds
to the true function and the dashed line is the pointwize median of the 500 estimated curves. The
hazard ratio is obtained by contrasting the groups induced by the binary covariate (for a median
value of the continuous covariate.)
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Figure 4: Simulation results when the follow up is sufficiently long : estimation of the population
log-hazard ratio log(HRp(t)) for S = 500 replications (one grey curve per data set) and sample size
n = 600. Each row refers to a percentage of cured individuals (row 1 : 25%, row 2 : 40%) with
different global right censoring rates (left : setting 1 ; right : setting 2). The solid line corresponds
to the true function and the dashed line is the pointwize median of the 500 estimated curves. The
hazard ratio is obtained by contrasting the groups induced by the binary covariate (for a median
value of the continuous covariate.)
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Figure 5: Simulation results when the follow up is sufficiently long : estimation of the log-hazard
ratio for the susceptible individuals log(HRu(t)) for S = 500 replications (one grey curve per data
set) and sample size n = 300. Each row refers to a percentage of cured individuals (row 1 : 25%,
row 2 : 40%) with different global right censoring rates (left : setting 1 ; right : setting 2). The
solid line corresponds to the true function and the dashed line is the pointwize median of the 500
estimated curves. The hazard ratio is obtained by contrasting the groups induced by the binary
covariate (for a median value of the continuous covariate.)
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5.2. Not sufficiently long follow up

The restricted use of the promotion time model when the follow up of the study is not
sufficiently long is illustrated using simulations. The datasets are generated using
the procedure described in Section 5.1. However, since the follow up of the study
is not sufficiently long, for identification purpose, W1 only influences the time for a
cell to yield a detectable tumor (Z = W1), and W2 only influences the probability
of being cured (X = W2). Note that if the hazard ratio is obtained by contrasting
the groups induced by the binary covariate (for a median value of the continuous
covariate), the population hazard ratio has, in this setting, a proportional hazard
structure. Three percentages were considered for the proportion of cure individuals
: 15%, 25% and 40%. To ensure that the largest censoring time is smaller than the
largest observed failure time (which is the feature of non sufficiently long follow up),
a Weibull distribution with mean 17.9 and standard deviation 6.5 truncated at 13.7
(setting 3) and at 10.6 (setting 4) is considered for the censoring distribution.
As in Section 5.1, we use the model described in Section 3 with a cubic B-splines
basis associated to 12 equidistant knots on [0, tRcens], where tRcens is equal to 13.7 or
10.6 depending on the considered censoring distribution and a third order roughness
penalty to counterbalance the flexibility of the B-splines. The simulations were
performed on S = 500 replicates of sample size n = 300 and 600. A chain of length
23000 (including a burnin of 3000) is constructed using the procedure described
in Section 4.3. As previously, traces and z-scores of all the model parameters are
examinated to check the convergence of the MCMC algorithm. For the sake of
brevity, we only report the results when the percentage of cured individuals is 25%
and 40% and when the sample size is 300. Table 3 summarizes the simulation results
for the regression parameters. As expected from the theory, in each setting, the
posterior medians, as estimators of the intercept, show an underestimation. The
biases are close to log(F0(tRcens)), where F0(.) is the cumulative distribution function
of the considered baseline Weibull distribution in (3), as can be explained from
equation (A.1). The posterior medians of β1 and γ1 show a non significant bias
whatever the setting. The accuracy of the estimators of the regression parameters
increases with the upper bound of the follow up and with sample size. In each setting,
the coverage probabilities of the 90% and 95% credible intervals are close to their
nominal value except for the intercept due to its underestimation. Figure 6 shows
that the baseline distribution S0(t) is underestimated : this is due to the zero tail
constraint. As illustrated on Figure 7, an overestimation appears in the estimation of
the log-hazard ratio of the suceptible individuals when the upper bound of the follow
up is really to small. It happens when the baseline distribution function in (3) at the
maximum possible censoring time is much smaller than 1 : one has F0(10.6) = 0.75
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Table 3: Simulation results for S = 500 replicates and a sample size of n = 300 when the follow
up is not sufficiently long. The percentage of cured individuals, the considered setting and the true
value of the regression parameters are defined in the first three columns. The bias, the coverage
of the 90% and 95% credible intervals, the empirical standard error (ESE) and the RMSE of the
posterior median of the regression parameters are presented for each scenario.

Cure Setting Parameters Bias CV90% CV95% ESE RMSE

25%

3
β0 = 0.70 -0.093 80.6 87.8 0.129 0.025
β1 = -0.70 0.007 88.4 95.6 0.156 0.024
γ1 = 0.40 -0.029 86.6 92.2 0.111 0.114

4
β0 = 0.70 -0.266 46.6 60.6 0.157 0.096
β1 = -0.70 0.007 91.0 93.8 0.169 0.029
γ1 = 0.40 -0.041 85.6 91.0 0.124 0.130

40%

3
β0 = 0.30 -0.112 77.4 85.0 0.142 0.033
β1= -0.80 0.024 91.0 96.0 0.178 0.032
γ1 = 0.40 -0.039 86.8 93.0 0.127 0.133

4
β0 = 0.30 -0.292 45.4 56.6 0.159 0.104
β1 = -0.80 0.024 92.0 96.2 0.195 0.038
γ1 = 0.40 -0.049 86.2 92.2 0.137 0.145

for the shortest follow up (setting 4) and F0(13.7) = 0.9 in the most favorable setting
(setting 3). Similar conclusions can be drawn when the sample size is equal to 600.
These simulation results corroborate the theoretical results proved in Lemma 1.
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Figure 6: Simulation results when the follow up is not sufficiently long : estimation of the baseline
distribution S0(t) for S = 500 replications (one grey curve per data set) and sample size n = 300.
Each row refers to a percentage of cured individuals (row 1 : 25%, row 2 : 40%) and the columns
refer to the upper bound of the follow up (col 1 (setting 3) : 13.7, col 2 (setting 4) : 10.6). The
solid line corresponds to the true function and the dashed line is the pointwize median of the 500
estimated curves.
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Figure 7: Simulation results when the follow up is not sufficiently long : estimation of the log-hazard
ratio for the susceptible individuals log(HRu(t)) for S = 500 replications (one grey curve per data
set) and sample size n = 300. Each row refers to a percentage of cured individuals (row 1 : 25%,
row 2 : 40%) and the columns refer to the upper bound of the follow up (col 1 (setting 3) : 13.7,
col 2 (setting 4) : 10.6). The solid line corresponds to the true function and the dashed line is
the pointwize median of the 500 estimated curves. The hazard ratio is obtained by contrasting the
groups induced by the binary covariate (for a median value of the continuous covariate.)
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6. Application

Figure 8: Kaplan Meier estimated curve. Right : Each censored individual is marked by a cross.
Left : Without cross for the censored individuals.

We illustrate our methodology on data from a phase III Melanoma e1684 clinical
trial. The study was conducted by Eastern Cooperative Oncology Group (ECOG)
and consist on a two stages randomized clinical trial : Interferon alpha-2b (IFN) ver-
sus Control (Kirkwood et al. (1996)). Their study suggests that Interferon alpha-2b
has a significant positive effect on the relapse free survival time. Among the 284
patients present in the study, 144 (51%) receive the IFN treatment, 171 (60%) are
male, and we observe a relaspe of cancer for 196 (69%) of them. The other subjects
were right censored. The age of each subject is known with an average of 47 years
and standard deviation of 13 years. The Kaplan Meier estimated curve (Figure 8)
shows a plateau. This suggests that the follow up of the study was sufficiently long.
Thus, we let sex, age and the randomised treatment influence simultaneously the
probability to be cured and the time necessary for a cell to yield a detectable tumor.
The survival data of this clinical trial were already studied in Chen et al (1999) and
in Cooner et al (2007). However, in their analysis, they assumed that the covariates
only infuence the probability to be cured. Here, we also enable the covariates to
influence the time necessary for a cell to yield a detectable tumor.
The procedure described in Section 4.3 was use to explore the joint posterior distri-
bution. As for the simulations, 23000 iterations (including a burnin of 3000) were
generated. To check the convergence of the MCMC algorithm, the traces of all model
parameters were examinated critically. The z-scores of the Geweke diagnostics were
found to be between −1.96 and 1.96 for all model parameters, suggesting convergence
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Table 4: Melanoma e1684. Estimation of the posterior median, the 95% HPD interval and the
posterior standard deviation of each regression parameter of the model.

Parameters Estimation HPD95% sdpost

θ(x)

Intercept 0.351 [0.088 ; 0.564] 0.123
AGE 0.100 [-0.046 ; 0.248] 0.074
IFN -0.321 [-0.635 ; -0.032] 0.155
SEX -0.031 [-0.337 ; 0.276] 0.161

F (t|z)
AGE -0.136 [-0.303 ; 0.033] 0.085
IFN -0.060 [-0.417 ; 0.341] 0.190
SEX 0.053 [-0.333 ; 0.430] 0.195

of the MCMC algorithm.
Table 4 presents the MCMC estimates of the posterior median, the 95% HPD in-
terval and the posterior standard deviation of the regression parameters. One can
conclude that treatment only has a significant effect on the probability to be cured.
In other words, our model suggests that Interferon alpha-2b significantly reduces the
number of carcinogenic cells but does not influence the incubation time of one cell.
This conclusion is illustrated on Figures 9 and 10. Figure 9 shows the fitted pop-
ulation survival function (right) and the fitted survival function for the susceptible
individuals (left). The only relevant difference is between treatment groups in the
population survival function, illustrated for a median value of AGE. Figure 10, for
males of median age, shows the estimate of the logarithm of the population hazard
ratio log(HRp) (left) and of the logarithm of the hazard ratio for the susceptible
log(HRu) (right) : only log(HRp) significantly differs from zero at the beginning of
the study. Similar conclusions can be drawn for females.
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Figure 9: Melanoma e1684. Left : Comparaison of the fitted population survival function between
groups. Right : Comparaison of the fitted survival function of the susceptible patients between
groups.

Figure 10: Melanoma e1684. Left : Fitted male population log-hazard ratio with 95% pointwize
credible region. Right : Fitted log-hazard ratio for the male susceptible patients with 95% pointwize
credible region.

7. Discussion

A flexible version of the promotion time model when the covariates influence simul-
taneously the probability of being cured and the time necessary for a cell to yield a
detectable tumor was proposed. Although the suggested model does not have a pro-
portional hazard structure at the patient level, our specification provides a smooth
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estimation of the hazard ratios over time.
When the follow up of a study is not sufficiently long, one can use the promotion
time model with some restrictions. In this context, it has been proved that of the
effects of covariates are identifiable if they are not simultaneously used to model the
probability to be cured and the time necessary to detect a tumor growing from a
cancerous cell. The use of a logit link (instead of a log one) to model the probability
to be cured was investigated to try to solve that identifiability problem but it was
not successful.
Lopes and Bolfarine (2012) propose a parametric promotion time model to deal
with hierarchical data. We currently work on the extension of the proposed flexible
methodology in this context. An extension to interval censored data will also be
considered.
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Appendix A. Proof of lemma 1

A Proof of 1).
a) Let (β0, β, γ, S0) and (β̃0, β̃, γ̃, S̃0) be two sets of parameters that satisfy

(3) and let X be the set of all values of vector x. We need to show that if

Sp(t|x) = exp
[
− exp(β0 + xTβ)

(
1− S0(t)

exp(zT γ)
)]

= exp
[
− exp(β̃0 + xT β̃)

(
1− S̃0(t)

exp(zT γ̃)
)]

= S̃p(t|x) ∀x ∈ X ; ∀t ∈ [0,∞],

then β0 = β̃0 , β = β̃ , γ = γ̃ and S0(t) = S̃0(t) ∀t ∈ [0,∞].

b) Since the exponential function is bijective, we only need to show that if
∀x ∈ X and ∀t ∈ [0,∞], we have

exp(β0 + xTβ)
(

1− S0(t)
exp(zT γ)

)
= exp(β̃0 + xT β̃)

(
1− S̃0(t)

exp(zT γ̃)
)
,
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then β0 = β̃0 , β = β̃ , γ = γ̃ and S0(t) = S̃0(t) ∀t ∈ [0,∞].

c) Since F0(t) is a proper cumulative distribution function (see A3), it follows
immediately that F (t|z) = 1 − S0(t)

exp(zT γ) is also a proper cumulative
distribution function. Let us proof that b) is true for t = ∞. Knowing
that F (t|z) and F̃ (t|z) are proper cumulative distribution functions, we
have to show that if

β0 + xTβ = β̃0 + xT β̃ ∀x ∈ X ,

then β0 = β̃0 and β = β̃.
Under A2, this is a straightforward consequence of :

PX (xTβ = α) = 1⇒ α = 0 and β = 0.

d) Since vector z does not include an intercept (see A1) and under A2, it is
well known that the Cox proportional hazard model is identifiable.

e) Combining the results found in c) and d), we conclude the proof of 1).

B) Proof of 2).
a) The follow-up will be said unsufficiently long if the tumor growing from

a cancerous cell cannot be detected by the end of the study at time t. It
happens if F0(t) is too small (i.e. close to 0). Then,

F (t|z) = 1− S0(t)
exp(zT γ)

= 1−
[
(1− F0(t))

exp(zT γ)
]

= 1−
[
1− exp

(
zTγ

)
F0(t)

]
+ o (F0(t))

≈ 1−
[
1− exp

(
zTγ

)
F0(t)

]
= exp

(
zTγ

)
F0(t).

b) Thus, using this approximation, (3) becomes

Sp(t|x, z) ≈ exp
[
−θ(x) exp

(
zTγ

)
F0(t)

]
= exp

[
− exp(β0 + xTβ) exp

(
zTγ

)
F0(t)

]
= exp

[
− exp(β0 + xTβ + zTγ)F0(t)

]
.

Then, we conclude that if vectors x and z share some components, the
estimations of the effects of covariates are not identifiable when the follow-
up is not sufficiently long.
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c) It remains to prove that the estimations of the effects of covariates are
identifiable when the follow up of the study is not sufficienly long and
when vectors x and z do not share a single component.
To ensure A3, it is custom to force the zero tail constraint : One assumes
Ŝ0(t) to be 0 beyond the last event time tmax (Taylor (1995), Zeng et al.
(2006), Ma and Yin (2008)). When the sufficient follow up assumption is
not satisfied, this constraint is strong and has some consequences :

θ(x)F (t|z)|tmax
≈ exp(β0 + xTβ + zTγ)F0(t)|tmax

= exp(β0 + xTβ + zTγ + log(1− ε)) (A.1)

= exp(β̃0 + xTβ + zTγ),

where ε = F0(+∞)− F0(tmax).
In conclusion, the estimations of the covariate effects on the cure proba-
bility and on failure time for a cancerous cell are not affected by the zero
tail constraint and are thus identifiable if vectors x and z do not share
some components.

This concludes the proof of lemma 1.
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