A new analysis of the optical polarisation alignments of quasars
 V. Pelgrims (in coll. with J.R. Cudell)

 \author{ \section*{IFPA, AGO Dept., University of Liège}

}

 \author{

IFPA, AGO Dept., University of Liège

}
}

At each location in the polarisation space, a coordinate-invariant probability distribution is semi-analytically computed.

length ratios

- polarisation in 3-d
- cone algorithm: predicts what a uniform distribution for the polarisation angles would give - compare with data

The Local Significance Level

The hypothesis of uniformly distributed polarisation angles is tested at each point \boldsymbol{a} by evaluating the probability of the data density.
The alignment direction is defined as the direction $\boldsymbol{a}_{\text {min }}$ for which the local significance level is the least, i.e. $\boldsymbol{p}_{\text {min }}$. The direction $\boldsymbol{a}_{\min }$ of the most unexpected density (corresponding to $\boldsymbol{p}_{\min }$) is identified as being the alignment direction.

The Global Significance Level

A Monte Carlo treatment leads to the evaluation of the global significance level \boldsymbol{p}^{σ} of an observed alignment to occur anywhere on the sphere.

CONFIRMATION OF THE LARGE-SCALE ALIGNMENTS OF OPTICAL POLARISATION OF QUASARS (e.g. Hutsemékers et al. 2005)

Determination of three independent regions of alignment through a blind analysis.

Further details in: V. Pelgrims and J.R. Cudell on arxiv: [1402.4313] (submitted to MNRAS)

