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Abstract

This paper addresses the problem of decision
making in unknown finite Markov Decision
Processes (MDPs). The uncertainty about
the MDPs is modelled, using a prior distri-
bution over a set of candidate MDPs. The
performance criterion is the expected sum of
discounted rewards collected over an infinite
length trajectory. Time constraints are de-
fined as follows: (i) an off-line phase with a
given time budget, which can be used to ex-
ploit the prior distribution and (ii) at each
time step of the on-line phase, decisions have
to be computed within a given time budget.
In this setting, two decision-making strate-
gies are compared. Firstly, OPPS, which is a
recently proposed meta-learning scheme that
mainly exploits the off-line phase to perform
the policy search, as well as BAMCP—that is
a state-of-the-art model-based Bayesian rein-
forcement learning algorithm, which mainly
exploits the on-line time budget. These ap-
proaches are empirically compared in a real
Bayesian setting, with their performances
computed over a large set of problems. As far
as this particular area of study is concerned,
it is the first time that this is done in the
Reinforcement Learning literature. Several
settings are considered by varying the prior
distribution and the distribution from which
test problems are drawn. The main finding
of these experiments is that there may be a
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significant benefit of having an off-line prior-
based optimization phase, in the case of infor-
mative and accurate priors, especially when
on-line time constraints are tight.

1. Introduction

Optimally interacting with an unknown Markov Deci-
sion Process (MDP) remains a challenging Reinforce-
ment Learning (RL) problem (Buşoniu et al., 2010).
At the heart of this challenge lies the so-called Ex-
ploration/Exploitation (E/E) dilemma: on one hand,
the agent needs to collect relevant data by exploring
the environment, at the cost of taking bad decisions in
the short term, while exploiting its current knowledge,
facing the risk to take sub-optimal actions in the long
term.

In the last fifteen years, Bayesian RL (Dearden et al.,
1999; Strens, 2000) developed an interesting method
to deal with the fact that the actual MDP is un-
known. It assumes a prior distribution over a set
of candidate MDPs from which the actual MDP is
likely to be drawn. When interacting with the ac-
tual MDP, a posterior distribution is maintained, given
the prior and the transitions observed so far. Such a
posterior is used at each time-step to compute near-
optimal Bayesian decisions, as a strategy to deal with
the E/E dilemma. Model-based Bayesian RL meth-
ods maintain a posterior distribution over transition
models (Ross & Pineau, 2008; Poupart, 2008; Asmuth
et al., 2009; Hennig et al., 2009; Fard & Pineau, 2010;
Ross et al., 2011). On the other hand, the model-
free Bayesian RL methods do not explicitly maintain
a posterior over transition models, but rather value
functions from which a decision can be extracted (see
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e.g. (Dearden et al., 1998; Engel et al., 2003; Engel
et al., 2005a; Engel et al., 2005b; Ghavamzadeh & En-
gel, 2006; Ghavamzadeh & Engel, 2007).

Recently, Guez et al. (Guez et al., 2012) have in-
troduced the BAMCP algorithm (for Bayes-adaptive
Monte Carlo planning), a model-based Bayesian RL
approach, which combines the principle of the UCT—
Upper Confidence Trees—with sparse sampling meth-
ods, and obtained state-of-the-art performances. At
the same time, Castronovo et al. (Castronovo et al.,
2012) proposed an algorithm that exploits a prior dis-
tribution, in an off-line phase, by solving a policy
search problem in a wide space of candidate, index-
based E/E strategies, and by applying the obtained
strategy on the actual MDP afterwards. The pur-
pose of this paper is to empirically compare those two
approaches in a “real Bayesian setting”. In order to
achieve this, several MDP distributions are considered,
which can either be used as a prior distribution or as a
test distribution, from which test problems are drawn.
Several possible configurations in terms of prior/test
distribution association are also considered, in order
to observe the effect of the “flatness” of the prior dis-
tributions or their “accuracy” on the performances of
the algorithms. Moreover, in order to be objective,
comparisons will take into account the minimal com-
putation time required to run each of these algorithms.
Our experiments mainly show that exploiting a prior
distribution in an off-line phase makes sense in the
context of informative and accurate priors, especially
for problems where on-line time constraints are tight.

The paper is organized in the following manner: Sec-
tion 2 formalizes the problem addressed in this paper.
Section 3 presents the experimental protocol and the
empirical results. Section 4 discusses the obtained re-
sults, and finally Section 5 concludes the paper.

2. Problem Statement

The goal of this paper is to compare two Reinforce-
ment Learning (RL) strategies, in the presence of a
prior distribution. First we describe the RL setting
in Section 2.1. Then the prior distribution assump-
tion is formalized in Section 2.2, and the basics of the
BAMCP and OPPS approaches are briefly described.
Section 2.3 formalizes the computational time con-
straints that these algorithms must satisfy, and Sec-
tion 2.4 explains the specificities of our empirical eval-
uation.

2.1. Reinforcement Learning

Let M = (X,U, f(·), ρM , ρM,0(·), γ) be a given un-
known MDP, where X = {x(1), . . . , x(nX)} denotes
its finite state space and U = {u(1), . . . , u(nU )} its fi-
nite action space. When the MDP is in state xt at
time t and action ut is selected, the agent moves in-
stantaneously to a next state xt+1 with a probability
of P (xt+1|xt, ut) = f(xt, ut, xt+1). An instantaneous
deterministic, bounded reward rt = ρ(xt, ut, xt+1) ∈
[Rmin, Rmax] is observed simultaneously. In this paper,
the reward function ρ is assumed to be fully known,
which is often true in practice.

Let Ht = (x0, u0, r0, x1, · · · , xt−1, ut−1, rt−1, xt) de-
note the history observed until time t. An E/E strat-
egy is a stochastic policy h that, given the current state
xt, returns an action ut ∼ h(Ht). Given a probabil-
ity distribution over initial states ρM,0(·), the expected
return of a given E/E strategy h with respect to the
MDP M can be defined as follows:

JhM = E
x0∼ρM,0(·)

[RhM (x0)],

where RhM (x0) is the stochastic discounted sum of
rewards received when applying the E/E strategy h,
starting from an initial state x0, defined as indicated
below:

RhM (x0) =

+∞∑
t=0

γtrt,

where the discount factor γ belongs to [0, 1). Within
this setting, reinforcement learning amounts in finding
a policy h∗ which leads to the maximization of JhM :

h∗ ∈ arg max
h

JhM .

2.2. Prior Distribution over a Set of
Candidate Models

In the context where the actual MDP is initially un-
known, the Bayesian RL techniques propose to model
the uncertainty about the actual model, using a proba-
bility distribution. This amounts to assuming that the
actual MDP to be played is drawn from a distribution
p0M(·). In the so-called model-based Bayesian RL set-
ting, this prior distribution is assumed to be known.
In this paper, it is assumed that there is access to a
prior distribution p0M(·) over a set of MDPs M. It is
further assumed that:

• One can easily draw MDPs models from p0M(·);

• One can easily compute the posterior distribution
from p0M(·) given the observation of an history Ht

and the prior distribution.



Bayes Adaptive Reinforcement Learning versus On-line Prior-based Policy Search

Using these assumptions, the goal is to determine an
E/E strategy h which leads to the maximization of the
expected return over the set of transition models M:

h∗ ∈ arg max
h

E
M∼p0M(·)

[
JhM
]
.

In this paper, two algorithms that can take advantage
of such a prior are compared; these are the BAMCP
and OPPS algorithms.

2.2.1. The BAMCP Algorithm

The BAMCP (Bayes-adaptive Monte Carlo planning)
algorithm is a state-of-the-art performance Bayesian
RL algorithm, originally proposed in (Guez et al.,
2012). The principle of this algorithm is to adapt
the UCT (Upper Confidence bounds applied to Trees,
see (Kocsis & Szepesvári, 2006)) principle for plan-
ning in a Bayes-adaptive MDP, also called the belief-
augmented MDP, which is a MDP obtained when con-
sidering augmented states made of the concatenation
of the actual state and the posterior. The BAMCP
algorithm is made computationally tractable by using
a sparse sampling strategy, which avoids sampling a
model from the posterior distribution at every node of
the planification tree. In practice, given a prior p0M(.)
and a history Ht, the BAMCP algorithm computes a
policy hBAMCP

K based on the building of a planifica-
tion tree with exactly K nodes, from which a decision
is outputted:

ut ∼ hBAMCP
K

(
Ht, p

0
M(.)

)
.

Note that, as the number of node expansions K
increases to infinity, the decision computed by the
BAMCP algorithm converges towards Bayesian opti-
mality.

2.2.2. The OPPS Algorithm

The Off-line, Prior-based Policy Search (OPPS) algo-
rithm was originally introduced in (Castronovo et al.,
2012). The OPPS approach works as follows: (i) a set
of candidate E/E strategies S is built, and (ii) a pol-
icy search scheme is run over the set of strategies. The
strategy space is obtained by considering index-based
strategies, where the index is generated using small
formulas, combining the standard mathematical oper-
ators with standard RL features (i.e., value functions).
The search of an optimal E/E strategy is formalized as
a multi-armed bandit problem, with a number of arms
being equal to the number of candidate E/E strate-
gies. Pulling an arm amounts to draw a MDP from
the prior, and to proceed with one single run of the
candidate E/E corresponding to that arm. Formally,

the OPPS algorithm computes — during the off-line
phase — a policy hOPPSS from which decisions are ex-
tracted on-line, given the prior p0M(.) and the history
Ht:

ut ∼ hOPPSS (Ht, p
0
M(.))

where

hOPPSS ∈ arg max
s∈S

E
M∼p0M(·)

[JsM ] .

In this paper, the set of variables from which formu-
las are built is slightly different than the one used in
(Castronovo et al., 2012). Such a set is fully described
in Appendix A.

2.3. Time Constraints

Bayesian RL has acquired the reputation of being com-
putationally intensive, mainly because of the incor-
poration of the posterior updates in the planification
phase. In this paper, we propose to explicitly formal-
ize the computational time budget allocated at every
phase of the use of the algorithms. Thus, two types of
time constraints are considered:

• an “off-line” time period B−1, corresponding to a
phase when the prior distribution is available to
the agent, but the actual MDP is not yet available
for interaction;

• a sequence of “on-line” time periods is considered
B0, B1 . . ., where, for all t ∈ N, Bt corresponds to
the time period available to compute a decision
ut ∈ U given the prior p0M(.) and the history Ht

observed so far.

2.4. Bayesian Empirical Evaluation

In this paper, we propose a real Bayesian empirical
evaluation, in the sense that we compare the algo-
rithms on a large set of problems drawn according
to a test probability distribution. Such a distribution
can be similar (“accurate”) or different (“inaccurate”)
from the prior. Formally, for each experiment, a prior
distribution is considered p0M(·), which is given to the
algorithms as an input, and a test distribution pM(·),
which is used to draw test problems, on which each
algorithm is evaluated. As far as this area of study is
concerned, this is the first time that the Bayesian RL
algorithms are compared on average over a large set of
problems, rather than on standard benchmarks.
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3. Experiments

Each experiment is characterized by the following:

• A prior distribution p0M(·),

• A test distribution pM(·),

• An off-line time budget B−1,

• On-line time budgets B0, B1, · · · for computing
decisions applied on the actual MDP.

The goal of those experiments is to identify the influ-
ence of the above mentioned elements on the perfor-
mance of the algorithms, and, consequently, to identify
the domain of excellence of each algorithm.

Subsection 3.1 describes the experimental protocol
used to compare the algorithms described in Sec-
tion 2.2. Subsection 3.2 defines accurately the MDP
distributions considered in the experiments presented
in Subsection 3.3.

3.1. The Experimental Protocol

For each algorithm:

• a pool of 10, 000 MDPs is drawn from pM(.);

• one single run of the algorithm is simulated on
each MDP of the pool;

• its empirical expected average of discounted re-
turns is computed.

Trajectories are truncated after T steps, where T is
defined as follows:

T =

⌈
ε×(1−γ)
Rmax

log γ

⌉
with ε = 0.001.

The mean µ is measured and the standard deviation
σ of the set of observed returns. This data allows us
to compute the 95% confidence interval of J

h(p0M(·))
pM(·) :

J
h(p0M(·))
pM(·) ∈

[
µ− 2σ√

10, 000
;µ+

2σ√
10, 000

]
with probability at least 95%.

Since each MDP distribution described below can be
used, either as a prior distribution p0M(·) or as a test
distribution pM(·), the process is repeated for each
possible combination.

3.2. MDP Distributions

The MDP distributions introduced in this paper are
inspired from the well-known five-state chain MDP
(Strens, 2000). For all the MDP distributions consid-
ered in this paper, the set of candidate MDPs shares
the same state space X, action space U , reward func-
tion ρM , initial state distribution ρM,0(·) and dis-
count factor γ. In our experiments, X = {1, 2, 3, 4, 5},
U = {1, 2, 3}, γ = 0.95, x0 = 1 with probability 1 and
the reward function ρM is defined as follows:

∀(x, u) ∈ X × U, ρM (x, u, 1) = 2.0

∀(x, u) ∈ X × U, ρM (x, u, 5) = 10.0

∀(x, u) ∈ X × U, y ∈ {2, 3, 4}, ρM (x, u, y) = 0.0.

In this context, a MDP is entirely specified by its
transition matrix. Therefore, the probability distri-
bution over sets of candidate transition matrices is
defined, using the Flat Dirichlet Multinomial (FDM)
distributions, which are widely used in the Bayesian
RL, mostly because their Bayes update is straight-
forward. One independent Dirichlet distribution per
state-action pair (x, u) is assumed, which leads to a
density dFDM :

dFDM (µ;θ) = Π
x,u
D(µx,u; θx,u)

where D(·; ·) are independent Dirichlet distributions.
The parameter θ gathers all the counters of observed
transitions θtx,u until time t, including θ0x,u which rep-
resents a priori observations.

The density of pM(·) is therefore defined as:

dpM(·)(µ,θ) = dFDM (µ;θ)

Consequently, a MDP distribution is parameterised by
θ, and will be denoted by pθ(·). In the following sec-
tion, we introduce four MDP distributions, the “Gen-
eralized Chain” distribution, the “Optimistic General-
ized Chain” distribution, the “Pessimistic Generalized
Chain” distribution and the “Uniform” distribution.

3.2.1. Generalized Chain Distribution

This MDP distribution is a generalisation of the well-
known Chain MDP. For each action, two different out-
comes are possible:

• The agent moves from state x to state x + 1 (or
remains in state x when x = 5) or;

• The agent “slips” and goes back to the initial
state.
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The probabilities associated with those outcomes are
drawn uniformly. Formally, the θGC parameter char-

acterising the corresponding pθ
GC

(·) distribution is de-
fined as follows:

∀u ∈ U : θGC1,u = [1, 1, 0, 0, 0]

∀u ∈ U : θGC2,u = [1, 0, 1, 0, 0]

∀u ∈ U : θGC3,u = [1, 0, 0, 1, 0]

∀u ∈ U : θGC4,u = [1, 0, 0, 0, 1]

∀u ∈ U : θGC5,u = [1, 0, 0, 0, 1]

3.2.2. Optimistic Generalized Chain
Distribution

This distribution is an alternative to the Generalized
Chain MDPs, where higher weights are put on transi-
tions, allowing the agent to move forward in the chain.
Formally, the θOGC parameter characterising the cor-

responding pθ
OGC

(·) distribution is defined as follows:

∀u ∈ U : θOGC1,u = [1, 5, 0, 0, 0]

∀u ∈ U : θOGC2,u = [1, 0, 5, 0, 0]

∀u ∈ U : θOGC3,u = [1, 0, 0, 5, 0]

∀u ∈ U : θOGC4,u = [1, 0, 0, 0, 5]

∀u ∈ U : θOGC5,u = [1, 0, 0, 0, 5]

3.2.3. Pessimistic Generalized Chain
Distribution

This distribution is an alternative to the Generalized
Chain MDPs, where higher weights are put on transi-
tions, moving the agent to the initial state. Formally,
the θPGC parameter characterising the corresponding

pθ
PGC

(·) distribution is defined as follows:

∀u ∈ U : θPGC1,u = [5, 1, 0, 0, 0]

∀u ∈ U : θPGC2,u = [5, 0, 1, 0, 0]

∀u ∈ U : θPGC3,u = [5, 0, 0, 1, 0]

∀u ∈ U : θPGC4,u = [5, 0, 0, 0, 1]

∀u ∈ U : θPGC5,u = [5, 0, 0, 0, 1]

3.2.4. Uniform Distribution

All transition probabilities are drawn uniformly. For-
mally, the θU parameter characterising the corre-

sponding pθ
U

(·) distribution is defined as follows:

∀x ∈ X,u ∈ U : θUx,u = [1, 1, 1, 1, 1]

Finally, note that unlike the original chain MDP, in
which action 1 is optimal in any given state, the opti-
mal behaviour in any MDP drawn according to one of

these distributions is not defined a priori, as it changes
from one MDP to another.

3.3. The Results of the Experiments

Several experiments are presented, where different
prior distribution / test distribution combinations are
considered.

Concerning OPPS, four different strategy spaces are
considered. The set of variables, operators and con-
stants has been fixed once and for all. The four strat-
egy spaces differ only by the maximal length of the
small formulas, which can be built from them. Those
spaces were named Fn, where n is the maximal length
of the formulas of the corresponding strategy space.
The implementation of OPPS used in these experi-
ments differs from the one of (Castronovo et al., 2012)
by the chosen set of variables. These variables are de-
scribed in the Appendix A.

Concerning BAMCP, the default parameters provided
by Guez et al. in (Guez et al., 2012) were used. Several
instances of BAMCP are built by varying the number
of nodes, which are created at each time-step. This
parameter has been denoted by K.

Our experiments are organized in four different parts,
one for each possible test distribution, i.e. the distri-
bution from which test problems are drawn. In each
part, we present a table of experimental results, ob-
tained when the prior and test distributions are identi-
cal, comparing the algorithms, in term of performances
and minimal required off-line / on-line time budgets.
In addition, a figure is joined, comparing the perfor-
mances of the approaches for different prior distribu-
tions.
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3.3.1. “Generalized Chain” Test Distribution

Agent Offline time Online time Mean score
OPPS (F3) ∼ 6h ∼ 40ms 42.29 ± 0.45
OPPS (F4) ∼ 6h ∼ 42ms 41.89 ± 0.41
OPPS (F5) ∼ 6h ∼ 42ms 41.89 ± 0.41
BAMCP (K = 1) ∼ 1ms ∼ 7ms 31.71 ± 0.23
BAMCP (K = 10) ∼ 1ms ∼ 54ms 33.23 ± 0.26
BAMCP (K = 25) ∼ 1ms ∼ 136ms 33.26 ± 0.26
BAMCP (K = 50) ∼ 1ms ∼ 273ms 33.73 ± 0.26
BAMCP (K = 100) ∼ 1ms ∼ 549ms 33.99 ± 0.27
BAMCP (K = 250) ∼ 1ms ∼ 2s 34.02 ± 0.26
BAMCP (K = 500) ∼ 1ms ∼ 3s 34.27 ± 0.26

Table 1. Comparison with prior “Generalized Chain” on
“Generalized Chain”
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Figure 1. Comparison on “Generalized Chain” distribution

Table 1 shows that OPPS outperforms BAMCP in
every single case, even for higher on-line time bud-
gets. The choice of the prior has a significant im-
pact on the performances of OPPS, as shown by Fig-
ure 1. The “Generalized Chain” and “Optimistic Gen-
eralized Chain” priors show similar performances for
OPPS, while the “Uniform Generalized Chain” prior
degrades them. On its side, BAMCP is steady except
for the “Pessimistic Generalized Chain” prior, which
has a positive effect on its performances, contrary to
OPPS.

3.3.2. “Optimistic Generalized Chain” Test
Distribution

Agent Offline time Online time Mean score
OPPS (F3) ∼ 6h ∼ 44ms 110.48 ± 0.61
OPPS (F4) ∼ 6h ∼ 44ms 110.51 ± 0.61
OPPS (F5) ∼ 6h ∼ 45ms 110.48 ± 0.61
BAMCP (K = 1) ∼ 1ms ∼ 7ms 92.71 ± 0.58
BAMCP (K = 10) ∼ 1ms ∼ 56ms 93.97 ± 0.57
BAMCP (K = 25) ∼ 1ms ∼ 138ms 94.24 ± 0.58
BAMCP (K = 50) ∼ 1ms ∼ 284ms 94.31 ± 0.57
BAMCP (K = 100) ∼ 1ms ∼ 555ms 94.59 ± 0.57
BAMCP (K = 250) ∼ 1ms ∼ 2s 95.06 ± 0.57
BAMCP (K = 500) ∼ 1ms ∼ 3s 95.27 ± 0.58

Table 2. Comparison with prior “Optimistic Generalized
Chain” on “Optimistic Generalized Chain”
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Figure 2. Comparison on “Optimistic Generalized Chain”
distribution

Table 2 shows that OPPS clearly outperforms
BAMCP, even for pretty high time budgets. However,
in Figure 2, we can see that BAMCP becomes more
competitive when using the “Pessimistic Generalized
Chain” prior distribution. In this case, BAMCP is
near OPPS performances.
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3.3.3. “Pessimistic Generalized Chain” Test
Distribution

Agent Offline time Online time Mean score
OPPS (F3) ∼ 5h ∼ 37ms 35.89 ± 0.06
OPPS (F4) ∼ 5h ∼ 39ms 35.89 ± 0.06
OPPS (F5) ∼ 5h ∼ 38ms 35.83 ± 0.06
BAMCP (K = 1) ∼ 1ms ∼ 6ms 33.77 ± 0.07
BAMCP (K = 10) ∼ 1ms ∼ 54ms 33.97 ± 0.06
BAMCP (K = 25) ∼ 1ms ∼ 133ms 34.1 ± 0.06
BAMCP (K = 50) ∼ 1ms ∼ 265ms 34.21 ± 0.06
BAMCP (K = 100) ∼ 1ms ∼ 536ms 34.37 ± 0.06
BAMCP (K = 250) ∼ 1ms ∼ 2s 34.62 ± 0.06
BAMCP (K = 500) ∼ 1ms ∼ 3s 34.9 ± 0.06

Table 3. Comparison with prior “Pessimistic Generalized
Chain” on “Pessimistic Generalized Chain”
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Figure 3. Comparison on “Pessimistic Generalized Chain”
distribution

Table 3 shows that OPPS and BAMCP share similar
performances, even if BAMCP stays behind. Never-
theless, BAMCP requires on-line time budgets that are
eighty times higher than the one required by OPPS,
in order to get a slightly lower score. As shown in Fig-
ure 3, this difference remains in all cases except for the
“Optimistic Generalized Chain” case where BAMCP
clearly outperforms OPPS.

3.3.4. “Uniform Generalized Chain” Test
Distribution

Agent Offline time Online time Mean score
OPPS (F3) ∼ 8h ∼ 52ms 57.37 ± 0.38
OPPS (F4) ∼ 8h ∼ 53ms 57.37 ± 0.38
OPPS (F5), UGC) ∼ 8h ∼ 51ms 57.37 ± 0.38
BAMCP (K = 1) ∼ 1ms ∼ 6ms 47.92 ± 0.29
BAMCP (K = 10) ∼ 1ms ∼ 52ms 48.81 ± 0.3
BAMCP (K = 25) ∼ 1ms ∼ 132ms 48.95 ± 0.3
BAMCP (K = 50) ∼ 1ms ∼ 256ms 49.3 ± 0.3
BAMCP (K = 100) ∼ 1ms ∼ 521ms 49.39 ± 0.31
BAMCP (K = 250) ∼ 1ms ∼ 2s 50.08 ± 0.31
BAMCP (K = 500) ∼ 1ms ∼ 3s 50.06 ± 0.31

Table 4. Comparison with prior “Uniform” on “Uniform”
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Figure 4. Comparison on “Uniform Generalized Chain”
distribution

Both Table 4 and Figure 4 show a clear victory for
OPPS for any prior distribution, even with pretty high
on-line time budgets. We can also notice that OPPS
is more efficient when using the correct prior distribu-
tion.

4. Discussion

As a general remark, it is observed that OPPS per-
forms better than BAMCP, even for high on-line time
budgets, at the cost of several hours of offline compu-
tation time. However, we can notice that BAMCP was
a decent challenger in the case of “Pessimistic Gener-
alized Chain” distribution.

Regarding the accuracy of the prior, it appears that
using a prior distribution, which differs from the
test problem distribution impacts the performances of
OPPS in a negative manner, which is expected, since
OPPS performs policy search, using the prior. This
impact is strengthened in the case of a tight test dis-
tribution ( “Generalized Chain”, “Optimistic Gener-
alized Chain” and “Pessimistic Generalized Chain”).
Thanks to the posterior update, the performance of
BAMCP seems less affected by a prior inaccuracy.
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5. Conclusion

An extensive experimental comparison between two
different Bayesian approaches was presented, exploit-
ing either off-line or on-line time budgets, in order
to interact efficiently with an unknown MDP. Our
experiments suggest that: (i) exploiting a prior dis-
tribution in an off-line phase is never a bad idea,
even for problems where on-line time constraints are
loose, whereas (ii) when on-line time budget are less
constrained, maintaining a posterior distribution def-
initely decreases the impact of an inaccurate prior on
the performances of the agent.
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A. OPPS settings

The OPPS implementation used in this paper differs
from the one introduced in (Castronovo et al., 2012) by
the set of variables used to build formulas. The set of
variables considered in this paper is composed of three
variables. Those three variables correspond to three
Q-functions computed through value iteration, using
three different models. Formally, given a set of transi-
tions observed so-far, h, Nh(x, u) the number of times
a transition starting from the state-action pair (x, u)
occurs in h, and Nh(x, u, y) the number of times the
transition (x, u, y) occurs in h, three transition func-
tions are defined fmean, funiform, fself as follows:

1. fmean corresponds to the expectation of a Dirich-
let posterior distribution computed from the cur-
rent history and the chosen prior distribution. If
θ0 denotes the counters of the observed transitions
of prior p0M(), fmean is defined as follows:

∀x, u, y : θhx,u(y) = θ0x,u(y) +Nh(x, u, y)

Formally, the mean transition model is defined as
follows:

∀x, u, y : fmean(x, u, y) =
θhx,u(y)∑
y′ θ

h
x,u(y′)

2. funiform corresponds to the expectation of a
Dirichlet posterior distribution computed from
the current history and a uniform Dirichlet prior
distribution. Formally, the uniform transition
model is defined as follows:

∀x, u, y : funiform(x, u, y) =
1 +Nh(x, u, y)

|U |+Nh(x, u)

3. fself corresponds to the expectation of a Dirichlet
posterior distribution computed from the current
history and a counter initialization correspond-
ing to a Dirac centred over a deterministic MDP
where each state can only be reached from it-
self (for all actions). Formally, the self transition
model is defined as follows:

∀x, u : fself (x, u, x) =
1 +Nh(x, u, x)

1 +Nh(x, u)

∀x, u, y 6= x : fself (x, u, x) =
Nh(x, u, x)

1 +Nh(x, u)
.

B. Erratum

There was a mistake in the experiments reported in the
first version of the paper. It lead to an overestimation
of the performances of the BAMCP algorithm.

The mistake came from the fact that the reward func-
tion used in the BAMCP algorithm was not taken
equal to R(x, u, y′) but well to the expected value of
this reward function, namely R′(x, u):

R′(x, u) =
∑
y′∈X

P (y′|x, u) R(x, u, y′)

In such a context, the BAMCP algorithm works signif-
icantly better, probably because the function R′(x, u)
contains additional knowledge of the transition matrix.


