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Abstract 

 

Activity-based micro-simulation transportation models typically predict 24-hour activity-

travel sequences for each individual in a study area. These sequences serve as a key input for 

travel demand analysis and forecasting in the region. However, despite their importance, the 

lack of a reliable benchmark to evaluate the generated sequences has hampered further 

development and application of the models.  With the wide deployment of mobile phone 

devices today, we explore the possibility of using the travel behavioral information derived 

from mobile phone data to build such a validation measure.  

Our investigation consists of three steps. First, the daily trajectory of locations, where a user 

performed activities, is constructed from the mobile phone records. To account for the 

discrepancy between the stops revealed by the call data and the real location traces that the 

user has made, the daily trajectories are then transformed into actual travel sequences. Finally, 

all the derived sequences are classified into typical activity-travel patterns which, in 

combination with their relative frequencies, define an activity-travel profile. The established 

profile characterizes the current activity-travel behavior in the study area, and can thus be 

used as a benchmark for the assessment of the activity-based transportation models.  

By comparing the activity-travel profiles derived from the call data with statistics that stem 

from traditional activity-travel surveys, the validation potential is demonstrated. In addition, a 

sensitivity analysis is carried out to assess how the results are affected by the different 

parameter settings defined in the profiling process. 

 

Keywords activity-travel sequences, activity-based transportation models, travel surveys, 

mobile phone data. 

 

1. Introduction 

 

1.1. Activity-based transportation models 

The main premise of activity-based micro-simulation transportation models is the treatment of 

travel behavior as a derived demand of activity participation. In this modeling paradigm, 

travel is analyzed through daily patterns of activity behavior related to and derived from the 

context of land-use and transportation network as well as personal characteristics such as 

social-economic background, lifestyles and needs of individuals (e.g. Bhat & Koppelman, 

1999; Davidson et al., 2007; Fan & Khattak, 2012; Lemp et al., 2007; Wegener, 2013).  

All the above information, complemented with a training set of household travel surveys 

which document the full daily activity-travel sequences of a small sample of individuals 

during one or a few days, is analyzed and translated into heuristic decision making strategy 

rules. These rules represent the scheduling process of activities and travel by the individuals 

(e.g. Arentze & Timmermans, 2004; Bellemans et al., 2010). Once established they can be 

used as the probabilistic basis for a micro-simulation process, in which complete daily 

activity-travel sequences for each individual in the whole region are synthesized, using Monte 

Carlo simulation methods. The synthesized individual activity-travel sequences are then 

aggregated into origin-destination (OD) matrix, with each matrix element representing the 

number of trips between each pair of locations of the region. This matrix, after being assigned 

to a road network through traffic assignment algorithms, can subsequently serve as essential 

input for travel analysis in the region, such as travel demand forecasting, emission estimates 

and the evaluation of emerging effects caused by different transportation policy scenarios. 

Fig. 1 illustrates the entire process of a micro-simulation model. 
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Fig. 1. The entire process of an activity-based transportation model 

 

1.2. Problem statement 

Despite comprehension and advancement of the activity-based transportation modeling 

system, the lack of reliable data in sufficient size does not enable one to have a decent 

benchmark and evaluation criterion for the model output (e.g. Cools et al., 2010a; Cools et al., 

2010b). Typically, for this purpose, one examines the results of the model both internally and 

externally at different stages of the simulation process, as indicated in Fig. 1 (e.g. Bellemans 

et al., 2010; Rasouli & Timmermans, 2013; Yagi & Mohammadian, 2010). The internal 

validation involves the comparison of the estimated results with expanded travel survey data 

which is not used in the training phase of the model but usually collected in the same survey 

period. In this validation, certain aggregated measures, e.g. the average travel distance and 

travel duration, derived from both the predicted sequences and the observed ones, are 

examined (e.g. Cherchi & Cirillo, 2010; Roorda et al., 2008). The sequence alignment method 

(SAM), which compares two sequences based on the composition and temporal ordering of 

the daily activities (Abbott & Forrest, 1986; Wilson, 1998), is also employed to assess the 

similarities between each of the observed sequences and its predicted counterpart (e.g. 

Sammour et al., 2012). However, the process involved in the development of the model, from 

initial data gathering to exploitation and validation of the first results, is lengthy and may take 

years, imposing a time lag between the data initially obtained and the data that is required for 

an objective and up-to-date validation measure. In addition to this time limitation, the high 

cost related to the surveys, makes it a challenge to collect samples in sufficient size, capable 

of providing a good representation of activity-travel behavior of a population. Moreover, 

travel surveys usually query information of only one or two days, in order to limit the 

negative effects associated with respondent burden. Consequently, this tends to obfuscate the 

less frequent activities, such as sports or telecommuting activities which are often carried out 

only once a week or once a month. These shortcomings have been well reported in the 

literature (e.g. Asakura & Hato, 2006; Cools et al., 2009). 

In contrast to the internal validation, the external validation consists of an indirect evaluation 

of the model output at a later phase, i.e. traffic assignment stage (see Fig. 1). The estimated 
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traffic volumes at a number of predefined road segments are compared against information 

from external sources, such as traffic counts collected by inductive loop detectors which are 

deployed on the road segments. 

However, the external validation process encompasses an aggregation step to compose the 

OD matrix as well as an assignment step to allocate the travel demand matrix to the road 

network. Valuable information may be lost in these two steps. Consequently, positive 

outcomes of the compared results might be artifacts of the validation process itself, and thus 

provide no real guarantee of the accuracy of the model. Moreover, when mismatches are 

found, there exists no clear procedure to trace back the causes, thus limiting the discovery of 

remedies to improve model construction. Nevertheless, despite such limitations, at the 

present, the indirect external evaluation is essentially the only option for model quality 

assessment in practice, as no well-established methods are found for operating closer to the 

model itself (e.g. Janssens et al., 2012). This is a problem that seriously hampers further 

model development and model application (e.g. Hartgen, 2013). Having useful and reliable 

benchmark and evaluation criteria for activity-based micro-simulation models has thus been a 

major concern.  

 

1.3. Mobile phone data: a new data source for transportation modelling and validating 

The wide deployment of mobile phone devices has created the opportunity to use the devices 

as a new data collection method to overcome the lack of reliable benchmark data (Jiang et al., 

2013). Location data recorded from the mobile phone devices reflects up-to-date travel 

patterns on a significantly large sample of the population, making the data a natural candidate 

for the analysis of mobility phenomena (e.g. Do & Gatica-Pereza, 2013; Schneider et al., 

2013). In addition, the data collection is a by-product of the mobile phone companies for 

billing and operational purposes that generates neither extra expenses nor respondent burden.  

The importance and added value of mobile phone data in the study of travel behavior and 

transportation modeling have been manifested by a variety of research efforts, ranging from  

the  investigation of key dimensions of human travel, such as travel distance and time 

expenditure at different locations (e.g. González et al., 2008; Schneider et al., 2013; Song et 

al., 2010), to the discovery of mobility patterns and the construction of OD matrices (e.g. 

Bayir et al., 2009; Berlingerio et al., 2013; Calabrese et al., 2011; Huang et al., 2009), and to 

the examination of the status and efficiency of current transport systems (e.g. Angelakis et al., 

2013; Hansapalangkul et al., 2007; Steenbruggen et al., 2013). Alongside these studies, 

mobile phone data has also been investigated to explore the possibilities of building model 

evaluation measures. Two recent research efforts can represent the state-of-art of such 

exploration. The first one (Shan et al., 2011) involves the use of mobile phone data of more 

than 0.3 million users collected in the metropolitan area of Lisbon, Portugal over a time 

period of an entire month. In their study, the two most frequent call cell towers for each of the 

users are first identified as the residential and employment locations. An OD matrix depicting 

the home-to-work commuting trips in the morning is then built, using the identified residential 

and employment locations as well as the call data. Based on a census survey, this matrix is 

subsequently scaled up to account for the total employed population of 1.3 million in the 

study area. The adjusted matrix is ultimately used to compare against the travel demand 

during the same morning period predicted by an integrated land use and transportation model 

developed in this region. In the entire activity-based modeling process, the above-described 

OD-based validation method can be positioned at the stage of OD matrix generation, as 

shown in Fig. 1. 

Instead of an OD matrix, in the second research (Kopp et al., 2013), other mobility 

parameters, such as the number of frequently visited locations and the spatial extent of a 

person's daily mobility, are derived from mobile phone data collected in two separate regions, 
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namely a central region of Italy and a large area of Lausanne, Switzerland. As opposed to 

directly using the derived travel parameters to examine the simulation results from a 

transportation model, the research compares the parameter values derived from the mobile 

phone data with the results inferred from GPS data that is recorded in the same regions during 

the same periods and therefore portrays the same mobility phenomenon. The comparison 

results demonstrate the capability of the mobile phone data in reflecting real travel patterns of 

the population, thus suggesting its potentials of building an objective and more detailed 

evaluation standard for transportation models.  

The two studies have provided deep insights into the characteristics of mobile phone data and 

illustrated its potentials for constructing an improved validation measure. In particular, the 

first research (Shan et al., 2011) has proposed a specific OD-based validation method and 

used a real transportation model to test this method’s applicability and viability. However, 

despite its advancement by incorporating mobile phone data into the model assessment, the 

OD-based method does not consider the sequential information which is imbedded in the 

activity-travel patterns. A detailed examination of the sequential dependencies of the daily 

activities from the simulated travel sequences is thus ignored in the validation process. It has 

been widely acknowledged that the choice of activities is dependent on the preceding activity 

engagement (e.g. Joh et al., 2007; Joh et al., 2008; Wilson, 2008), exemplified by the fact 

that, during one particular working day, it is highly probable that the combination of having 

breakfast, travel and working is observed together. On the contrary, if a sports activity is 

carried out in the morning, there is a small chance that it is performed again in the evening. 

The interdependencies of daily activities have been considered as a crucial factor in the 

activity-travel decision making process (e.g. Delafontaine et al., 2012; García-Díez et al., 

2011; Saneinejad & Roorda, 2009; Shoval & Isaacson, 2007). The examination of how the 

predicted activity-travel sequences are consistent with the sequential constraints that are 

observed from the real travel patterns is thus important. In the existing validation methods for 

activity-based models, SAM has been employed to assess the similarities between each 

observed sequence and its predicted counterpart (e.g. Sammour et al., 2012), as previously 

described. But this evaluation is carried out against a small set of activity-travel sequences 

from travel surveys, thus subject to the shortcomings that are inherent to the traditional data 

collection method. A validation measure, which is based on massive mobile phone data while 

taking into account the sequential aspect of activity-travel behavior, has so far been lacking. 

 

1.4. Research contributions 

Extending the current research on the application of mobile phone data to travel behavior 

analysis and transportation modeling, and particularly addressing the above mentioned 

limitations in the development of reliable validation measures for activity-based models, our 

study proposes a new approach which is based on the phone data and which considers the 

sequential information hidden in activity-travel patterns. Specifically, the goal of this 

approach is to build a profile of workers’ activity-travel behavior, i.e. the relative frequency of 

each typical pattern which represents a certain class of activity-travel sequences, based on the 

mobile phone data. This profile can then be used to directly evaluate the sequences yielded 

from the simulation models, by comparing it against the frequencies of the corresponding 

pattern classes which are obtained from the simulated sequences (see Fig. 1). This comparison 

is carried out at the level of the generated activity-travel sequences, which enables the 

capability of detecting problems that are directly caused by the model itself and providing 

immediate feedback for the enhancement of the model.  

Compared to existing validation measures, this approach offers the following advantages.  

(i) This method is built upon the observed current activity-travel behavior of a large 

proportion of population, thus providing a more representative and up-to-date validation 
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measure. (ii) Through a long period of mobile phone data records, inter- and intra- personal 

variations of travel behavior as well as weekday, weekend and seasonal deviations are 

captured. (iii) The use of mobile phone data generates no extra financial cost in terms of data 

collection, making it a cost-effective validation measure. (iv) This evaluation method directly 

examines the simulated travel sequences, and can thus offer immediate solutions to problems 

which are linked to the model system itself. (v) When this approach is compared with the 

recently developed OD-based validation method, the OD-based method examines the 

simulated sequences in terms of the distribution of the trips over different pairs of origin-

destination locations; while the approach developed in this study focuses on the sequential 

aspect of the simulated sequences, and evaluates the distribution of the sequences over 

various classes of typical activity-travel patterns. In this new approach, the locations which 

are accessed by an individual on the same day are viewed and tackled as a whole, rather than 

an isolated participation in activities. Both measures assess the simulated sequences from 

different angles, thus providing a complementary means of benchmarking activity-based 

transportation models based on the mobile phone data.  

The remainder of this paper is organized as follows. Section 2 describes the typical patterns 

which characterize workers’ activity-travel sequences. Section 3 introduces the mobile phone 

data and Section 4 details the construction process of location trajectories based on the data. 

The call location trajectories are then transformed into complete travel sequences by a method 

proposed in Section 5. Section 6 classifies both the call location trajectories and the travel 

sequences into the typical patterns which have been established in Section 2, and the profiles 

which describe the relative frequency of each pattern class are drawn. A case study is 

subsequently conducted in Section 7, and a comparison of the results against the outcomes of 

real travel surveys is carried out in Section 8. An in-depth analysis on the sensitivity of this 

approach is further performed in Section 9. Finally, Section 10 ends this paper with major 

conclusions and discussions for future research. 

 

2. Activity-travel sequence classification  

 

Individuals make choices about the different activities being pursued, and travel may be 

required to participate in these activities. Traditionally, all activities performed at home are 

considered as home activities; while the remaining ones conducted outside home are 

categorized into mandatory activities (e.g. working or studying) and non-mandatory activities 

that include maintenance activities (e.g. shopping, banking or visiting doctors) and 

discretionary activities (e.g. social visit, sports or going to restaurant) (e.g. Arentze & 

Timmermans, 2004; Bradley & Vovsha, 2005). The home, mandatory and non-mandatory 

activities are represented as ‘H’, ‘W’ and ‘O’, respectively.  

The sequence of activities and travel that a person undertakes during a day is referred as the 

individual’s activity-travel sequence for that day. A critical difference is imbedded in activity-

travel sequences between workers and non-workers; the sequences of workers mostly rely on 

the regularity and fixity of the work activity. In contrast, no such obvious periodicity is 

present in the case of non-workers. This motivates the development of separate 

representations for these two types of individuals’ behavior. In this study, only the activity-

travel behavior of workers is analyzed, and the representation of their daily sequences 

described in the research by Spissu et al. (2009) is adopted. In this representation (see Fig. 2), 

an activity-travel sequence is divided into four different parts, including: (i) before-work sub-

sequences which represent the activities and travel undertaken before leaving home to work 

(as indicated in arrows ‘a’), e.g. HOH; (ii) commute sub-sequences which account for the 

activities and travel pursued during the home-to-work and work-to-home commutes (in 

arrows ‘b’ and ‘d’), e.g. HOW or WOH; (iii) work-based sub-sequences which accommodate 
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all activities and travel undertaken from work (in arrows ‘c’), e.g. WOW; (iv) after-work sub-

sequence which comprises the activities and travel engaged after arriving home from work (in 

arrows ‘e’), e.g. HOH. 

 

 
 
Fig. 2. The representation of workers’ activity-travel sequences 

Note: Each ‘rectangular’ indicates the home or work location, while the ‘diamond’ represents a non-mandatory 

activity location. Each ‘arrow’ from a home, work or non-mandatory activity location to the other location 

represents the related travel, and the ‘arrow’ from a non-mandatory activity location to itself indicates the chain 

of consecutive visits to different non-mandatory activity locations. 

 

According to the above characterization, a home-based-tour, which is defined as a chain of 

locations (trips) that start and end at home and accommodates at most two work location 

visits, can be classified into the following patterns: HWH, HOWH, HWOH, HWOWH, 

HOWOH, HOWOWH, HWOWOH, HOWOWOH, where each H or W stands for a home or 

work location while each O represents one or a chain of visits to several non-mandatory 

activity locations. The days when an individual does not go to work, can be characterized 

with 2 additional patterns, namely H and HOH. In total, 10 classes are formed to identify each 

home-based-tour in a worker’s daily activity-travel sequence, and they are defined as home-

based-tour-classification.  

Every pair of the above pattern classes (excluding H) is then merged, leading to 81 

combinations of daily sequences which contain 2 home-based-tours. For instance, the 

combination of HWH and HOWH results in the sequence HWHOWH. The daily sequences 

that represent only a single home-based-tour with maximum two work location visits, e.g. 

HWOWH, are also clustered, according to the home-based-tour-classification. Finally, the 

remaining sequences which contain more than 2 home-based-tours (e.g. HWHWHWH) or 

which have more than 2 work activity locations in a home-based-tour (e.g. HWOWOWH), 

are each assigned into one additional category. Thus, all the above classification leads to a 

total of 93 patterns which underlie workers’ activity-travel behavior, and are denominated as 

the workers’ daily-sequence-classification. Given a group of individuals, their activity-travel 

sequences can be attributed to the corresponding pattern classes. The relative frequency of 

each of the pattern classes over the total number of activity-travel sequences forms the profile 

of activity-travel behavior among these people.  
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3. Mobile phone data description 

 

The mobile phone dataset consists of full mobile communication patterns of around 5 million 

users in Ivory Coast over a period of 5 months between December 1, 2011 and April 28, 2012 

(Blondel et al., 2012). The dataset contains the location and time when each user conducts a 

call activity, including initiating or receiving a voice call or message, enabling us to 

reconstruct the user’s time-resolved call location trajectories. The locations are represented 

with the identifications of base stations (cells) in a GSM network; the radius of each of the 

stations ranges from a few hundred meters in metropolitan to a few thousand in rural areas, 

controlling our uncertainty about the user’s precise location. Despite the low accuracy of 

users’ exact locations, the massive mobile phone data represents a significant percentage (i.e. 

25%) of this country’s population, providing a valuable source and opportunity for the 

analysis on human travel behavior and for drawing relevant inferences that can be statistically 

sound and representative.  

In order to address privacy concerns, the original dataset has been split into consecutive two-

week periods. In each period, 50,000 of all the users are randomly selected and assigned to 

anonymized identifiers. New random identifiers are chosen for re-sampled users in different 

time periods. The data process results in totally 10 randomly sampled datasets, each of which 

contains communication records of 50,000 users over two weeks. One of the datasets is 

selected for this study. Table 1 illustrates typical call records of an individual identified as 

User2 on Monday, December 12
th

, 2011. 

  
Table 1. The typical call data of an individual

a 

Time
 

11:57:00
 

13:40:00
 

16:59:00
 

17:43:00
 

21:28:00
 

Antenna_id
 

898
 

1020
 

972
 

926
 

926
 

 
a
 The ‘time’ represents the moment (i.e. the hour, minute and second) when this user was connecting to the 

GSM network and the ‘Antenna_id’ as the cell area where he/she is located. 

 

4. Construction of call stop location trajectories 

 

A raw-location-trajectory from a mobile phone user during a day is defined as a series of 

locations where the user makes calls when traveling or doing activities, as the day unfolds. It 

can be formulated as a sequence of l1 -> l2 -> … -> ln, where n is the length of the sequence, 

i.e. the total number of locations that the user has travelled to when making calls that day, and 

li (1 ≤ i ≤ n) is the identification of the locations, e.g. cell IDs in this study. At each li, there 

could be multiple calls, referred as call-frequency, denoted as ki (ki ≥ 1); the time for each of 

the calls is as T(li,1), T(li,2), …, T(li,ki), respectively. The time interval between the first and 

the last call time in the set of consecutive calls, i.e. T(li,ki) – T(li,1), is defined as call-location-

duration. Accommodating the time signatures of the multiple calls, a raw-location-trajectory  

can be represented as l1(T(l1,1),T(l1,2),…,T(l1,k1)) -> … -> ln(T(ln,1),T(ln,2),…,T(ln,kn)), 

simplified as l1(T(1),T(2),…T(k1)) -> … -> ln(T(1),T(2),…,T(kn)). Given the above raw-

location-trajectories constructed from the mobile phone data, the home and work locations are 

first predicted. This is followed by the identification of stop locations where activities are 

being carried out.  

 

4.1. Prediction of home and work locations 

Various methods have been proposed to derive home and work locations from mobile phone 

data, mainly based on the visited frequency of a location during a particular time period (e.g. 

Becker et al., 2011; Calabrese et al., 2011). However, different time windows have been 

specified in these methods, depending on the context of the study area. In this study, a similar 

approach is adopted, but the time windows are empirically estimated from the mobile phone 
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data as follows. The time period when call activities start to increase considerably in the 

morning during weekdays is chosen as the work start time, denoted as work-start-time. 

Similarly, the moment when the second peak of call activities start to appear in late afternoon 

is considered as the work end time, referred as work-end-time. Around this time, it is assumed 

that people start to communicate for off-work activity engagement. 

Based on these two temporal points, a location is defined as the home location if it is the most 

frequent stop throughout the weekend period as well as during the night-time interval on 

weekdays between work-end-time and work-start-time. On the contrary, a location is 

considered as a work place if it satisfies the following criteria. (i) It is the most common place 

for call activities in the perceived work period between work-start-time and work-end-time on 

weekdays. (ii) It is not identical to the previously identified home location for the user. (iii) 

The calls at the location are not limited in only one day, they should occur at least 2 days a 

week.  

With the identification criteria, we assume that people have only one home location and at 

most one work location. The additional locations, which are occasionally accessed for home 

or work activities, are regarded as a stop for non-mandatory activities. In addition, only 

individuals, who work at locations different from their home locations and who work at least 

two days per week, are included for the analysis of workers’ travel behavior.  

 

4.2. Identification of stop locations 

After the identification of the distinct home and work locations for each worker, the 

remaining locations in the raw-location-trajectories are either stop-locations where people 

pursue non-mandatory activities or non-stop-locations.  Each of these non-stop-locations can 

be further classified into either a trip-location where the user is traveling, or a false-location 

that is wrongly documented due to location update errors. The location update errors normally 

occur when call traffic is busy in the user’s real location area, and consequently this location 

is shifted to less crowded cells for short time periods, causing location area updates, without 

the users’ actual moving (e.g. Calabrese et al., 2011; Schlaich et al., 2010).  

In addition, for the identified home or work locations, some occurrences of the locations 

could also be caused by non-stop reasons, e.g., people travelling in the same area as their 

home locations when making calls. Therefore, each location occurrence in the raw-location-

trajectories will be classified into stop-locations and non-stop ones, regardless its activity 

type.  

The scenarios, where the two types of non-stop-locations discussed above could occur, can be 

illustrated with the call records of two typical users. The trajectory from the first user, 

identified as User265, is l1(17:06,17:43) -> l2(17:51) -> l3(17:56,19:41) -> l4(21:55), where 

4 locations are observed, with the call-location-duration as 37, 0, 105 and 0 min respectively. 

From this trajectory, a distinction needs to be made to identify stop visits from possible trip 

visits at each of these locations. The trajectory of the second user known as User72 is 

l1(13:21,20:11) -> l2(22:00) -> l3(22:02) -> l4(22:05) -> l2(22:07,23:12). This user has 5 

location updates, with the call-location-duration as 410, 0, 0, 0 and 65 min respectively.  It 

should be noted that the time interval between the first and second visit of location l2 is only 7 

min. Although there is a possibility that this user may have travelled at a high speed during 

this period, the temporary interruption of l2 by the extra locations l3 and l4 in such a short 

interval is most likely resulted from the location update errors. Consequently, locations l3 and 

l4 are falsely connected to the user’s mobile phone at 22:02 pm and 22:05 pm although he/she 

had been actually remaining at location l2 during this period.  
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4.2.1. Identification process 

Schlaich et al. (2010) have proposed a method to distinguish a stop-location from a non-stop 

one. In their approach, the interval between the first logins of two adjacent locations li and 

li+1, i.e. T(li+1,1) – T(li,1), is examined. If this interval is longer than a time limit, e.g. 60 min 

in their experiment, li is considered as a stop-location. However, this method is likely to 

overlook stop-locations where calls are made just before the departure of the locations. In this 

situation, the time interval can be very short, despite the possibility that users may spend a 

considerable time period at the locations. This can be further illustrated with the case of 

User265. The interval between the two first time signatures of locations l1 and l2 is 45 min, 

shorter than this 60-min limit, suggesting that location l1 would be for trip purposes. This may 

be true if this individual has made a long trip of at least 37 min within l1 
and made calls at the 

start and end of this travel. However, if this individual has stayed there doing activities for a 

long time, e.g. a few hours, and he/she made calls later in this sojourn period, location l1 is 

then misclassified by the existing method.  

In order to identify all the possible stop-locations, we propose a new approach consisting of 

the following steps. (i) For each location li, the call-location-duration is first examined. If it is 

longer than a certain time limit, denoted as Tcall-location-duration, this location is considered as a 

stop-location. (ii) Otherwise, if the condition does not hold (e.g. only a single call made at li), 

and if the location occurs in the middle of a daily sequence of n, i.e. 1 < i < n, a second 

parameter, namely maximum-time-boundary, defined as the time interval between the last call 

time at li’s previous location and the first call time of its next location, i.e. T(li+1,1) – T(li-1,ki-

1), is computed. If this time period is longer than a threshold value, defined as Tmaximum-time-

boundary, li is perceived as a stop visit. (iii) When li is in the first or last position of a trajectory 

and the call-location-duration is shorter than Tcall-location-duration, there is no sufficient 

information to estimate maximum-time-boundary for this visit. Thus, all the distinct locations, 

where the user has stayed at least once for conducting an activity over the entire survey 

period, are collected. These locations are considered as potential stop locations that are on the 

user’s daily activity agenda and that are visited either routinely or once in a while. If li is one 

of these locations, it is assumed to be a stop for activity purposes. In contrast, if li is the place 

where the individual has not been observed doing activities, it is then considered as a passing-

by place or being recorded as a localization error and therefore removed.  

Based on the above described identification process, if a duration of 30 and 60 min are used 

for Tcall-location-duration and Tmaximum-time-boundary respectively, as set up in our experiment, the 

obtained trajectory of stop locations for User265 and User72 are l1 -> l3 -> l4 and l1 -> l2 

respectively. In comparison, using the existing method which only considers the first temporal 

logins of two consecutive locations (Schlaich et al., 2010), only one single location would be 

derived for each of these users, which is l3 for User265 and l1 for User72. 

After the removal of locations that are either trips or stemming from localization errors, all the 

remaining locations from a raw-location-trajectory are regarded as stops and stored into a 

stop-location-trajectory. Each location li 
in these stop-location-trajectories is complemented 

with its function, categorized into home, work and non-mandatory activities, denoted as 

activity(li). Travel is implicit in between each two consecutive locations of these sequences. 
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5. Transformation of call stop location trajectories into actual travel sequences 

 

The considered mobile phone dataset is event driven, in which location measurements are 

only available when the devices make GSM network connections. Consequently, users’ call 

behavior can affect the possibility of capturing a larger or smaller number of trips and/or 

activity locations. In general, the more active a user is in communicating electronically with 

others, the better his/her activity-travel behavior is revealed by his/her call records. The call 

locations can be seen as the observed behavior at certain temporal sampling moments during a 

day, and the characteristics of the real travel behavior must be deduced. A transformation 

therefore should be made from the previously derived stop-location-trajectories into the 

sequences that mirror the real picture of people’s activity-travel behavior. 

During this transformation, we first derive for each user the actual activity duration as well as 

the call rate at each minute. These two variables are then translated into the call probability at 

each location, which describes how likely the individual makes at least one call when he/she 

visits the location and which thus indicates to what extent his/her call records reveal his/her 

actual movement. Next, given a real daily activity-travel sequence, various stop-location-

trajectories could be possibly observed from the call data. The probability, under which a 

certain stop-location-trajectory is generated from the original travel sequence, is calculated 

based on the call probabilities at the actually visited locations. Finally, given the observed 

frequencies of the stop-location-trajectories derived from the call data, a linear equation is 

built and the frequencies of the original travel sequences are inferred.  

 

5.1. Call rate and actual location duration 

Call-intervene for a user measures the time interval between each two calls, and it is 

calculated as the ratio between the total number of calls each day, denoted as total-number-

calls, and the time span of the day (measured in min), denoted as time-span, as follows: 

 

day)(usercallsnumbertotal

span(day)time

userervenecall

day

day

,
)(int

 

 



 

 

Based on the call-intervene, the call rate defined as CallRate, which describes the probability 

that a user makes calls each minute, can be calculated as follows: 

 

)(int

1
)(

userervenecall
userCallRate




 

 

Let the variable actual-location-duration(user,li) represent the actual activity duration (in 

min) which a user spends at location li. Given that this information is unknown from the 

phone data, we thus turn to activity-travel surveys to obtain the real behavioral data. This 

duration variable is approximated by the average duration over all respondents in a survey 

across all locations with the same activity purposes, defined as average-location-

duration(activity(li)). 

 

5.2. Call probability at a location 

Given a user’s call rate and the duration that the individual has actual spent at li, the 

probability of making at least a call during the entire period of the visit to the location, 

defined as CallP(user,li), can be estimated in the following manner. The location duration is 

first divided into a number of equal-interval episodes, and each of the episodes can be 

regarded as an experiment. The length of the episodes, referred as EpisodeL, can be estimated, 
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e.g. by the average time that people spend on the phone each time when they are in the 

connection of the GSM network, e.g. 2 min for voice calls and a few seconds for the 

messages. Under the assumption that the user makes calls (including both initiating and 

receiving voice calls and messages) independently in each episode, and that the probability of 

making calls across different episodes at the location is identical, CallP(user,li) can then be 

modeled as the binomial distribution. The actual location duration delimits the total number of 

episodes, i.e. the number of independent experiments.  While the call rate provides the 

probability of success for each experiment result, that is the probability of making a call in 

each episode. This leads to the final estimation of the probability CallP(user,li) as the 

probability of having at least one success (making at least one call) over the total number of 

experiments, in this case, over the total location duration.  

In this study, the previously derived two variables CallRate and average-location-duration are 

used as the approximation of the call rate for a user and the duration for a location with a 

particular activity purpose, respectively. The probability CallP(user,li) is then obtained as 

follows: 

 

)}(1{1

)(,,

/)(
userCallRateEpisodeL

)lactivityCallP(user)luserCallP(

EpisodeL)ctivityduration(alocationaverage l

ii

i





 

 

5.3. Sequence conversion probability 

After the probabilities of making calls at a location of home, work or non-mandatory 

activities for a user are known, the likelihood that a call location trajectory is generated from 

an actual activity-travel sequence can be derived. In addition to the assumption that users 

make calls independently in each episode during a location visit, we also hypothesize that 

they make calls independently across each location visit. Let the sequence l1 -> l2 -> … -> ln 

represent the actual-travel-sequence for a user. Based on the previously derived probabilities 

CallP(user,li), the likelihood of various stop-location-trajectories that could be observed from 

the actual-travel-sequence, defined as the conversion probability ConversionP, can be 

calculated as shown below. The probability that the original complete travel sequence can be 

revealed by the call records is: 

 

1 2 2
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While the probability that only a part of the travel sequence is observed, is  
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and where, we assume that no phone communications have been made during the visits to 

locations from xi to xj (i ≤ j).  

 

The above described sequence conversion process can be illustrated by the call data of 

User121 in our dataset. The probabilities to make at least one call at the locations of home, 

work and non-mandatory activities for this user are 0.805, 0.903 and 0.424, respectively. 

Suppose the sequence of HWOH represents the actual activity-travel behavior of this 
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individual on a certain day, there could be a total of 15 various call location traces generated 

by this travel sequence, and the sum of the corresponding conversion probabilities is 1.  For 

instance, the possibility to emanate the call trajectory of HWH is ConversionP(user121, 

HWOH, HWH) = 0.34.
 

 

5.4. Derivation of activity-travel sequences 

Based on the previously obtained conversion probabilities and the frequencies of the observed 

call location trajectories, the occurrences of original activity-travel sequences can be 

ultimately derived. Suppose that m different stop-location-trajectories s1,s2,…,sm are
 

constructed from a user’s call records with the observed frequencies as y1,y2,…,yk 

respectively, and that they are sorted by the length of these sequences, i.e. length(s1) ≥ 

length(s2) ≥ … ≥ length(sm). The original occurrences of the corresponding travel sequences 

for the user, denoted as x1,x2,…,xk, can be estimated by the following linear equations; to 

simplify, the parameter of user in the function ConversionP()
 
is omitted here: 
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An additional constraint is added to the unknown variables x1,x2,…,xk, in order to ensure that 

the total number of the derived travel sequences is equal to that of the observed call 

trajectories, i.e. 
1 1

k k

i i

i i

x y
 

  . From this equation, variable xk
 
in the last equation in formula (1) 

is then substituted with the new value of this variable (
1

1 1

k k

k i i

i i

x y x


 

   ), resulting in the 

formation of formula (2) as follows: 
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Formula (2) is a model with k equations and k–1 unknown variables. To find the optimal 

solution, we use Linear Least Square Methods which are a standard approach to find the  

solution to a set of unknown factors from a model that has more equations than the unknowns 

(Chen & Plemmons, 2009;
 
Van de Geer, 2000). This approach searches for the answer by 

minimizing the sum of the squares of errors (or residuals) made in the results of every single 

equation. A residual is the difference between an observed value and the fitted value provided 

by the estimated model. As well as minimizing the total sum of squared residuals, the 

obtained results also maximize the likelihood of the observed values, i.e. the frequencies of 

the observed call location trajectories in this study.  

Specifically, to solve the equations in formula (2), we assume the least square estimators are:
 

1 2 1
ˆ ˆ ˆ, , , ;kx x x   

the residuals for each of the equations are then calculated as follows: 
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The total sum of the squared residuals, denoted as Sum, can be obtained as 
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The minimum of Sum is then found by setting its partial derivatives to zero, which is   
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The above models have the equal number of (i.e., k-1) equations and unknown variables, thus 

leading to the final 
resolution of the estimators xxx kˆ,...ˆ,ˆ 121  , as well as of the estimator xkˆ

as 
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In the case of User121, five different stop-location-trajectories are revealed by his/her call 

records over a total of 10 days, including HWOH, WH, OH, W and H, with the occurrences 

as 1, 3, 2, 1 and 3 respectively. The original frequencies of these sequences, i.e. x1-x5, are 

estimated based on the above described methods as 

14.0ˆ,07.0ˆ,89.4ˆ,74.3ˆ,17.1ˆ 54321  xxxxx , with the total sum of the squared residuals 

between the modeled frequencies and the real observed values is Sum = 0.74. 

It can be noted that during the entire procedure of seeking the optimal solution, we assume 

that the original travel sequences could only occur within the space of observed call location 

trajectories, i.e. Space = {s1,s2,…,sm}. In theory, however, there could be a chance that an 

observed call location trajectory is generated by many other potential travel sequences, 

rendering the solution space infinite. The definition of the search space of Space can be 

explained as follows. (i) Based on the well-established findings that human activity-travel 

behavior exhibits a high degree of spatial and temporal regularities as well as sequential 

ordering (e.g. Joh et al., 2008; Shoval & Isaacson, 2007; Wilson, 2008), a limited variety of 

real travel sequences for an individual can be assumed during a certain time scale. (ii) For a 

possible actual travel sequence, e.g. sp, which is not in the observed Space, the optimal 

estimator of this sequence’s actual occurrence xp would be a value less than or equal to zero, 

due to the fact that the observed frequency of this sequence in its intact form is zero. This can 

be further demonstrated as follows. For User121, if the considered travel sequence sp is longer 

than any trajectory in the Space of this user, i.e. length(sp) ≥ length(s1), assume sp = 

HWOWH, we obtain the equation as xp × ConversionP(HWOWH,HWOWH) = 0. From this 

equation, we have the optimal solution as 0ˆ x p
. Similarly, if the length of sp is shorter than 

certain observed trajectories in the Space, e.g. sp = HWO, we have the equation of x1 × 

ConversionP(HWOH,HWO) + xp × ConversionP(HWO,HWO) = 0, from which a value of  

0ˆ x p
 would be preferable. Based on the above two considerations, the optimal solution of 

the frequencies of original travel sequences would most likely found within the space of 

Space. 
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6. Classification 

 

All the obtained stop-location-trajectories constructed directly from the call records as well as 

the actual-travel-sequences that undergo a transformation process, are subsequently classified 

according to the previously established home-based-tour-classification and daily-sequence-

classification, respectively. During this classification, a home location H is added at the 

beginning and the end of a sequence if it is absent from this sequence, based on the 

assumption that each individual starts and ends a day at home. For each of these two types of 

sequences, two corresponding profiles are obtained and they are stored into matrices, namely 

home-based-tour-profile and daily-sequence-profile. 

The Pearson correlation coefficient r is used to measure the relation between the 

corresponding profile matrices built from different sets of sequences. It reveals the strength of 

linear relationship between two matrices; the closer the value is to 1, the stronger the 

relationship is. The coefficient is computed as follows. 
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Where, Ai and Bj represent the matrix elements of the two concerned matrices A and B, 

respectively, with d as the total number of the matrix elements. 

 

7. Case study 

 

In this section, adopting the proposed profiling approach and using the mobile phone data 

described in Section 3, we carry out an experiment. In this process, a set of stop-location-

trajectories are first constructed, followed by the translation of the trajectories into actual-

travel-sequences. Each step of this process is highlighted with the examination of some 

particular parameters. 

 

7.1. Construction of stop-location-trajectories 

 

7.1.1. Work-start-time and work-end-time 

Fig. 3 describes the distribution of the frequencies of calls made in each hour of the 

weekdays, showing that from 9am in the morning, calls reach to their peak level; while from 

18pm in the late afternoon, a second climax of call activities starts to occur. These two 

temporal points are chosen as the work-start-time and work-end-time, respectively. 
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Fig. 3. The distribution of the time of calls 

 

Based on the pre-defined criteria for home and work location identification, 49436 (98.9% of 

the total) users have their home locations discovered. The remaining 1.1% are those who 

made no calls at weekend or in the night period from 18pm to 9am across the two surveyed 

weeks. As a result, their homes cannot be spotted by these rules. Meanwhile, 9,458 users 

(18.9% of the total) are screened out as employed people, if they work between 9am and 

18pm at least two weekdays per week. By contrast, those who work at night shifts or at 

weekends, who work less than two days a week, or who make few calls at work, are left out. 

For those who have both predicted home and work locations, we further remove nearly 15% 

of the individuals who have unknown cell IDs for the identified home or work locations due 

to technical reasons that occur in the mobile phone data collection process. This results in a 

final dataset of 8,027 workers who represent 16% of the total users in the selected dataset. All 

the call records of these individuals during weekdays are extracted, and the consecutive calls 

made at a same location are aggregated. This leads to 69,578 raw-location-trajectories 

constructed for further analysis. 

 

7.1.2. Tcall-location-duration and Tmaximum-time-boundary  

For each location in the above obtained raw-location-trajectories, a distinction must be made 

between stop-locations and non-stop ones which include trip- and false-locations. Two 

parameters characterize this identification process. The first one, Tcall-location-duration, defines the 

minimum time interval at a location, above which the location is considered as a possible 

stop. The other parameter, Tmaximum-time-boundary, estimates the total time that is required to travel 

from the previous cell to the current one and from the current one to the next cell.  In addition, 

it should also be able to detect location update errors which usually occur in a short time 

interval.  

In this experiment, Tcall-location-duration and Tmaximum-time-boundary are set as 30 min and 60 min 

respectively. Under these thresholds, 40.3% of all locations from the raw-location-trajectories 

are removed; the remaining locations in these sequences form the set of stop-location-

trajectories. The average length of these trajectories is 3.3. In comparison, using the existing 

method which defines as a stop location if the interval between the first login of the location 

and that of its next location is longer than 60 min (Schlaich et al., 2010), 67.6% of all the call 

locations are dismissed, with the average length of the retained sequences as 2.33. 
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7.2. Transformation from stop-location-trajectories into actual-travel-sequences  

 

7.2.1. Call-intervene and CallRate  

For each user, all the calls made over the two survey weeks are counted, and the call-

intervene and CallRate are computed based on the formulas in Section 5.1. The average call-

intervene over all the identified workers is 192 min for a full day of 24 h. However, as 

demonstrated in Fig. 3, the occurrences of calls are not equally distributed, more calls are 

observed during the day than at night, the inclusion of the night period would bias the real call 

intervene time during the daytime period.  In this study, only the period of 6am-12pm is thus 

taken into account as the time-span of a day. This reduces the average call intervene to 137 

min; accordingly, the average call rate is 0.0073.  

In the study reported by Calabrese et al. (2011), a 260 min of call intervene for an entire day 

is derived. The difference between the call intervene reported in this study and the one 

estimated by Calabrese et al. could be caused by the following factors. (i) Only workers are 

considered in our study. (ii) The mobile phone data in this experiment is more recent than the 

data used in the existing study. (iii) People could make more calls in Ivory Coast than in 

Massachusetts in the United States where the existing study is performed.  

 

7.2.2. Average-location-duration  

This variable value is approximated by the activity-travel survey conducted in Belgium which 

will be described in Section 8.2. From this survey, the average-location-durations are 222, 

317 and 75 min for home, work and non-mandatory activities, respectively. 

 

7.2.3. Episode length 

This variable specifies the time window by which the location duration is split into a number 

of episodes, i.e. experiments. The length of this window is decided such that the call behavior 

of users in one episode should be independent of that in the next episode. To obtain such an 

episode length, the average voice call duration of users is considered, which is derived from 

an additional dataset that records the total number of voice calls as well as the total duration 

for these calls each hour between each two cells in the GSM network in Ivory Coast, over the 

5-month data collection period. The resultant average call duration is 1.92 min, a 2-min 

interval is thus taken as the estimation of this episode length. 

Based on all the above parameter settings, the call probabilities at a location of home, work 

and non-mandatory activities for a user are respectively derived; the average call probabilities 

over all the individuals for the three types of activity locations are 0.81, 0.88 and 0.41, 

respectively. These obtained probabilities of each user, combined with the observed 

frequencies of the stop-location-trajectories for the individual, lead to the prediction of the 

number of the actual-travel-sequences, using the method described in Sections 5.3 and 5.4. 

 

8. Comparison of the results derived from mobile phone data with real activity-travel 

surveys  

 

To illustrate the practical ability of our approach to really serve as a benchmark, we compare 

the results derived from the mobile phone data with the statistics drawn from real activity-

travel surveys. Unfortunately, no official activity-travel surveys have been documented in 

Ivory Coast. Therefore, data stemming from other countries, including South Africa and 

Belgium, has been adopted for this purpose. The authors acknowledge that the real travel 

behavior in Ivory Coast most likely is considerably different from the one reported in South 

Africa and Belgium. Consequently, the illustration serves to underline the applicability of the 

approach, not to infer the travel behavioral relationships in this particular case. The 



 
 

18 
 
 

comparison is carried out in two aspects, including the aspect of individual locations, e.g. the 

average number of locations visited each day, and the sequential aspect of the activity 

locations, e.g. the home-based-tour-profile and the daily-sequence-profile.  

 

8.1. The travel survey in South Africa 

The South Africa National Household Travel Survey (NHTS) was the first national survey of 

travel habits of individuals and households, aimed at making significant improvements in 

public transport services. The survey was based on a representative sample of 50,000 

households throughout South Africa and undertaken between May and June in 2003 

(Department of transport, 2003)  

The information recorded by the survey includes the travel time to various public transport 

modes, e.g. trains and buses, as well as to activity locations, e.g. shops and post offices. The 

number of trips and the purposes for these trips are also documented for each individual on a 

typical weekday.  The survey results reveal that the majority of the respondents can access to 

most of the activity services within half an hour (i.e. the travel time), and the average number 

of activity locations visited by a worker on a weekday is estimated between 3.46 and 4.06. 

  

8.2. The travel survey in Belgium 

Despite the relative geographic proximity between South Africa and Ivory Coast, the 

information on the NHTS survey is nevertheless limited. Particularly, the detailed travel 

patterns for each individual are not accessible for us. This necessitates the use of a second 

survey that provides activity-travel sequences on entire days and will be used as a reference 

for the illustration of the derived profiles.  

The survey, namely SBO, stems from a large scale Strategic Basic Research Project on 

transportation modeling and simulation, and it was conducted on 2500 households between 

2006 and 2007 in Belgium. In this survey, the respondents recorded trip information during 

the course of one week, such as trip start time and end time, purpose of the trip (e.g. activity 

type), and trip origin and destination (e.g. activity location). The average travel time is 24 

min, comparable to the 30 min for a typical travel in South Africa.  

In the SBO survey, activity locations are represented with statistical sectors, each of which 

ranges from a few hundred meters to a few thousands in radius, similar to the spatial 

granularity level of cell locations in GSM network. Table 2 illustrates a typical diary of 

respondent identified as ‘HH4123GL10089’. Only the variables that are relevant for the 

current study are presented in this table; a more detailed variable list and elaboration on the 

survey can be found in (Cools et al., 2009). 

 
Table 2. Activity-travel diary data 

Respondent ID  Date  Trip Start 

Time  

Trip End 

Time  

Trip 

Origin  

Trip 

Destination  

Trip Purpose  

 

HH4123GL10089  09/05/2006  07:45:00  08:00:00  34337 34345 Work  

HH4123GL10089 09/05/2006  17:00:00  17:15:00  34345 34349 Shopping 

(non-mandatory)  

HH4123GL10089 09/05/2006  17:40:00  18:05:00  34349 34337 Home 

 

From the dataset, the diaries from 372 individuals who work at least two days a week are 

extracted. Note that only the activity-travel sequences recorded on weekdays are extracted. 

Activity duration at the destination of a trip is estimated as the time interval between the end 

time of the trip and the start time of its next trip, if the activity is not the first and the last one 

of a day. Otherwise, the duration is approximated in combination with the typical  time for 

getting up in the morning and going to sleep in the evening in Belgium, which are estimated 

as 6am and 12pm, respectively (Hannes et al., 2012). An assumption that respondents start 
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and end a day at home, is also made, when the activity duration is calculated. Based on the 

above process, the duration of each activity for each individual on each weekday is computed. 

For instance, the previously demonstrated respondent has a daily activity sequence of HWOH, 

with the activity duration as 105, 540, 25 and 355 in min, respectively. All the obtained 

activity durations are averaged per activity type over all the individuals, and stored in the 

variable average-location-duration(activity), which has been previously used in the 

experiment to derive the actual-travel-sequences.  

 

8.3. Statistics on the average length of sequences  

Table 3 summarizes the statistics on the average number of locations visited each day, i.e. the 

average length of sequences, derived from the sequences of raw-location-trajectories, stop-

location-trajectories and actual-travel-sequences which have been previously built based on 

the mobile phone data. The results drawn from both the NHTS and SBO surveys are also 

presented alongside as a comparison. 

 
Table 3. Statistics on the average length of sequences

a
 

Sequences RLT CSLT ATS NHTS SBO 

Average length of sequences 5.69 3.30 4.02 3.46-4.06 3.96 
a
The columns from left to right represent the raw-location-trajectories (RLT), call stop-location-trajectories 

(CSLT), actual-travel-sequences (ATS), NHTS and SBO surveys, respectively. The same abbreviation for each 

type of sequences will be used throughout the remaining tables and figures in this paper. 

 

From Table 3, it was observed that the average length of sequences first drops from initial 

5.69 for the raw-location-trajectories to 3.3 for the stop-location-trajectories, and then rises 

again to 4.02 for the estimated travel sequences which is the closest to the number observed in 

both NHTS and SBO surveys. In addition, the differences in this variable value imply the 

importance of the process from the identification of stop locations to the inference of 

complete travel sequences proposed by our approach, when analyzing activity-travel behavior 

based on the mobile phone data. 

 

8.4. Home-based-tour-profile 

Table 4 shows the relative frequency of each pattern class in the home-based-tour-

classification, obtained from the stop-location-trajectories, the actual-travel-sequences and the 

SBO diaries, respectively. The differences in the frequencies of each pair of corresponding 

pattern classes are also listed. 

 
Table 4. Home-based-tour-profile (%)

a
 

Typical patterns CSLT ATS SBO ATS - CSLT CSLT - SBO ATS - SBO 

H 9.0 4.4 6.4 -4.6 2.6 -2.0 

HWH 50.3 39.1 42.9 -11.2 7.4 -3.8 

HOH 18.0 26.3 32.5 8.3 -14.5 -6.2 

HOWH 5.1 6.7 3.1 1.6 2.0 3.6 

HWOH 8.2 10.3 10.8 2.1 -2.6 -0.5 

HWOWH 3.4 3.8 1.6 0.4 1.8 2.2 

HOWOH 2.5 4.1 1.9 1.6 0.6 2.2 

HOWOWH 0.7 1.0 0.2 0.3 0.5 0.8 

HWOWOH 1.4 2.1 0.5 0.7 0.9 1.6 

HOWOWOH 0.5 0.8 0.1 0.3 0.4 0.7 

More than 2 work 

activities 

1.0 1.3 0.2 0.3 0.8 1.1 

a
 The columns from left to right represent the typical patterns, the frequency of each pattern class relative to the 

total number of sequences within each type of CSLT, ATS and SBO, and the pairwise differences in the 

frequencies for each pattern among these three types of sequences, respectively.  
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Because of the event-driven nature of the mobile phone data, two major characteristics are 

expected when the stop-location-trajectories are converted into the actual-travel-sequences. 

First, an observed call location trajectory is generated not only from a travel sequence that is 

identical to this observed trajectory, but more likely from a sequence that is longer than this 

observed one. As a result, the number of short patterns should decrease while that of long 

patterns should increase, when the stop-location-trajectories are transformed into the actual-

travel-sequences.  Secondly, the lower the probability that people make calls at a location, the 

higher the frequency of the derived travel sequence that contains this location tends to be. 

These two important features are well reflected in the results shown in Table 4. For instance, 

on the one hand, a frequency reduction by 4.6% and 11.2% for the short patterns of H and 

HWH is observed, while for the long pattern of HWOWOH, a 0.7% increase is obtained, after 

the conversion process. On the other hand, despite that the pattern HOH is as short as HWH, 

the average call probability at the non-mandatory activity location O is the lowest among all 

the three activity types, according to our experiment results. This leads to a prediction of high 

percentage of the same pattern for the derived travel sequences, e.g. a 8.3% rise in this case. 

When the patterns drawn from both the stop-location-trajectories and the derived actual-

travel-sequences are compared with the ones characterizing the SBO diaries, correlation 

coefficients of 0.93 and 0.99 are obtained, respectively. The high correlations show an overall 

high level of similarities in terms of the frequency distribution of the home-based tour 

patterns between these types of sequences. Nevertheless, as stated before, the real travel 

behavior between Ivory Coast and Belgium can be very different due to the contextual 

variation between these two countries. The differences are particularly revealed in Table 4 by 

the frequency deviation for each specific pattern class between the derived travel sequences 

and SBO survey, which ranges between 0.5%-6.2% over all patterns. In addition, the increase 

in frequency for short patterns from the SBO survey, e.g. a 2%, 3.8% and 6.2% rise for H, 

HWH and HOH respectively, could also result from the problems of under-reporting of short 

trips or short-duration activities which typically occur in travel surveys (e.g. Cools et al., 

2009). 

 

8.5. Daily-sequence-profile 

Fig. 4(a) depicts the correlation between the relative frequency of each pattern class in the 

daily-sequence-profile obtained from the stop-location-trajectories and the actual-travel-

sequences. It shows that the majority pattern classes drawn from each of these types of 

sequences follow a similar distribution in relative frequencies. The few outliers can be divided 

into two groups: (i) the group of HWH, H and HWHWH with a 14.1%, 5.9% and 1.4% 

increase for the stop-location-trajectories, respectively; (ii) the other group consisting of 

HOH, HOWOH, and the patterns with more than 2 home-based-tours, being 3.7%, 2.5% and 

2.1% higher for the actual-travel-sequences, respectively. This further demonstrates that, 

compared to the stop-location-trajectories, the derived travel sequences tend to have a high 

proportion for long patterns and for patterns which accommodate locations with low call 

probabilities, e.g. the non-mandatory activity locations. In contrast, a lower percentage is 

anticipated for short patterns and for patterns containing locations with high call probabilities, 

e.g. the work places, after the sequence conversion process. 

Fig. 4(b) compares the daily-sequence-profiles obtained from the actual-travel-sequences with 

the one from the SBO diaries. In this figure, we found that most patterns have a moderately 

higher frequency for the actual-travel-sequences than the SBO data, except for a few pattern 

classes which show remarkably higher occurrences for the SBO diaries and which are mainly 

for short patterns, e.g. HWH, HOH and HWOH with a 7.3%, 7.1% and 3.2% rise, 

respectively. Apart from the inherent differences in travel behavior between these two 
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countries, this figure demonstrates again the possible missing records for short-duration trips 

or activities in travel surveys, which could cause the derived travel sequences to be shorter 

than they actually are, resulting in a relatively high frequency for short pattern classes. In 

addition, the high share for HOH could also be explained by the fact that the number of days 

when people work at home (telecommuting) is higher in Belgium than in Ivory Coast, as 

reported (Ruth & Chaudhry, 2008). In the case of the pattern HWOH, its high frequency 

might suggest that people in Belgium carry out more non-mandatory activities on the way 

from work back to home, which, nevertheless, needs to be further investigated.  Finally, a 

further examination reveals that out of all 93 pattern classes in the daily-sequence-profile, 59 

(63.4%) are zero frequencies for the SBO data; while for the stop-location-trajectories and 

actual-travel-sequences, only 16 patterns (17.2%) are not represented. It reflects that the 

sequences derived from the mobile phone data are more representative in travel behavior than 

the survey data, further underlying the significance of using mobile phone data to explore the 

characteristics of travel behavior. 

 

 
Fig. 4. Correlation between the relative frequency of each corresponding pattern class 

Note: y-axis represent the relative frequency of each pattern class obtained from ATS; while x-axis denotes the 

relative frequency of the corresponding patterns obtained from CSLT (a) and SBO (b), respectively. The line of 

y=x is presented as a reference.  

 

A correlation coefficient of 0.91 is obtained between the profile derived from stop-location-

trajectories and that from the actual-travel-sequences. It shows that, while the profile of the 

travel sequences has accounted for the deviation in frequencies for each particular pattern 

class which are caused by the discrepancy between the call behavior and the actual activity-

travel behavior, the two profiles have an overall close relationship. In addition, the correlation 

between the actual-travel-sequences and the SBO data is 0.89, suggesting that the derived 

profile is also comparable to the one drawn from a real travel behavior survey. These results 

suggest the derived profile of travel sequences can properly represent workers’ travel 

behavior in a study area, and therefore capable of being used to validate the sequences 

generated from activity-based transportation models. 

Nevertheless, in this case study, we used the surveys conducted in South Africa and Belgium 

as an illustration for the results derived by our approach.  However, variation exists across 

different regions and countries. As previously described, travel behavior is shaped by the 

conditions of land use and transportation network as well as the social-economic background 

of individuals. Besides, several years of time differences when these datasets were collected, 

as well as the fact that the surveys, especially the SBO survey, were based on a small set of 

samples, all contribute to the deviation exposed in this experiment results between the derived 

travel sequences and the survey data. With a real travel survey conducted in the same or 

similar context to where the mobile phone data is obtained, it is believed that even better 

results than the current experimental outcomes can be reached. 
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9. Sensitivity analysis 

 

Throughout the profiling process, several parameters including Tcall-location-duration, Tmaximum-time-

boundary and actual-location-duration, have been defined. This prompts to have a final 

investigation into how the parameter settings affect the predicted results. The results will be 

examined in the following aspects. (i) The average length of the stop-location-trajectories and 

actual-travel-sequences, referred as CSLT-length and ATS-length respectively. (ii) The 

coefficients between the stop-location-trajectories and the actual-travel-sequences as well as 

between the actual-travel-sequences and the SBO diaries, simplified as r1 and r2, 

respectively. 

 

9.1. Tcall-location-duration and Tmaximum-time-boundary 

In the process of stop location identification, when Tcall-location-duration increases, the minimum 

time duration required to consider a location as a stop becomes longer, leading to a decrease 

in the number of discovered daily locations. This is well reflected in Fig. 5(a). However, the 

rate of reduction is very slow; particularly, when this parameter reaches a certain threshold, 

e.g. 30 min set up in this experiment, the lengths of both types of sequences enter into a 

nearly constant level. A similar stabilization is observed in Fig. 5(b) when this parameter 

passes the 30 min threshold. 

 

 
Fig. 5. Correlation between the threshold of call-location-duration and the results 

Note: x-axis stands for the threshold of call-location-duration, and y-axis for CSLT-length and ATS-length 

respectively (a) and for the coefficients r1 and r2 respectively (b). 

 

Fig. 6(a) and 6(b) show how the results evolve with Tmaximum-time-boundary. As expected, when the 

maximum available time needed for a possible stop location sets longer, the number of 

identified stop locations drops, as shown in Fig. 6(a). However, this does not bring about the 

same amount of changes to the coefficients; especially when this parameter increases to a 

certain value, e.g. 60 min adopted in our experiment, both r1 and r2 develop into a stable 

level (see Fig. 6(b)). This can be explained by the fact that the dismissed stop locations are 

likely distributed randomly across various types of pattern classes, thus leading to the relative 

frequency of these patterns nearly the same.  
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Fig. 6. Correlation between the threshold of maximum-time-boundary and the results 
Note: x-axis stands for the threshold of maximum-time-boundary, and y-axis for CSLT-length and ATS-length 

respectively (a) and for r1 and r2 respectively (b). 

 

9.2. Actual-location-duration 

Fig. 7 describes the effects of the parameter actual-location-duration for work activities on the 

estimated results. It indicates that, as this duration becomes longer, ATS-length decreases 

while r1 and r2 increases, but these changes disappear when this duration pass a certain point, 

e.g. 240 min.  

 

 
Fig. 7. Correlation between the actual-location-duration for work activities and the derived results  

Note: x-axis stands for the actual-location-duration for work activities, and y-axis for ATS-length (a) and for r1 

and r2 respectively (b). 

 

This phenomenon can be explained by the binomial model employed to estimate the call 

probability at a location. According to this model, when the actual-location-duration is longer, 

the probability at a location CallP(user,li) becomes higher, as demonstrated by Fig. 8(a). The 

amount of increases in the call probabilities as the activity duration extends, is not evenly 

distributed, which can be further evidenced by Fig. 8(b). It shows that as the activity duration 

becomes longer, the amount of growth in the location probabilities diminishes until to a 

nearly zero level. This explains the occurrence of the flat curves observed in Fig. 7. 

 



 
 

24 
 
 

 
Fig. 8. Correlation between the actual-location-duration and the call probability at a location 

Note: x-axis stands for the actual-location-duration for work activities, and y-axis for the call probability at a 

location (a) and for the difference between the call probability at the duration corresponding to the x-axis and the 

other probability obtained from a duration which is 60 min longer than this current actual-location-duration (b). 

 

All these above analysis shows that, except that the increase in Tmaximum-time-boundary reduces the 

number of identified stop locations, a certain amount of changes in these parameters does not 

incur a significant deviation in the results of both the average length of the sequences and the 

profiles. This suggests that the profiles built upon the mobile phone data are stable and 

consistent in representing people’s activity-travel behavior; a minor change in these parameter 

settings will not lead to a substantially different outcome. 

 

10. Discussion and conclusion 

 

The approach of profiling workers’ travel behavior based on mobile phone data is both unique 

and important in that it builds a new measure which can be used to directly evaluate the 

activity-travel sequences simulated by activity-based transportation models. The advantage of 

using this approach is that it does not depend on conventional travel data survey methods. 

Thus, the data requirement is fairly simple and its collection cost is low. In addition, the 

massive mobile phone data monitors current travel behavior in a large proportion of the 

population over a relative long time period. The profile derived from the data is thus capable 

of providing a more representative and objective validation measure. Apart from the benefits 

that are realized by the use of mobile phone data, this approach also provides added value in 

taking into account the sequential constraints of activity-travel patterns into the evaluation.  

The developed measure can be integrated into existing activity-based simulation models to 

assess the predicted sequences in two aspects. First, the evaluation can be done in terms of the 

average daily number of location visits that is encoded in the predicted sequences as well as in 

the actual-travel-sequences derived from the mobile phone data. Secondly, the assessment can 

be conducted on the temporal ordering of the activity locations, by comparing the 

corresponding profiles (i.e. the home-based-tour-profile or daily-sequence-profile) of 

workers’ travel behavior built from both sets of sequences. High correlation coefficients 

between the profiles would suggest a high level of similarities between the sequences in terms 

of the sequential aspect. In contrast to SAM validation measures, which compare each single 

observed sequence with its predicted equivalent, the validation via the profiles compares the 

distribution of different pattern classes of the predicted sequences with that of the actual-

travel-sequences, thus accounting for the variation of individuals’ activity behavior among 

different days. If a mismatch in the daily number of location visits or a low correlation 

coefficient is found, this would suggest inconsistence between the predicted results and the 

travel behavior reflected by the mobile phone data, thus signaling possible problems and 

prompting immediate examination into the simulation model before the potential problems 

are propagated to the subsequence traffic assignment and travel demand analysis. 
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Besides the initial goal of building a new benchmark measure for activity-based models, the 

proposed method for stop location identification and subsequent actual-travel-sequence 

derivation can be employed in a wide range of applications where location path information 

of cell phone users plays a central role. The applications do not only include travel behavior 

and transportation modeling related research, such as mobility pattern discovery (Do & 

Gatica-Pereza, 2013; Schneider et al., 2013), transportation modelling and traffic analysis 

(Angelakis et al., 2013; Berlingerio et al., 2013; Calabrese et al., 2011), and urban planning 

(Becker et al., 2011; Jiang et al., 2012), but they also cover context-awareness services where 

user-centric assistance is provided based on users’ specific location and activity context 

(García-Sánchez el al., 2013; Lee & Cho, 2013), and location tracking systems where 

knowledge of individuals’ real-time locations and related routine activities is used in tools 

that provide support for industry, childcare, elderly health care and emergency rescue (Horng 

et al., 2011; Zhang et al., 2013; Zhou et al., 2014).  

Despite the multitude of possible applications, there are also challenges that are pertinent to 

the data, as acknowledged by some of the existing studies (e.g. Calabrese et al., 2011; Jiang et 

al., 2013; Rose, 2006). Due to the event-driven nature of the data collection, mobile phone 

data only reviews the presence of a user at a certain location and time point when his/her 

phone device makes GSM network connections. Whether the person is travelling or 

conducting an activity is not disclosed. Moreover, the places, where the individual has stayed 

but where no calls were made, are also unknown. The location update errors, under which a 

user’s real location area is wrongly documented, further complicate the data collection issue. 

The results in our experiment suggest an average of 42.0% decrease in the number of visited 

locations per day, when the actual stop locations are singled out from the original call records. 

This number increases by 21.8% back, when the missing locations are interpolated into the 

identified stop-location-trajectories to form the complete activity-travel patterns. Such scales 

of changes in the daily number of visited locations signify the importance of the methods for 

accurately identifying stop locations and inferring missing places. Thus, if the proposed 

approach in this research is incorporated into the existing studies, in which the complete 

travel patterns of mobile phone users are first constructed, more accurate results that are 

derived from the whole picture of people’s transfer phenomena could be subsequently 

reached. 

Besides the added value in terms of potential applications, this study also makes important 

contributions from theoretical point of view. Particularly, in this paper, a novel process to 

derive actual travel location sequences from the stop-location-trajectories observed by means 

of mobile phone data has been constructed. This process integrates basic characteristics of 

human activity-travel behavior with statistical modelling, and links the daily activities and 

travels with call activities as these two behaviors occur at the same time and are carried out by 

the same individuals. In terms of methodological soundness it should be stressed that the 

process is based on the well-established findings that human activity-travel behavior exhibits 

a high degree of spatial and temporal regularities as well as sequential ordering (e.g. Joh et al., 

2008; Shoval & Isaacson, 2007; Wilson, 2008).  

With regard to the performance of the proposed approach, data collected from people’s 

natural mobile phone usage has been used, and the real travel surveys conducted in South 

Africa and Belgium have been adopted as a reference. In this experiment, several comparisons 

have been carried out, and the results show the strengths of the proposed method. (i) When 

the profiles built from the stop-location-trajectories are compared with those constructed from 

the actual-travel-sequences, it was observed that the frequencies of short patterns decrease 

while those of long patterns increase. In addition, the frequencies of patterns, which 

accommodate locations (e.g. the non-work locations in this experiment) characterized with a 

lower call probability than at other types of places, also rise. These observations reflect well 



 
 

26 
 
 

the two statistical characteristics of the sequence conversion process. First, a stop-location-

trajectory is generated more likely from a sequence that is longer than the observed one. 

Secondly, the lower the probability that people make calls at a location, the higher the 

frequency of the derived travel sequence that contains this location tends to be, in order to 

give rise to the same amount of sequences that can be observed through the call records.  

(ii) When the profiles built from the actual-travel-sequences are compared with the ones 

drawn from the travel survey conducted in Belgium, Pearson correlation coefficients of 0.99 

and 0.89 are obtained for the home-based-tour-profile and daily-sequence-profile, 

respectively. The high correlation coefficients suggest that the derived profiles are 

comparable to the ones drawn from a real travel survey. (iii) A further examination into the 

daily-sequence-profiles reveals that, out of all 93 pattern classes in the profiles, 59 (63.4%) 

are zero frequencies for the one from the survey data, while 82.8% are represented in the 

profiles built from both the stop-location-trajectories and actual-travel-sequences, 

respectively. The larger variability of pattern classes exhibited by the latter trajectories and 

sequences reflects that the sequences derived from the mobile phone data are more 

representative in travel behavior than that obtained from the survey. (iv) Finally, the 

sensitivity analysis of various parameter settings demonstrates the consistency and stability of 

the derived results in representing travel behavior of the workers. 

Despite the promising experiment results of this method, there are still certain areas which 

need to be enhanced in the future research. First, by considering a fixed work period (e.g. time 

interval between 9am and 18pm on weekdays in this experiment), individuals who work 

during night shifts are ignored. The prediction accuracy of residence and work locations could 

be improved by taking into account the information on individuals’ work regime. In addition, 

the integration with a more comprehensive approach proposed by Liu et al. (2013), which 

annotates mobile phone locations with activity purposes based on the combination of machine 

learning techniques with the characteristics of underlying activity-travel behavior, would also 

increase the prediction precision. Secondly, in the process of stop location identification, the 

settings of two important parameters, namely Tcall-location-duration  and Tmaximum-time-boundary can be 

refined. Tcall-location-duration defines the maximum time duration needed to traverse a cell area. If 

the time interval between the first and last call time in a set of consecutive calls at a location 

area (i.e. the call-location-duration) is longer than this parameter value, the location is 

considered as a possible stop where the corresponding individual has performed activities at 

least during the extra time. Instead of using an overall threshold value of 30 minutes, as is 

done in this experiment, this parameter should be tailored to each particular cell and 

individual. Tmaximum-time-boundary considers the call times at three consecutive locations, and it 

estimates the total time required for the travel from the previous cell to the current one and 

from the current one to the next cell. If the time interval between the last call time at the 

previous location and the first call time at the next location (i.e. the maximum-time-boundary), 

is longer than this parameter value, the current location is regarded as a stop. Similar to Tcall-

location-duration, Tmaximum-time-boundary should also be adjusted to each particular individual and cell 

pairs, through the use of the proportion between the total distance of the cell pairs and the 

individual’s travel speed. Thirdly, concerning the process of converting stop-location-

trajectories into actual-travel-sequence, improvement can also be made in terms of the use of 

the actual location duration and the call rate. The estimation of the actual location duration 

could be separated by different social-economic groups. Regarding the call rate, instead of 

using a single call rate for each individual the call rate could be distinguished among different 

types of activities, as the probabilities that people make calls may differ depending on what 

they are doing. 

While being faced with the challenge of acquiring both mobile phone data and real travel 

survey data from a same or similar study region, in this study travel survey data was used, 
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which stemmed from different environments than the settings of the phone data, as the 

reference to compare and illustrate the results. Nevertheless, in the future research, the 

proposed method must be applied to a real travel survey which is sampled in a similar context 

to where the phone data is obtained. Such surveys thus provide another possibility of 

enhancement by bringing more relevance to this method in terms of tuning up the parameters 

as well as validating the results.  

With the rapid development of mobile phone based services in the future (e.g. Liu & Chen, 

2013;  Monares et al., 2013; Rodriguez-Sanchez et al., 2013; Zhang et al., 2013; Zhou et al., 

2013), the amount of location data, which is recorded not only when people make calls but 

when they use the application services on their phones, will continuously grow. The data will 

reveal more activity locations and travel episodes. This study can thus be seen as a baseline, 

above which an even more accurate stop location identification and real travel sequence 

derivation based on the phone data will be reached, leading to an even better activity-based 

model validation standard as well as to an improved human location path analysis in general. 
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