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Abstract 

This article reports the coupling of a building energy simulation (BES) with computational fluid 

dynamics (CFD) software and its application to a typical Belgian two-storey house. The coupling 

scheme developed in this study aims to improve the overheating prediction for buildings. This 

phenomenon is becoming increasingly frequent in Northern Europe due to increased insulation and 

a lack of sun protection and natural cooling strategies. Complementary contributions of the two 

numerical approaches are underlined and used to obtain accurate results in an acceptable computing 

time, even in a thermally stratified room. The space and time coupling is discussed to obtain an 

optimised tool in which BES is in charge of the primary portion of the effort, while CFD intervenes 

punctually on one room of interest. The numerical results are compared both qualitatively and 

quantitatively to the experimental results, and the improved accuracy of the coupled tool compared 

with a standalone BES is underlined.  

Keywords: computational fluid dynamics, multizone model, building physics simulations, 

validation, overheating risks. 
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1. Introduction 

The reduction of a building’s energy consumption has become one of the most challenging goals 

worldwide. This problem is especially challenging in Europe, where 40% of the total energy is 

dedicated to the heating and cooling of buildings [1]. Therefore, building designers are urged to 

use new strategies to develop near-zero energy buildings. In fact, European regulations will 

impose the building of zero-energy buildings as soon as 2020. 

The scientific community has developed several approaches for building energy simulations 

(BES) to help building designers, such as multizone dynamic simulations. Moreover, aeronautical 

studies have yielded parallel computational fluid dynamics (CFD) models that could be applied to 

building cases. These approaches aim to optimise building design and retrofitting. Nevertheless, 

they have a number of limitations and drawbacks.  

BES is widely used due to its ease and speed. Chen [2] shows that multizone models have been 

the main tools for predicting ventilation performance in an entire building over the past years. 

The multizone model allows the prediction of overall flow through the building and the 

prediction of mean temperature in small rooms, but it cannot predict detailed temperature and 

airflow distributions within each room. Specifically, the multizone approach assumes the perfect 

mixing of the air in each zone, which generally corresponds to a perfect mixing of air in each 

room. Thus, this approach suffers from a lack of accuracy for thermally stratified rooms. 

However, recent architectural designs have developed massively glazed buildings and atrium 

configurations. This type of configuration significantly increases the risk for overheating and 

thermal stratification in large or high rooms. Thus, multizone models are not reliable for this type 

of building. Some studies have already extensively discussed the multiple assumptions and 

drawbacks of the multizone model [3-5]. 
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Conversely, computational fluid dynamics software has already proven its ability to accurately 

model all types of aero-thermal phenomena in buildings and their surroundings, such as 

mechanical ventilation [6-8], natural ventilation [9, 10], contaminant dispersion [11, 12], airflow 

around buildings [13], heat islands [14], etc. Chen [2] shows that CFD models have been mainly 

applied to study indoor air quality, natural ventilation and stratified ventilation because these 

phenomena were difficult to predict via other models.  

As the most sophisticated airflow model, CFD simulations can provide detailed spatial 

distributions of air velocity, temperature and contaminants in each room. Unfortunately, they 

suffer from long calculation times, especially for highly partitioned buildings, which limit their 

adoption by practitioners. Moreover, Li and Nielsen [15] argue that large efforts must be devoted 

to raising awareness on the reliability of these techniques, defining good practice rules and 

helping new operators to suitably use these techniques. Several recent studies have attempted to 

address this issue, especially in terms of the selection of turbulence models [6, 16-18]. 

To meet the needs of building designers, the scientific community has studied the 

complementarity of these two tools: the ease and speed of the multizone approach and the 

accuracy of CFD. These efforts yielded simulations that couple BES and CFD. The coupling 

allows operators to exploit the qualities of each approach. However, this requires overriding three 

major discontinuities between the two techniques [19]: 

1. Spatial discontinuity meshes are completely different; 

2. The temporal discontinuity:  the multizone approach can easily be used to conduct studies 

over an extended period of time (several months to a year calculated per time step of an 

hour), while the CFD solves simulations over relatively short periods (a few hours, 

calculated per time step of a second);  
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3. Discontinuity of computation time between the two approaches. 

This article aims develop a coupled BES-CFD approach that is optimised for overheating 

predictions in complete buildings. An application of this tool to a Belgian residential building 

(two floors and 11 rooms) on a sunny summer day will allow its numerical results to be compared 

with experimental measurements in the studied house, as well as with the numerical results of a 

standalone BES simulation. This article is structured as follows: Introduction, State of the art of 

BES-CFD coupling, Case study description, Developed coupling tool description, Simulation 

parameters of the case study, BES standalone results, Coupled results and Conclusions. 

2. BES-CFD coupling – State of the art 

The idea of coupling BES and CFD was first developed by Negrao [20], who focused on the 

necessity for the two models to exchange appropriate boundary conditions. Indeed, CFD requires 

surface temperature to accurately describe the flow condition, but these values are unknown at 

the design stage. Conversely, BES requires convective heat flux coefficients for each wall and 

thermal gradients description within rooms with high vertical development. This study developed 

3 models. In the first one, the two approaches run in parallel without direct interaction. In the 

second one, BES provides the surface temperature to CFD, while CFD supplies convection heat 

transfer fluxes. Finally, this study attempted to add an aeraulic parameter to its coupling 

approach. Unfortunately, this last technique was not a success.  

Zhai et al. [19] reviewed several coupling approaches and classified them based on their coupling 

iterative process and the number of data exchanges between the two tools. In a static coupling, 

the study focuses on one particular moment of interest for which BES generally provides wall 

temperatures to CFD. A reverse data exchange, from CFD to BES, may also help to improve 

accuracy. In a dynamic coupling, BES and CFD exchange useful data at several time steps to 
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capture the transient phenomena. Zhai et al. [19] considered 4 exchange protocols that will be 

explained in detail hereafter. Finally, they applied these different schemes to two single room 

cases. They underlined that a coupling approach can significantly improve the cooling/heating 

loads and comfort predictions. 

Zhai and Chen [21] verified the existence, uniqueness and convergence of a solution obtained by 

a coupling approach based solely on thermal aspects. They tested several exchanges parameters 

(such as convective heat transfer coefficients or heat fluxes from CFD to BES). Finally, they 

claimed that the most stable approach was to transfer the surface temperature from BES to CFD 

and convective heat transfer coefficients from CFD to BES. 

Wang and Chen [22] have expanded on the study of Zhai and Chen [21] to include aeraulic 

parameters. They claimed that the stable approach consisted of exchanging the pressure boundary 

conditions between BES and CFD and vice versa. Wang [23]pursued the development of this 

approach by studying contaminant dispersion in a four-room case. He demonstrated that a 

coupling approach yields more realistic results than standalone BES software. In parallel, 

Djunaedy et al. [24] noted that internal coupling (in which BES and CFD are assembled in one 

single tool) has limitations that can be overcome by the use of an external coupling (in which 

BES and CFD work sequentially). This approach drastically decreases the computing time and 

improves the accuracy of results. 

Finally, Pappas and Zhai [25]studied the performance of a double skin cavity with a coupled 

BES-CFD programme: the model was validated using measured data, and errors were calculated 

for airflow rate prediction (9%) and for temperature stratification (15%). 

In this frame, our study aims to demonstrate that a coupling approach can easily be applied to a 

complete building (two floors and 11 rooms), including an open space with high air temperature 
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stratification. This approach accurately predicts the overheating phenomenon. This problem is 

becoming increasingly prevalent, and building designers do not have efficient tools to predict 

overheating. The developed tool is based on an external and dynamic coupling that addresses 

thermal and aeraulic aspects. 

3. Case study description 

The chosen case study is a typical Belgian house from the 1990s composed of two storeys with 

an entrance hall with a stairwell, a living room, a kitchen, a laundry and a professional office at 

the ground floor and a personal office open on the entrance hall and stairwell, four sleeping 

rooms and two bathrooms at the first floor. The two storeys are linked by the entrance hall, which 

also fulfils the role of personal office on the upper level (Figure 1). This room is often the only 

office of this type of house. Therefore, ensuring good thermal conditions in the upper part of this 

room is important. For simplicity, we refer to this space as “the open space” in the rest of the 

article. 

  

Figure 1: House plans: a) Ground Floor, b) First Floor 
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9 thermal sensors were placed inside this room to measure the thermal gradient due to 

stratification (Figure 2). The sensors were placed at a vertical distance of 60 cm from the first 

sensor, which was placed 10 cm from the floor. The temperature at the centre of each room of the 

house was also monitored to evaluate both the multizone and the CFD parts of the simulation. 

Additional sensors were also placed in several rooms to ensure the thermal uniformity of the 

rooms that are modelled by BES. The external temperature was also monitored, and the results 

were compared with the nearest airport readings.  

The measuring campaign persisted for three entire days, with a measuring time step of 2 minutes. 

The measuring accuracy was +/-0.35°C between 0°C and 50°C.  

A blower-door test was used to evaluate the permeability of the house. According to the 

Norm EN 13829, the air renewal rate was approximately 5.5 volumes per hour under a pressure 

difference of 50 Pa between the inside and the outside. This value is characteristic for a mid ‘90s 

house that is not equipped with mechanical ventilation. 

Finally, to ensure that the coupling approach can predict overheating, the measurements were 

conducted during a hot and sunny period. 
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Figure 2: Sensors implantation inside the open space 

4. Developed coupling tool description 

Limiting the CFD interventions to strictly necessary steps is important to ensure an efficient and 

fast approach. Indeed, CFD calculations are time- and resource-consuming. Therefore, 

Negrao [20] noted that space discretisation was an important factor and that it was possible to 

separate the building in two parts: one in which the air property gradients are crucial, which has 

to be modelled by CFD, and another in which the air can be considered well mixed, where the 

multizone approach is most suited. Following the same efficiency goal, Zhai et al. [19] proposed 

to limit CFD interventions to a reduced number of time steps. Thus, BES provides the main 

calculation effort, and the calculation time is drastically reduced. 

This section describes the choices made during the development of our coupling tool in terms of 

spatial discretisation, temporal discretisation, the coupling scheme and the developed algorithm.  
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4.1 Space discretisation 

As already noticed by Negrao [20], the ability of BES to accurately predict the thermal behaviour 

of small rooms is well known. In these rooms, the air is well mixed, and the air properties (such 

as temperature) can be considered as constant in the entire room. Because these rooms do not 

present large thermal gradients or substantial convective transfer, they are eligible for a BES 

approach. 

Conversely, the CFD domain must be reduced as much as possible to limit computing time, as 

this technique is very time consuming. Space discretisation for CFD requires a fine grid over 

which the density, air velocity and temperature are calculated via Navier-Stokes equations. The 

required computing resources grow quickly, and simulations can last several days if this aspect is 

not considered. 

Therefore, only the open space was modelled with CFD, while BES was used to model the 

remaining house (10 rooms). Given the vertical development of the open space and the fact that 

the front wall is glazed, this area is subject to thermal stratification, while all the other rooms are 

small and experience small thermal charges. Moreover, the open space temperature prediction is 

very important due to its central role and effect on all other rooms (except the laundry). 

4.2 Time discretisation 

Because overheating is a transient phenomenon, a dynamic coupling approach was necessary. 

Zhai et al. [19] noted several possible coupling approaches, which can be summarised by the 

following rules: one-time step dynamic coupling, in which coupling is applied for one specific 

time-step of interest; quasi-dynamic coupling, in which the effort is supported by BES and CFD 

takes punctual action; full dynamic coupling, in which BES and CFD alternate towards a 
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converged solution for each time step, and virtual dynamic coupling in which specific time steps 

are modelled with both BES and CFD, the results of which are interpolated in an extended-time 

simulation. 

In this paper, quasi-dynamic coupling was used because it represents the best compromise 

between accuracy and calculation time for a building. The coupling approach choice depends 

strongly on the impact of transient phenomena on the thermal behaviour of a room. Because solar 

illumination is the main transient phenomenon in our case, an entire CFD simulation at every 

time step is not necessary. In other words, quasi-dynamic coupling can accurately model 

configurations without dramatic thermal changes, such as the conditions of a Belgian house in 

summertime. 

Thus, BES simulates the thermal behaviour of the house on an entire day with a quarter-hour time 

steps, and the CFD simulation provides inputs every two simulated hours in our model (Figure 3). 

 

Figure 3: Time discretisation scheme 

An initialisation process was necessary. To this end, BES models the two previous days, while 

the first CFD first occurs two hours before the day of interest. Thus, 13 total CFD calculations 

based on the results of each of the last CFD time step to decrease calculation time. The final 

coupling scheme is illustrated in Figure 4. 
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Figure 4: Space discretisation scheme 

4.3 Coupling scheme 

BES-CFD coupling is increasingly used to consider both thermal and aeraulic aspects because 

they are increasingly modelled in parallel to BES. This approach was retained for this study 

because it is the most accurate.  

The internal surface temperatures were transferred from BES to CFD. In the reverse direction, 

CFD supplies the heat transfer coefficients. This approach ensures stability and convergence, as 

demonstrated by Wang and Chen [22]. In addition, CFD also provides the near-wall temperatures 

because the space domain has been completely merged. The possibility to refine the temperature 

in the vicinity of each wall (and not the temperature of the whole room) in the BES model, which 

is attributed to CFD, should thus increase accuracy. 

The mass flow was transferred from BES to CFD, while the mean temperature by storey was 

reversely provided to consider pressure variations due to stratification in the reverse direction. 

This approach differs from the recommendation of Wang [23], as the space domain was not 

merged in these test cases. The developed coupling scheme is reproduced in Figure 5. 
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Figure 5: Coupling scheme 

4.4 Developed algorithm 

A coupling programme with a text-mode interface was developed between TRNSYS and Fluent. 

This text-mode data exchange interface was programmed in the C++-language to provide a 



Mathieu Barbason, Sigrid Reiter . 2014. Coupling building energy simulation and computational fluid dynamics: 

Application to a two-storey house in a temperate climate. Building and Environment, Vol 75, pg 30-39.   

14 

 

convenient data passage between TRNSYS and Fluent that automatically implements the data 

exchange between the two programmes.  

5. Simulation parameters of the case study 

In a complete validation process, ASHRAE [26] recommends that the main simulation 

parameters be described to permit the reproduction of the simulation by anyone. To this end, this 

section introduces the main parameters of the coupling approach simulation.  

Table 1 illustrates values that were retained for the BES part of the simulation. Moreover, it also 

introduces the evolution of the parameters during the calibration process by providing the initial 

and the final values of these parameters. 

Table 1: BES main parameters 

 Units Initial value Final value 

External wall U-value W/(m².K) 0.695 0.695 

Roof U-value W/(m².K) 0.698 0.411 

Floor U-value W/(m².K) 0.932 0.932 

Windows U-value W/(m².K) 2.83 2.83 

Windows g-factor - 75% 50% 

Shading factor - No shading 

Surrounding 

shadings taken 

into account 

A 195,990 polyhedral cell mesh was initialised for the CFD model, which represents a typical 

length scale of 7.5 cm for the cells. This mesh is somewhat smaller than the recommended value 

of Nielsen et al. [27], which is a mesh of approximately 240,000 cells mesh given the volume of 

the open space. Nevertheless, the convergence of results was verified, and our mesh was 

optimised to decrease the computing time as much as possible. 

Even if CFD simulation occurs at a specific time, a false time-stepping approach (with constant 
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boundary conditions) was used as recommended by Cook and Lomas [28] to optimise the 

convergence of results. The simulation was decomposed in two parts with respect to the time 

step. During the first part, the time step was 20 seconds, which permits a first approximation of 

the results. During the second part of the simulation, a 2-second time step was used to refine the 

quality of results. 

The turbulence model is a SST k-w model. Indeed, this model yielded the more satisfactory 

results in this specific case in comparison with the k-ε models. Solar radiation was modelled with 

a P1 solar model, which is the best compromise between accuracy and calculation speed. 

Finally, several concerning discretisation schemes were employed. The pressure extrapolation 

scheme was a PRESTO model, the pressure-velocity coupling scheme was a SIMPLEC model, 

the gradients and derivatives were evaluated with a Green-Gauss Cell Based model and a second 

order model was used to extrapolate the other variables (velocity, energy, etc.). These parameters 

were selected based on the results of an optimisation process on the quality of results.  

6. BES standalone results 

The BES software retained for this study was TRNSYS [29]. Crawley [30] proved that this 

multizone programme is most suited for a BES-CFD coupling approach. This software has the 

advantage of being very flexible and widespread use by building engineers offices. 

As it is often the case with real case studies based on in-situ measurements, some parameters 

were uncertain, such as the current U-value or g-factor of windows. Therefore, BES was first 

performed on the entire house during the three studied days to calibrate uncertain parameters and 

obtain a correct starting point for the BES-CFD coupling approach evaluation. 
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To this end, the quality of results was evaluated via a linear regression approach. This technique 

consists of plotting the experimental results versus the numerical results. A linear interpolation of 

the results was then applied. This operation defines a slope coefficient, which must fall inside the 

range of [0.75, 1.25], and a correlation coefficient R², which must exceed 0.9 [26]. The first 

indicator reflects the accuracy of the modelled temperature range, while the second one tests the 

correctness of the time evolution.   

Linear regressions were calculated separately and in groups for the 10 small rooms, and the 

results of the optimisation parameters are described in Figure 6 for the slope coefficient and in 

Figure 7 for the correlation coefficient. 

 

Figure 6: Optimisation process: slope coefficient (target interval: [0.75,1.25]) 
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Figure 7: Optimisation process: correlation coefficient R² (target interval: [0.9,1]) 

The figures show that results are favourable at the beginning only for Bathroom 1. The results are 

outside the acceptable range for Bedroom 1, Professional Office and Laundry. Moreover, the 

correlation with all the available data (total curve) is also outside the acceptable range. 

Uncertain parameters, such as the g-factor of windows or U-value of the insulation, were 

modified, and correct results were finally obtained after 10 iterations. In the last iteration, the 

correlation coefficient R² for the 10 grouped rooms was 0.924, and the slope coefficient was 

0.939. Compared with the recommendation of ASHRAE [26], these results are good and the 

simulation parameters can be considered correctly calibrated. The changes in the  slope 

coefficients and the correlation coefficients R² are given in Table 2. 

Table 2: Optimisation parameters evolution 

 Correlation coefficient R² Slope coefficient 

 Initial value Optimised value Initial value Optimised value 

Sleeping Room 1 0.81 0.92 1.18 1.02 

Bathroom 1 0.93 0.92 1.02 0.98 

Laundry 0.85 0.98 1.12 1.04 

Professional office 0.87 0.95 1.32 1.15 

Total 0.76 0.94 0.95 0.98 
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The results indicate that all parameters conform to ASHRAE recommendations and that the 

improvement of the results of initially faulty rooms does not affect the results of Bathroom 1, 

which were accurate from the beginning. 

6.1 Small rooms results 

The finals results of the change in the average temperature of four rooms (2 per storey) during 24 

hours are described in Figure 8. These results illustrate the accurate prediction of the temperature 

in these four rooms. The mean error is an underestimation of 0.1°C, and the absolute mean error 

is approximately 0.5°C, which represents 5.8% of the encountered temperature range. Similar 

results were obtained for the other 6 small rooms.  
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Figure 8: Experimental results versus numerical results 
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This type of result was expected, because the multizone approach is known to perform well when 

the air properties, such as temperature, are uniform inside the room, as is the case in the studied 

rooms. 

6.2 Open space results 

Conversely, the open space results are inconsistent, as illustrated in Figure 9. The simulated 

temperature overestimates the maximum registered temperature during 5 hours in the morning. 

Moreover, the BES maximum temperature occurs 2 hours before the maximum registered 

temperature and underestimates the peak value by 1.5°C. Thus, the BES results are physically 

inconsistent for the open space, and BES is not suitable to accurately predict the overheating risks 

in typical Belgian houses. 
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Figure 9: Experimental results versus numerical results for the open space 

This result can be attributed to the strong stratification of the room during the day. The 

temperature difference between the lowest and the highest point of the open space consistently 

exceeds 2.5°C and reaches 5°C when the maximum temperature is reached. Clearly, a classical 
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BES approach, which calculates one single temperature per room, cannot model high or large 

rooms. 

In conclusion, these results clearly show that BES can accurately model the thermal behaviour of 

small rooms in which the temperature is uniform, while the temperature prediction of high or 

large rooms is inconsistent for BES. Taken together, these conclusions confirm the interest in 

using a coupled approach with CFD inputs that will allow the operator to consider thermal 

stratification effects. 

7. Coupled results 

FLUENT (ANSYS Inc. [31]) was chosen for the CFD approach due to its widespread use in 

every CFD domain and because Crawley [30] also proved that this software was the most suited 

one for an external coupling approach. However, the licensing fee of the CFD software often 

precludes its adoption in small engineering offices. Nevertheless, CFD freeware exists, but this 

software is generally complex to use and requires additional skills. 

The calculation time is an important parameter that must be monitored. In fact, the long 

calculation times often preclude the use of CFD in building engineering applications. The results 

described hereafter were obtained from a 4-hour simulation, even though the calculations 

simulated an entire day. This time was judged acceptable at any design stage and allows building 

designers to evaluate different configurations, even at the design stage. Conversely, this coupled 

technique still requires specific knowledge. Nevertheless, an automatic coupling tool that is 

adapted to building applications and based on the developed coupling scheme could be 

implemented in the future. 

7.1 Small rooms results 
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First, Figure 10 illustrates the impact of the coupling approach on the results of small rooms. 

Generally, the coupling approach decreases the simulated temperature. The coupling approach 

does not change the shape of the curve, but only translates the results. As demonstrated in the 

figure, the coupling approach has almost no impact on the parameters of the 10 small rooms. 

Moreover, these changes are insignificant given the uncertainty range of several parameters, such 

as U-values of windows.  
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Figure 10: Thermal behaviour of four rooms (coupling approach) 

The correlation coefficient, R², and slope coefficient of these results was again evaluated, and the 

results reproduced in Table 3. 

Table 3: Optimisation parameters comparison between BES standalone and coupling approach 

 Correlation coefficient R² Slope coefficient 

 BES standalone Coupling approach BES standalone Coupling approach 

Sleeping Room 1 0.92 0.91 1.02 1.06 
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Bathroom 1 0.92 0.92 0.98 0.97 

Laundry 0.98 0.98 1.04 1.04 

Professional office 0.95 0.95 1.15 1.17 

Total 0.94 0.94 0.98 0.98 

Because the results remain inside the ASHRAE [26] recommended ranges of values, the coupling 

approach does not affect the ability of BES to accurately predict the thermal behaviour of small 

rooms. 

7.2 Open space results 

Figure 11 illustrates the temperature change measured by sensors 1, 4, 6 and 8 in the open space, 

which respond to heights of  0.1, 1.9, 3.1 and 4.3 m, respectively.  

0 5 10 15 20
22

23

24

25

26

27

28

29

30

Daytime [h]

T
e
m

p
e
ra

tu
re

 [
°C

]

 

 

Numerical results

0.1m high

1.9m high

3.1m high

4.3m high

Experimental results

0.1m high

1.9m high

3.1m high

4.3m high

 

Figure 11: Thermal behaviour of the entrance hall (coupling approach) 

The numerical and experimental results are very close. The mean error is -0.01°C (CFD slightly 

underestimates the measured values), while the absolute mean error is 0.33°C (less than 5% of 
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the temperature range). This mean absolute error is smaller than the measurement error, which 

underlines the accuracy of the coupling approach. 

 

The slope coefficient and correlation coefficient, R², of the CFD results were 0.912 and 0.928, 

respectively, which is inside the acceptable range defined by ASHRAE [26]. These results are 

illustrated in Figure 12. 
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Correlation curve : y = 0.912 x + 2.278
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Figure 12: Experimental results versus numerical results 

Moreover, the stratification was accurately predicted, because the minimum and maximum 

temperatures inside the open space were known in the CFD part of the coupling simulation with a 

precision of 0.05°C and 0.2°C, respectively.  
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Because the maximum temperature of the open space reflects the overheating risks inside the 

house and was correctly modelled, the objective of this coupling approach was achieved. 

Finally, the intraday thermal changes were also well described, because the times of minimum 

and maximum temperature were correctly evaluated.  

Due to this accuracy, natural cooling strategies and optimised HVAC devices could be evaluated 

with this coupling approach to improve the performance of buildings and minimise energy waste 

in the building sector. 

8. Conclusions 

To improve the overheating prediction, a coupling BES-CFD approach was developed for multi-

storey buildings based on TRNSYS-FLUENT programmes. This paper presents a state-of-the art 

BES-CFD coupling approach and describes a new coupling scheme. This scheme transfers 

internal surface temperatures and mass flow from BES to CFD, and CFD supplies heat transfer 

coefficients and mean temperatures by storey (to consider pressure variations due to 

stratification) from CFD to BES. The developed coupling scheme ensures an optimal space and 

time coupling to optimise the computing time and resources. In the developed tool, BES is in 

charge of the main part of the effort, while CFD intervenes punctually for one single room (the 

open space). 

The authors have applied this tool to a typical Belgian two-storey house to evaluate 

breakthroughs that could be expected with this approach in terms of improving the comfort of 

occupants during sunny summer days. The results show that BES alone cannot describe the 

thermal behaviour of the entire building due to known limitations of BES, such as stratification 

description in high and large vertical development rooms. However, this coupling tool can obtain 

accurate results everywhere inside the house for an entire sunny day within an acceptable 
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calculation time (4 hours). The stratification of the open space is well described, while the 

maximum temperature value and time are also precisely known. The coupled tool was validated 

using measured data, and the mean absolute error was less than 5% of the temperature range, 

which is smaller than the measurement error.  

This new approach can be applied on an entire building to predict the overheating risks and study 

technical solutions during the design phase of a new construction. Unfortunately, this coupling 

approach is still complex to implement. Efforts will be necessary to implement automatic 

coupling based on a BES model. Moreover, this coupling tool requires highly skilled building 

engineers. Nevertheless, breakthroughs in this approach should guarantee the interest of building 

engineers and architects because they urgently require improved simulation tools.  

Finally, given the actual context of environmental issues, this technique represents an important 

breakthrough toward naturally cooled buildings and energy-integrated conception. BES-CFD 

coupling has been proven as an advanced simulation tool that can help to optimise architectural 

environments by better considering overheating risks to provide more complete and accurate 

results for thermo-aeraulic phenomena. 
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