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Summary 

Transportation origin-destination analysis is investigated through the use of Poisson mixtures by introducing 

covariate-based models which incorporate different transport modelling phases and also allow for direct 

probabilistic inference on link traffic based on Bayesian predictions. Emphasis is placed on the Poisson-inverse 

Gaussian model as an alternative to the commonly used Poisson-gamma and Poisson-log-normal models. We 

present a first full Bayesian formulation and demonstrate that the Poisson-inverse Gaussian model is particularly 

suited for origin-destination analysis because of its desirable marginal and hierarchical properties. In addition, 

the integrated nested Laplace approximation is considered as an alternative to Markov chain Monte Carlo 

sampling and the two methodologies are compared under specific modelling assumptions. The case-study is 

based on 2001 Belgian census data and focuses on a large, sparsely distributed origin-destination matrix 

containing trip information for 308 Flemish municipalities. 

 

Keywords: Hierarchical Bayesian modelling; Integrated nested Laplace approximation; Origin-destination 
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1. Introduction 

 

In transportation analysis the travel demand within a geographical area, which is dividable into a given number 

of non-overlapping zones, is summarized by an origin-destination (OD) matrix which contains the trips ox flows 

that have occurred from each zone of that area to every other zone. Consider an area which can be divided into m 

zones and let T0d denote the flows from zone of origin o to zone of destination d, where o,d=1,2,...,m. The OD 

matrix T is then 

  
The elements Tod, for o ≠ d, correspond to interzonal flows, whereas the elements across the main diagonal Too 

correspond to intrazonal flows. The marginal totals To. = ∑d Tod and T.d = ∑o Tod are commonly referred to as 

trip productions and trip attractions respectively. In lexicographical order the matrix T can be represented as y = 

(y1,y2,...,yn)
T 

≡ (T11, T12,..., Tmm)
T
 with n = m

2
. The inferential scope in OD modelling depends on several defining 

aspects such as spatial resolution, time resolution and classification by trip purpose. In addition, OD modelling is 

itself part of a larger inferential framework. Specifically, the traditional transportation modelling framework 

consists of a sequence of four modelling steps, namely (i) trip generation, (ii) trip distribution, (iii) modal split 

and (iv) traffic assignment. 

 

Trip generation models are typically regression or cross-classification models which relate trip productions and 

trip attractions to socio-economic, location and land use variables. Trip distribution models balance trip 

productions and trip attractions, and distribute the trips to the cells of an OD matrix usually by using 

supplementary prior information in the form of an outdated OD matrix. Commonly used trip distribution models 

include gravity and direct demand models. The subsequent step of modal split entails disaggregating the OD 

matrix with respect to mode choice. Finally, traffic assignment involves allocating the n-m interzonal flows on a 

corresponding transport network consisting of all the available links which define the possible routes from zone 

of origin o to zone of destination d, for o, d = 1, 2,..., m and o ≠ d. Interested readers are referred to Ortúzar and 

Willumsen (2001) for four-step modelling and to Thomas (1991) for traffic assignment. 

 

In general, the four-step procedure remains widely accepted by transportation planners, so OD modelling up to 

the present is mainly based on trip generation and trip distribution principles. The first modern Bayesian 

approach to trip distribution, based on the gravity model, was discussed in West (1994). It is also worth noting 
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that a different approach for OD estimation relies on information from link traffic data where the traffic 

assignment problem is actually inverted; see for example Tebaldi and West (1998) and Hazelton (2010) for 

Bayesian methods. The methodological framework is quite different under this approach and it is actually part of 

a broader literature on network tomography (e.g. Medina et al. (2002)). In this study we extend the methodology 

that was presented in Perrakis et al. (2012b) for OD modelling based on census data and Perrakis et al. (2012a) 

for traffic assignment inference through Bayesian predictions. Additional references concerning OD estimation 

from travel surveys and/or link traffic can be found in Perrakis et al. (2012b). 

 

In particular, we investigate the performance of three Poisson mixture models, namely the Poisson-gamma (PG), 

Poisson-log-normal (PLN) and Poisson-inverse Gaussian (PIG) models. The PG model is the most commonly 

used and well-established model within the family of Poisson mixtures, whereas the PLN model remains up to 

the present the predominant alternative. The PIG model is the less known and less used model among the three, 

especially within the Bayesian framework. We present a first full Bayesian treatment of the PIG model and 

demonstrate that it has desirable properties both in its marginal and in its hierarchical forms. In addition, we 

consider the integrated nested Laplace approximation (INLA) framework (Rue et al., 2009) as a potentially 

efficient alternative to Markov chain Monte Carlo (MCMC) methods for the PG and PLN models. The case-

study focuses on a large-scale OD matrix, derived from the 2001 Belgian census study, containing trip 

information for 308 municipalities in the region of Flanders. 

 

The paper is organized as follows. A literature review and Bayesian formulations for the three models in 

question are provided in Section 2. The OD matrix, the transport network of Flanders and the selection of 

explanatory variables are described in Section 3. Results are presented in Section 4. The paper ends with 

conclusions and considerations of future research in Section 5. 

 

 

2. Poisson mixture models 
 

With Poisson mixture models we assume that the OD flows yi are independent and identically distributed 

Poisson realizations and that the rate of the Poisson distribution is λi = μiui for i = 1,2,...,n. The rate λi is split into 

two parts; μi is the part which is related to the vector of p + 1 unknown parameters β = (β0,β1,..., βp)
T
 and the set 

of explanatory variables xi = (1, xi1,..., xip)
T
 through the log-link function log(µi) = β

T
xi, and μi is a random 

component— interpreted as a multiplicative random effect accounting for heterogeneity—which is attributed 

with a density 1(ui). The Poisson mixture modelling formulation is summarized as 

  
 

The density 1 is known as the mixing density and can be continuous, discrete or even a finite support 

distribution. The constraint on the expected value of the random component ui ensures that the model is scale 

identifiable. Poisson mixtures are employed as overdispersed alternatives to the simple Poisson model which 

arises when the mixing density becomes degenerate. Alternatively, from a generalized linear mixed model 

perspective the above model can be expressed as 

 
where εi is an additive random-error term. Here the constraint on the expected value ensures location 

identifiability. The two formulations are equivalent; however, the intercepts and the interpretations of marginal 

means are different owing to the identifiability constraints (Lee and Nelder, 2004). The Poisson likelihood is the 

conditional likelihood given the unobserved random-effect vector u = (u1,u2,...,un)
T
. Integration over u results in 

the marginal sampling likelihood, i.e. . Frequentist inference usually focuses on 

the marginal structure under maximum likelihood (ML), restricted ML, quasi-likelihood and pseudolikelihood 

estimation procedures. 

 

When the mixing density 1 is a gamma distribution, we have the PG model which is the most frequently used 

Poisson mixture model because of the property that the resulting marginal likelihood is a negative binomial 

distribution. Properties and estimation procedures for negative binomial regression can be found in Lawless 
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(1987). The PG model is also included in the family of hierarchical generalized linear models that were 

introduced by Lee and Nelder (1996) who provided ML estimates for regression parameters as well as random 

effects based on the hierarchical likelihood. The PLN model arises when 1 is a log-normal distribution. The 

resulting marginal distribution of this model, which is known simply as PLN (Shaban, 1988), does not have a 

closed form expression and thus numerical integration is needed for marginal estimation. Nevertheless, the PLN 

model is regularly used in practice owing to its distinct historical development as a generalized linear mixed 

model for count data based on the assumption that 2 is a normal distribution (Breslow, 1984). Estimation of the 

model through Gaussian quadrature and the EM algorithm was handled in Aitkin (1996). An inverse Gaussian 

(IG) density for 1 results in the PIG model which leads to a PIG marginal density. This distribution, unlike the 

PLN case, does have a closed form expression. The PIG model was first presented by Holla (1967). Information 

on ML estimation can be found in Dean et al. (1989) and in the references therein. The PIG model has been used 

in actuarial science (Willmot, 1987; Carlson, 2002) and in linguistics where the zero-truncated marginal form is 

of particular interest (e.g. Puig et al. (2009)). 

 

A first consideration of all three models was presented in Chen and Ahn (1996). Later, Karlis (2001) provided a 

generally applicable EM algorithm for Poisson mixtures and compared the three models on a real data set. In 

Boucher and Denuit (2006), the performance of the three models was investigated from a random-effects versus 

fixed effects perspective on motor insurance claims. Finally, in Nikoloulopoulos and Karlis (2008) the models 

were compared with respect to distributional properties such as skewness and kurtosis under simulation 

experiments. This study illustrates some theoretical expectations, namely that the PLN and PIG models allow for 

longer right-hand tails and are thus more appropriate than the PG model for modelling highly positive skewed 

data. 

 

From a Bayesian perspective, Poisson mixtures have a natural interpretation as hierarchical or multilevel models 

where the mixing distribution is considered as a first-level prior of which the parameters are assigned with a 

second-level prior or hyperprior. With respect to the equivalence between the multiplicative and additive forms, 

it is the choice of hyperprior which affects inferences about the intercept, depending on whether the E(ui) = 1 or 

E(εi) = 0 constraint is imposed through the hyperprior. Bayesian applications of negative binomial modelling as 

well as hierarchical PG and PLN modelling can be found in Ntzoufras (2009) and in the references therein. 

Bayesian literature on PIG modelling is limited to the study of Font et al. (2013), which emphasizes a marginal, 

zero-truncated form of the model specifically suited for linguistic analysis. 

 

In what follows, we present the hierarchical and marginal forms and properties of the three models, with 

emphasis placed on the PIG. MCMC sampling is based on a posterior factorization which is not common but is 

particularly convenient in our context given the large data size. Specifically, if we denote by ω the 

hyperparameter of the mixing prior of u, then the joint posterior is p(μ, u, ω|y) = p(u|µ, ω, y) p(µ, ω|y). Thus, for 

hierarchical inference one can use the marginal likelihood for sampling from p(µ, ω|y) and generate u 

subsequently from p(u|µ, ω, y). As illustrated next, this is straightforward for the PG and PIG models. 

 

2.1. Poisson-gamma model 

 

For the PG model we make the following likelihood and prior assumptions: 

  
 

For the multivariate normal prior of the regression parameters we adopt the -prior structure (Zellner, 1986) 

analogue of the benchmark prior that was discussed in Fernández et al. (2001 ) for normal linear models. The 

same unit information multivariate prior is also adopted for the PLN and PIG models. The gamma prior for ui is 

defined in terms of shape and rate parameters which both equal θ, so that E(ui) = 1 and var(ui) = θ
-1

. The gamma 

hyperprior for dispersion parameter θ, with shape and rate equal to 0.001, is a commonly used diffuse prior 

(Ntzoufras, 2009). The joint posterior distribution of all parameters is p(β, u, θ|y) α p(y|β, u) p(β) p(u|θ) p(θ). 

The only full conditional which has a known form is that of the random effects which is a gamma distribution, 

namely ui|β,θ,yi ~ gamma(yi + θ, μi + θ) (Gelman and Hill, 2006). Therefore, MCMC sampling for the 

hierarchical model would require a Metropolis-within-Gibbs type of algorithm with Metropolis steps for the joint 

conditional of β, θ|u, y or for the conditionals of β|u, y and θ|u, y. Alternatively, adaptive rejection sampling can 
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also be used. Integration over u leads to a negative binomial marginal likelihood, i.e. 

  
 

Under this parameterization the marginal mean and variance are given by E (y|β) = exp(Xβ) and var(y|β, θ) = 

exp(Xβ) + exp(Xβ)
2
θ

-1
, with the variance being a quadratic function of the mean. The posterior distribution now 

is p(β, θ|y) oc p(y|β, θ) p(β) p(θ), which leads to the expression 

  
 

The Metropolis-Hastings (MH) algorithm is used to sample from the joint posterior of β, θ|y. Once M posterior 

draws of β and θ are available, predictive inference from the hierarchical structure of the model is 

straightforward; we generate first u
(m)

 ~ gamma{y + θ
(m)

, exp(Xβ
(m)

) + θ
(m)

} and then y
pred(m)

 ~ 

Pois{exp(Xβ
(m)

)u(
m
)} for m = 1, 2, ..., M. As shown in Sections 4.4 and 4.5, predictions are used in posterior 

predictive checks and also for quantifying input uncertainty in deterministic traffic assignment modelling. 

 

It is worth noting that recent developments (Martins and Rue, 2013) extend the initial INLA framework (Rue et 

al., 2009) to applications on near Gaussian latent models. Therefore, we also consider the INLA as an alternative 

to MCMC sampling for the PG model; a comparison is presented in Section 4.1. 

 

2.2. Poisson log-normal model 

 

The assumptions for the Poisson log-normal model are as follows: 

 
 

Following the formulation of Lee and Nelder (2004) for scale identifiability, the prior distribution of ui has 

location parameter equal to -σ
2
/2 and scale σ

2
, and so E(ui) = 1 and var(ui) = exp(σ

2
) - 1. The inverse gamma 

hyperprior for σ
2
 is the common option for this model (Ntzoufras, 2009); for a = 10

-3
 the distribution of σ

-2
 is a 

diffuse gamma distribution. The joint posterior distribution is p(β, u, σ
2
|y) α p(y|β, u) p(β) p(u|σ

2
) p(σ

2
). In this 

case, none of the full conditional distributions are of known form. MCMC sampling for the hierarchical PLN 

model is in general more convenient in its generalized linear mixed model form where the full conditional 

distribution of σ
2
 is again an inverse gamma distribution, namely σ

2
|u, y ~ inv-gamma{a + n/2, a + Σilog(ui)

2
/2}. 

Thus, in the additive case sampling from the conditionals of β and u is possible with Metropolis steps or 

rejection sampling. Note that in the generalized linear mixed model form the corresponding prior for ui must be 

specified as LN(0, σ
2
). 

 

In the PLN model the marginal likelihood p(y|β, σ
2
) is not known analytically; nevertheless the mean and 

variance of the PLN distribution are available and given by E(y\β) = exp(X/3) and var(y|β, σ
2
) = exp(Xβ) + 

exp(Xβ)
2
{exp(σ

2
) - 1}. As with the PG model, the variance is a quadratic function of the mean. The joint 

posterior density is p(β, σ
2
|y) α p(y|β, σ

2
) p(β) p(σ

2
), namely 

 
 

We employ MH simulation to sample from thejoint posterior density of β and σ
2
. The integral appearing in the 

unnormalized posterior can be evaluated through numerical integration, e.g. with Gauss-Hermite quadrature 

which is also frequently employed in frequentist practice for marginal estimation. Another alternative that is 

examined in this study is Monte Carlo (MC) integration from the log-normal prior of the random effect vector u 

within the Metropolis kernel, i.e., for a given MH iteration t and draws β
(t)

, σ
2(t)

 the above integral can be 

evaluated by generating first L draws {ui
(t,l)

, l = 1, 2, ... ,L} from ui
(t,l) 

~ LN(-σ
2(t)

/2, σ
2(t)

) and then by calculating 

the marginal probability as p(yi|β
(t)

, σ
2(t)

) = L
-1

 ∑lp(yi|β
(t)

, ui
(t,l)

). 

 

A potentially efficient alternative to MCMC approaches for the PLN model is the INLA framework that was 

introduced in Rue et al. (2009). The INLA approach covers the family of Gaussian Markov random-field models 



Published in : Journal of the Royal Statistical Society. Series A Statistics in Society (2015) 

Status : Postprint (Author’s version) 

 

and is based on efficient approximating schemes for the marginal posterior distributions. The PLN model is 

included in the family of Gaussian Markov random-field models as the random effects are normally distributed 

on additive scale. In Section 4.1 we compare the INLA with MCMC methods. 

 

2.3. Poisson-inverse Gaussian model 

 

For the hierarchical PIG we adopt the following assumptions: 

  
 

The initial parameterization of Holla (1967) is used for the IG prior, with mean µ and shape ζ, 

specifically  

 

For µ = 1 we have that a priori E(ui) = 1 and var(ui) = ζ
-1

. The IG distribution is a special case of the three-

parameter generalized inverse Gaussian (GIG) distribution which is generally conjugate to the family of 

exponential distributions and was studied in detail in Jorgensen (1982). The probability distribution function of a 

GIG(λ, ,χ) distribution with parameters λ ∈ R, χ, > 0 is given by 

 
where Kλ is the modified Bessel function of the third kind with order λ. The IG distribution arises for λ = - . 

Interestingly, the gamma distribution is also a special case of the GIG distribution for χ = 0. For shape parameter 

ζ we adopt the usual gamma hyperprior, similarly to the PG model. The posterior distribution now is p(β, u, ζ|y) 

oc p(y|β, u) p(β) p(u|ζ) p(ζ) and it can be easily shown that the full conditionals of u and ζ are known 

distributions, namely 

 
and 

  
 

Athreya (1986) was the first to note the specific conjugate relationship between the IG and Poisson distribution; 

see also Karlis (2001). Regarding simulation from the GIG distribution, random generators are readily available 

(e.g. Dagpunar (1988)). Thus, the hierarchical PIG model is actually simpler in terms of MCMC sampling in 

comparison with the PG and PLN models, since all that is needed is an MH step or rejection sampling algorithm 

for the conditional of β. 

 

Marginally we have that yi|β, ζ ~ PIG{exp(β
T 

xi), ζ} for i = 1, 2,..., n with likelihood function given by 

 
where 

 
 

The marginal mean and variance are E(y|β) = exp(Xβ) and var(y|β, ζ) = exp(Xβ) + exp(Xβ)
3
ζ

-1
. The variance is 

thus a cubic function of the mean in the PIG model, allowing for greater overdispersion. The posterior 

distribution p(β, ζ|y) α p(y|β, ζ) p(β) p(ζ) can be expressed as 
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Samples from the posterior of β and ζ can be obtained through MH simulation from the joint posterior. As with 

the PG model, when M posterior draws of β and ζ are available, predictive inference from the hierarchical 

structure of the PIG model is possible by generating first u
(m)

 ~ GIG{y - , 2 exp(Xβ
(m)

) + ζ
(m)

, ζ
(m)

} and then 

y
pred(m)

 ~ Pois{exp(Xβ
(m)

)u
(m)

} for m = 1, 2,..., M. 

 

 

3. Data 
 

3.1. Origin-destination matrix and the transport network of Flanders 

 

The OD matrix was derived from the 2001 Belgian census study and contains information about the departure 

and arrival locations for work- and school-related trips of the approximately 10 million Belgian residents. The 

recorded work or school trips refer to a normal weekday for all possible travel modes and are one directional, 

from zone of origin to zone of destination. The study area is not the entire country of Belgium, but the northern, 

Dutch-speaking region of Flanders which roughly accounts for 60% of the total population and 44% of the 

country's surface area. From an administrative viewpoint Flanders is divided into five provinces, 22 

arrondissements, 52 districts, 103 cantons and 308 municipalities. Our analysis is implemented on the municipal 

level at which the OD matrix contains 94864 cells. 

 

The OD flows on municipality zonal level are sparsely distributed and extremely overdispersed with large 

outlying observations. Approximately 63%o of the observations are zero valued, with an overall mean of 38.47 

and a standard deviation of 960.47. All the zero-valued observations belong to interzonal flows off the main 

diagonal. The mean and standard deviation of interzonal flows are equal to 18.48 and 156.67 respectively. The 

maximum value is observed in the diagonal cell which corresponds to the intrazonal flows occurring in 

Antwerp—the largest Flemish municipality—and is equal to 211 681. In general, the majority of trips 

correspond to intrazonal flows with the counts on the main diagonal accounting for approximately 51 % of the 

total number of trips. The mean for intrazonal flows is 6064.32, and the standard deviation is 15516.64. 

 

The road network of Flanders with the corresponding borders of the five Flemish provinces, Antwerp, Limburg, 

East Flanders, Flemish Brabant and West Flanders, is presented in Fig. 1. The circled areas indicate the capital 

municipality of each province; the size of each circle is a relative representation of population size. Antwerp is 

the most populated capital, followed by Ghent, Leuven, Bruges and Hasselt. Brussels metropolitan area, which is 

also marked on the map, is not included in the analysis as it is a separate administrative centre. Overall, the 

network runs a total length of 65296.72 km and contains 97450 links which can be categorized into highways 

(8.58% including entrance-exit road segments), main regional roads (15.49%), small regional roads (21.1%), 

local municipal roads (52.91%) and walk or bicycle paths (1.92%). 

 

3.2. Explanatory variables 

 

The set of explanatory variables consists of six categorical variables and 12 discrete or continuous variables. The 

first five categorical variables capture the effects of intrazonal flows measured in differences of 100 trips. Thus, 

these dummy variables take the value 100 if the trips are intrazonal in municipalities, DM, cantons, DC, districts, 

DD, arrondissements, DA, and provinces, DP, and 0 otherwise. These predictors capture individual effects; for 

instance, for intrazonal flows in the main diagonal the municipality predictor DM will equal 100, whereas DC, 

DD, DA and DP will equal 0. The sixth categorical predictor, DE, is associated with the effect of higher 

education institutes in destination zones; it takes the value of 1 if the destination zone supports a college and/or a 

university and 0 otherwise. The set of covariates includes four discrete-valued variables which contain the total 

number of neighbouring municipalities on canton, MC, district, MD, arrondissement, MA, and province, MP, 

levels for each corresponding OD pair. The rest of the covariates are continuous. Specifically, we include 

employment rate ER, population density PD (thousands of inhabitants per square kilometre), relative length of 

road networks, RL (road length in kilometres per surface area in square kilometres), perimeter length PL in 

kilometres, car ownership ratio CR, yearly traffic on highways, HT, and on provincial or municipal roads, 
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Fig. 1. Road network of Flanders and the five Flemish provinces of 1, Antwerp, 2, Limburg, 3, East Flanders, 4, 

Flemish Brabant, and 5, West Flanders, with corresponding capitals Antwerp, Hasselt, Ghent, Leuven and 

Bruges 

 
 

PMT, in kilometres, and finally distance D in kilometres. All covariates are used on a logarithmic scale. 

Distance, of course, is zero for intrazonal municipality flows and to use the logarithm it is set equal to 0.1, a 

value which for most practical purposes refers to negligible distance (100 m). Furthermore, owing to the 

particularity of the OD problem variables ER, PD, RL, PL, CR, HT and PMT come in pairs, i.e. each is used 

twice, one time for the origin zone and one time for the destination zone. The arguments for employing the 

continuous variables in pairs are as follows: 

(a) preliminary research revealed that it is better to use information for origin and destination zones 

separately rather than the average, for instance, between origin and destination zones; 

(b) having separate parameter estimates for origin and destination zones allows for elementary comparison 

with trip production and trip attraction modelling; 

(c) using pairs on a logarithmic scale and including distance provides an alternative interpretation of the 

Poisson mixture log-linear models as stochastic gravity, direct demand models. 

 

Most of the continuous variables were transformed to ratios relative to populations or surface areas. The specific 

transformations were chosen to maintain reasonable interpretations, but also to solve multicollinearity problems 

which were evidently present in raw variables. Analysis based on variance inflation factors indicated no serious 

multicollinearity problems for the transformed variables with the highest variance inflation factor value being 

equal to 3.877. 

 

 

4. Results 
 

We start this section with a comparison between MCMC and INLA estimates for the PLN and PG models on an 

OD matrix of smaller scale. The full analysis for the entire of Flanders, including posterior and predictive 

inference based on MCMC sampling, is presented next. Details concerning MH implementation are presented in 

Appendix A. 

 

4.1. Comparing Markov chain Monte Carlo and integrated nested Laplace approximation approaches 

 

The comparison that is presented here concerns a 10 × 10 OD matrix containing the flows between the 10 largest 

(in terms of population) Flemish municipalities. The rationale in choosing a smaller OD matrix is to evaluate 

how well can INLAs approximate marginal posterior distributions under relatively small samples. The 

categorical predictors are not meaningful to use in this case; therefore, we use only employment rate, population 

density, length of road networks, highway traffic, provincial or municipal traffic and distance as covariates. 

 

The reasons for considering a smaller OD are the following. First, the INLA is based on the assumption of 
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conditional independence for the Gaussian latent random field which means that the inverse covariance matrix is 

sparsely distributed allowing for fast and efficient Cholesky decomposition. In general, the assumption of 

conditional independence becomes stronger as the dimensionality of the random field increases. Therefore, we 

find it interesting to evaluate INLAs on a smaller random field (i.e. 100 random effects, instead of 94 864, plus 

the regression parameters). Second, the INLA estimates the marginal posteriors either through Gaussian or 

through Laplace approximations based on Taylor's expansions around the posterior modes. Such approximations 

generally perform well when the sample size is large and the marginal posteriors are usually well centered near 

the posterior mode. Thus, we are interested in testing the INLA on a smaller subset of the data. 

 

Table 1. Posterior means and standard deviations (in parentheses) from an MH sample of 20000 draws and 

from the three INLA approaches for the PLN model† 

Parameter MH estimate  INLA estimates  

  Gaussian Simplified 

Laplace 

Laplace 

β0 intercept -1.031 (2.288) -1.022 (2.623) -1.061 (2.623) -1.061 (2.623) 

β1 ER (o) 0.763 (0.865) 0.749 (0.985) 0.755 (0.985) 0.755 (0.985) 

β2 ER (d) 1.826 (0.883) 1.802 (0.979) 1.824 (0.979) 1.824 (0.979) 

β3 PD (o) 0.406 (0.420) 0.391 (0.476) 0.401 (0.476) 0.401 (0.476) 

β4 PD (d) 1.414 (0.425) 1.401 (0.477) 1.420 (0.477) 1.420 (0.477) 

β5 RL (o) 0.697 (0.779) 0.684 (0.892) 0.689 (0.891) 0.689 (0.891) 

β6 RL (d) -0.060 (0.805) -0.048 (0.895) -0.057 (0.894) -0.057 (0.894) 

β7 HT (o) -0.297 (0.154) -0.291 (0.180) -0.291 (0.180) -0.291 (0.178) 

β8 HT (d) 0.194 (0.156) 0.181 (0.180) 0.187 (0.180) 0.187 (0.180) 

β9 PMT (o) 0.891 (0.225) 0.897 (0.260) 0.901 (0.260) 0.901 (0.260) 

β10 PMT (d) 0.886 (0.220) 0.889 (0.260) 0.890 (0.260) 0.890 (0.259) 

β11 D -1.129 (0.048) -1.131 (0.057) -1.135 (0.057) -1.135 (0.057) 

τ (1/σ
2
) 0.989 (0.139) 0.906 (0.139) 0.906 (0.139) 0.906 (0.139) 

†'o' refers to origin effects and 'd' to destination effects. 

 

Table 2. Posterior means and standard deviations (in parentheses) from an MH sample of 20000 draws and 

from the three INLA approaches for the PG model† 

Parameter MH estimate  INLA estimates  

  Gaussian Simplified 

Laplace 

Laplace 

β0 intercept -2.013 (2.488) -2.147 (2.496) -2.087 (2.496) -2.052 (2.484) 

β1 ER (o) 1.081 (0.925) 1.039(0.918) 1.016(0.918) 1.058(0.913) 

β2 ER (d) 1.542(0.895) 1.486(0.901) 1.473(0.901) 1.515(0.897) 

β3 PD (o) 0.507 (0.428) 0.512(0.441) 0.526 (0.441) 0.513 (0.439) 

β4 PD (d) 1.282(0.440) 1.271 (0.434) 1.289(0.434) 1.272(0.432) 

β5 RL (o) 0.765 (0.785) 0.718(0.781) 0.757 (0.781) 0.763 (0.776) 

β6 RL (d) 0.078 (0.823) -0.033 (0.810) 0.012(0.810) 0.022 (0.805) 

β7 HT (o) -0.431 (0.180) -0.434(0.177) -0.436 (0.177) -0.440 (0.176) 

β8 HT (d) 0.056(0.188) 0.077(0.171) 0.073 (0.171) 0.068 (0.170) 

β9 PMT (o) 1.082(0.246) 1.099(0.243) 1.087(0.243) 1.095(0.242) 

β10 PMT (d) 1.163(0.232) 1.166(0.232) 1.156(0.232) 1.161 (0.231) 

β11 D -1.184(0.079) -1.168(0.081) -1.168(0.081) -1.181 (0.082) 

θ 1.070(0.123) 1.070(0.142) 1.070(0.142) 1.070(0.142) 
†'o' refers to origin effects and 'd' to destination effects. 

 

For comparison, we change the prior assumption for the intercept and the regression parameters. Specifically, 

instead of using the unit information prior β ~ N12(0, ∑β) with ∑β = n (X
T
X)

-1
, we assume independent normal 

priors with a large variance, namely β ~ N12 (0, I12σ
2
) with σ

2
 = 10

3
. For fitting the PLN model through the 

INLA, we used the R-INLA package (www.r-inla.org). We consider the three INLA approximating strategies, 

namely the Gaussian, the simplified Laplace and the Laplace approximations for marginal posterior 

distributions; see Rue et al. (2009) for details. In addition, as mentioned in Section 2.1, recent developments 

extend the INLA to near Gaussian latent models (Martins and Rue, 2013). The gamma prior is included in the 

available options of the R-INLA package, which gives us the opportunity to compare MCMC and INLA 

approaches for the PG model as well. 

 

Posterior means and standard deviations from MH samples of 20 000 draws and from the three INLA 
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approximations for the PLN and PG models are presented in Table 1 and Table 2 respectively. The PLN 

intercept corresponds to that of the additive model formulation. As seen, the posterior PLN means from the 

MCMC and INLA approaches agree in general, especially under the simplified Laplace and Laplace 

approximations. The precision estimates slightly differ; the MCMC estimate is closer to the corresponding ML 

estimate which is 1.036. Also, the standard deviations from the MCMC method are overall lower. Concerning 

the PG model, the Laplace approximation seems to provide more accurate estimates which are closer to the 

MCMC estimates in comparison with the Gaussian and simplified Laplace approaches. The standard deviations 

are virtually the same for this model. Marginal posterior distribution estimates for the regressors of the PG model 

under the Laplace approximation are shown in Fig. 2; as seen the estimates approximate particularly well the 

histograms derived from MCMC sampling. The corresponding figures for the PLN model (which are not 

presented here) are equivalent. 

 

In conclusion, we find that the INLA provides a fast and efficient alternative to MCMC sampling under specific 

prior assumptions, which makes it a potentially promising tool for OD modelling on large-scale networks. It is 

worth mentioning that INLA run times were 2.64 s for the PG model and 2.14 s for the PLN model. In contrast, 

21000 MH iterations (we used the first 1000 as burn-in) required 14.82 s for the PG model and approximately 21 

min for the PLN model owing to additional numerical integration within the MCMC algorithm. Thus, the INLA 

is particularly useful for the PLN model. Arguably, in medium-sized examples like this, using MCMC sampling 

for the hierarchical data-augmented PLN model could be more efficient than MCMC sampling with numerical 

integration for the marginal likelihood. We tested this by using WinBUGS (Spiegelhalter et al., 2003); 

nevertheless, the sampler failed to converge even after 200 000 iterations. All computations were performed on a 

standard 64-bit laptop with 2.20 GHz central processor unit and 4 Gbytes of random-access memory using R 

version 3.0.1 (R Core Team, 2013). The R code that was used for the INLA and the subset of the OD data are 

available from http://wileyonlibrary.com/journal/rss-datasets 

 

Despite these advantages, we find that the R-INLA package is still restrictive with respect to certain aspects and 

requires further development which will allow for more general modelling frameworks. In particular, the 

package does not yet fully support multivariate prior assumptions such as -prior structures (Zellner, 1986) for 

regression coefficients. Moreover, it would be interesting to include further distributional options covering near 

Gaussian latent fields, such as the IG prior that is considered in this paper. 

 

Fig. 2. Histograms of PG regression parameters from 20000 posterior draws and estimates of the posterior 

marginals (--------) from the INLA method 

 
 

http://wileyonlibrary.com/journal/rss-datasets
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Table 3. Posterior means and 95% credible intervals for regression and dispersion parameters and the values of 

AIC, BIC, the marginal DIC and the hierarchical DIC† 

Parameter Results for PG model Results for PLN model Results for PIG model 

 Mean 95% credible 

interval 

Mean 95% credible 

interval 

Mean 95% credible 

interval 

β0 4.027 (3.214, 4.869) 6.104 (5.230, 6.989) 6.847 (6.028, 7.675) 

β1 DP 0.005 (0.005, 0.005) 0.005 (0.005, 0.006) 0.006 (0.005, 0.006) 

β2 DA 0.007 (0.007, 0.008) 0.007 (0.007, 0.008) 0.008 (0.007, 0.008) 

β3 DD 0.008 (0.008, 0.009) 0.008 (0.008, 0.009) 0.009 (0.008, 0.009) 

β4 DC 0.008 (0.007, 0.009) 0.006 (0.006, 0.007) 0.006 (0.006, 0.007) 

β5 DM -0.082 (-0.083, -0.080) -0.086 (-0.087,-0.084) -0.084 (-0.086, -0.083) 

β6 DE 0.424 (0.388, 0.460) 0.535 (0.496, 0.574) 0.536 (0.497, 0.581) 

β7 MC 0.473 (0.435, 0.510) 0.461 (0.422, 0.501) 0.450 (0.411, 0.490) 

β8 MD -0.494 (-0.542, -0.445) -0.441 (-0.491,-0.391) -0.442 (-0.489, -0.392) 

β9 MA -0.088 (-0.124, -0.055) -0.188 (-0.225,-0.149) -0.210 (-0.249, -0.167) 

β10 MP -0.491 (-0.636, -0.345) -0.737 (-0.888, -0.589) -0.783 (-0.924, -0.636) 

β11 ER(o) -1.062 (-1.207, -0.918) -0.482 (-0.629, -0.334) -0.240 (-0.383, -0.105) 

β12 ER (d) 0.326 (0.194, 0.462) 0.492 (0.345, 0.641) 0.608 (0.460, 0.759) 

β13 PD (o) 0.505 (0.477, 0.533) 0.499 (0.470, 0.528) 0.500 (0.474, 0.529) 

β14 PD (d) 0.577 (0.548, 0.606) 0.626 (0.594, 0.658) 0.631 (0.595, 0.662) 

β15 RL(o) -0.315 (-0.359, -0.272) -0.318 (-0.365, -0.272) -0.334 (-0.380, -0.289) 

β16 RL(d) 0.280 (0.236, 0.322) 0.267 (0.220, 0.315) 0.265 (0.219, 0.310) 

β17 PL (o) 1.253 (1.208, 1.298) 1.289 (1.241, 1.338) 1.283 (1.238, 1.327) 

β18 PL (d) 0.430 (0.385, 0.475) 0.500 (0.452, 0.549) 0.509 (0.459, 0.559) 

β19 CR (o) 3.454 (3.149, 3.762) 3.413 (3.095, 3.731) 3.520 (3.227, 3.831) 

β20 CR (d) -1.465 (-1.768, -1.180) -1.255 (-1.577, -0.939) -1.081 (-1.386, -0.752) 

β21 HT (o) 0.010 (0.007, 0.014) 0.011 (0.008, 0.015) 0.010 (0.007, 0.014) 

β22 HT (d) 0.052 (0.049, 0.056) 0.050 (0.047, 0.054) 0.050 (0.046, 0.053) 

β23 PMT (o) 0.270 (0.250, 0.289) 0.278 (0.257, 0.299) 0.275 (0.254, 0.294) 

β24 PMT (d) 0.869 (0.850, 0.888) 0.876 (0.853, 0.898) 0.870 (0.849, 0.891) 

β25 D -2.906 (-2.927, -2.885) -2.984 (-3.007, -2.960) -2.936 (-2.957, -2.915) 

θ 0.965 (0.947, 0.983)  —  — 
σ

2
  — 1.065 (1.043, 1.086)  — 

ζ  —  — 0.377 (0.359, 0.399) 

AIC  281519.3  279364.7  278468.9 

BIC  281774.7  279620.1  278724.3 

DIC (marginal)  281492.4  279337.7  278441.4 

DIC 

(hierarchical) 

 224141.4  —  224146.1 

†'o' refers to origin effects and 'd' to destination effects. 

 

4.2. Posterior inference for Flanders 

 

Posterior means and 95% credible intervals based on 4000 posterior draws are presented in Table 3. The 

corresponding INLA Gaussian estimates for the PG and PLN models are presented in Table 4. The INLA 

estimates are slightly different because of the different prior assumption, namely β ~ N26(0, I26σ
2
) with σ

2 
= 10

3
. 

Nevertheless, the overall conclusions discussed next are also supported by the INLA estimates. Details of MH 

implementation and a comparison of MCMC and INLA run times can be found in Appendix A. In general, the 

posterior means of the PLN and PIGmodels are more similar. For instance, parameters β0, β6, β9, β10, β14 and β18 

of the PG model are substantially different from the corresponding estimates of the other two models, especially 

the intercept estimate. However, parameters β11, β12 and β20 differ across models. 

 

The parameters β1-β5 of the categorical variables are all positive except for the last parameter for intrazonal 

municipality trips. The positive effects of β1-β4 are to be expected, since the OD flows are generally larger in 

diagonal blocks of cells of the OD matrix corresponding to intrazonal flows for the various administrative levels. 

The negative sign of β5 is not expected but it might be explained as simply counterbalancing the absence of the 

strong negative effect of distance which is set almost equal to 0 for intrazonal municipality trips. Parameter β6 is 

positive, which leads to the consistent interpretation that destination zones which support a college or a 

university are more likely to attract trips than zones without a college or university. 
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Table 4. INLA estimates for the PG and PLN models using the Gaussian approximation for the entire data set† 

Parameter Results for PG model Results for PLN model 

 Mean 95% credible 

interval 

Mean 95% credible 

interval 

β0 3.605 (2.903, 4.307) 5.974 (5.106, 6.847) 

β1 DP 0.005 (0.005, 0.005) 0.005 (0.005, 0.005) 

β2 DA 0.007 (0.006, 0.007) 0.007 (0.006, 0.007) 

β3 DD 0.008 (0.007, 0.008) 0.008 (0.008, 0.009) 

β4 DC 0.008 (0.007, 0.008) 0.007 (0.006, 0.008) 

β5 DM -0.082 (-0.084, -0.081) -0.078 (-0.080, -0.076) 

β6 DE 0.435 (0.404, 0.466) 0.509 (0.471, 0.547) 

β7 MC 0.459 (0.427, 0.491) 0.431 (0.392, 0.470) 

β8 MD -0.482 (-0.523, -0.442) -0.424 (-0.472, -0.376) 

β9 MA -0.079 (-0.109, -0.048) -0.177 (-0.214, -0.139) 

β10 MP -0.447 (-0.569, -0.324) -0.699 (-0.848, -0.551) 

β11 ER(o) -1.037 (-1.163, -0.911) -0.458 (-0.603, -0.313) 

β12 ER (d) 0.310 (0.192, 0.428) 0.449 (0.302, 0.596) 

β13 PD (o) 0.495 (0.471, 0.519) 0.469 (0.440, 0.498) 

β14 PD (d) 0.558 (0.533, 0.583) 0.591 (0.560, 0.622) 

β15 RL(o) -0.315 (-0.353, -0.278) -0.299 (-0.344, -0.254) 

β16 RL(d) 0.287 (0.250, 0.324) 0.253 (0.208, 0.298) 

β17 PL (o) 1.272 (1.232, 1.312) 1.212 (1.165, 1.259) 

β18 PL (d) 0.442 (0.402, 0.482) 0.479 (0.429, 0.528) 

β19 CR (o) 3.401 (3.140, 3.663) 3.183 (2.871, 3.495) 

β20 CR (d) -1.549 (-1.813, -1.286) -1.177 (-1.496, -0.859) 

β21 HT (o) 0.010 (0.007, 0.012) 0.010 (0.007, 0.014) 

β22 HT (d) 0.051 (0.048, 0.054) 0.047 (0.043, 0.050) 

β23 PMT (o) 0.264 (0.246, 0.281) 0.263 (0.242, 0.283) 

β24 PMT (d) 0.867 (0.850, 0.884) 0.824 (0.802, 0.846) 

β25 D -2.912 (-2.930, -2.893) -2.807 (-2.830, -2.785) 

θ 0.969 (0.950, 0.986)  — 

σ
2
  — 1.020 (1.000, 1.050) 

†'o' refers to origin effects and 'd' to destination effects. 

 

Parameters β7-β10 quantify the influence of the total number of surrounding municipalities on the levels of 

cantons, districts, arrondissements and provinces respectively. This effect is in general not straightforward to 

predict; nevertheless the parameter estimates provide some insights. On the small-scale level of cantons 

parameter β7 has a positive sign, whereas, on the large-scale levels of districts, arrondissements and provinces—

where the total number of municipalities increases and a spead-out of trips is more likely—the corresponding 

parameters β8, β9 and β10 are negative. This implies that the effect changes from positive to negative when 

exceeding a specific radius threshold of distance. Recent transportation studies discuss similar ideas such as the 

neighbourhood effect concept that was investigated in more detail by Sohn and Kim (2010). 

 

Regarding the continuous variables used in pairs, the more general explanatory variables have parameters with 

positive signs, namely population density (β13,β14), perimeter length (β17,β18) and kilometres driven on highways 

(β21,β22) and provincial or municipal roads (β23,β24). The uniformly positive effects for origin and destination 

zones do not come as a surprise, since we would expect these four variables to be positively correlated with trip 

production (origin zones) as well as trip attraction (destination zones). In contrast, the parameters of employment 

rate (β11,β12), relative length of road network (β15,β16) and car ownership ratio (β19,β20) have opposite signs for 

origin and destination effects. 

 

In transportation studies employment rate is commonly associated with trip attraction models (see for example 

Yao and Morikawa (2005)). In accordance, the posterior estimate of employment rate is positive for destination 

zones and negative for origin zones, which leads to the rational interpretation that zones with high employment 

rates are more likely to attract trips rather than to generate trips. The relative length of road networks is 

associated with the concept of accessibility (see for example Odoki et al. (2001)), a concept which is present 

primarily in trip attraction studies. In general, a larger relative length in the network will decrease the friction of 

travel (e.g. distance and time) significantly, and thus increase accessibility. The posterior mean is positive for 

destination zones and negative for origin zones. Consistently, this implies that zones with high levels of 

accessibility are more likely to attract trips than low accessible zones. Conversely, high accessible zones are less 
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likely to produce trips than low accessible zones. A possible explanation for the negative origin effect is that 

high levels of accessibility within a zone might encourage intrazonal trips and reduce outgoing trips. Car 

ownership is traditionally used as an explanatory variable with positive effect in trip production models. In 

agreement, the posterior mean for car ownership is positive for origin zones, which means that zones with high 

car ownership ratios also have high trip production rates. The estimate is negative for destination zones, 

implying that high car ownership ratios are negatively correlated with trip attraction. The negative destination 

effect may be attributed to congestion issues. 

 

Distance with parameter β25 is the final variable. Distance is a key variable in gravity-type and direct demand 

models, since it is directly related to the costs of the deterrence function that is used within the trip distribution 

step. In our model, distance has a negative posterior mean which accords with the basic deterrent gravitational 

assumption of trip distribution models. Furthermore, on the basis of the posterior mean over standard deviation 

ratio, distance is the most significant explanatory variable in all the models. 

 

Table 3 also includes the values of the Akaike information criterion AIC, Bayesian information criterion BIC 

and marginal or hierarchical deviance information criterion DIC. The posterior mean of the deviance is used for 

the calculation of AIC and BIC. The three criteria provide more support for the PLN and PIG models, which 

provides a justification for the similarity of the posterior estimates from the two models. Furthermore, all three 

criteria indicate that the PIG distribution is the most appropriate marginal sampling distribution. The hierarchical 

DIC is calculated on the basis of reduced samples of 500 draws, owing to memory limitations given the large 

dimensionality of the data-augmented space. In addition, sampling the random effects of the PLN model is 

relatively complicated and time consuming; therefore we focus on the PG and PIG models for the remainder of 

this paper. On the basis of the hierarchical DIC it is difficult to distinguish which hierarchical model is more 

appropriate for predictive purposes, since the differences between the PG and PIG models are marginal. 

 

The random effects present some dissimilarities between the two models. The range of the PG random effects is 

from 3.81 × 10
-8

 to 40.61 (from -17.83 to 3.71 on a log-scale), whereas the PIG random effects range from 9.48 

× 10
-3

 to 132.35 (from -4.66 to 4.89 on a log-scale). Because of the GIG posterior distribution, the PIG random 

effects exhibit a longer right-hand tail than the PG random effects which are gamma distributed. On a 

logarithmic scale the PIG random effects are relatively more symmetrical near 0, whereas the PG random effects 

have a longer left-hand tail. 
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Fig. 3. Histograms of dispersion parameters (a)-(c) θ and (d)-(f) ζ under gamma hyperpriors with (a), (d) a = 

0.001, (b), (e) a = 0.1 and (c), (f) a= 1 

 
 

Table 5. Bayesian p-values for the absolute distance, squared distance and deviance test quantities from 500 

posterior draws of the hierarchical PG and PIG models 

Test quantity Formula Results for 

PG model 

Results for PIG 

model 

Absolute distance Σ{y - E(y|β, u)} 0.278 0.440 

Squared distance Σ{y - E(y|β, u)}
2
 0.532 0.488 

Deviance -2 log{p(y|β, u)} 0.996 0.648 

 

4.3. Sensitivity analysis for hyperpriors 

 

In this section we perform a sensitivity analysis for parameter a of the gamma hyperpriors assigned to 

parameters θ and ζ of the PG and PIG models. Parameter σ
2
 is not included in the analysis, because of the 

substantial time which is required for MH simulation from the PLN model. Histograms of 4000 posterior draws 

of parameters θ and ζ for values of a equal to 0.001 (the initial value), 0.1 and 1 are presented in Fig. 3. As seen, 

the posterior distributions are not influenced by hyperparameter a. We can note a slight change in the right-hand 

tail of the posterior distribution of ζ for a equal to 0.1 and 1; nonetheless this does not affect posterior inferences. 

The results are in line with the discussion in Gelman (2006), since in our case the random effects are 

observational and therefore we would not expect to have the sensitivity problems that arise in grouped random-

effects settings for small numbers of groups. 

 

4.4. Posterior predictive checks for origin-destination flows 

 

For overall goodness of fit, we employ posterior predictive checks (Meng, 1994) for the absolute and squared 

distances (with respect to the expected values) and for the hierarchical deviance. The absolute distance is more 

sensitive to small deviations, whereas squared distance assigns more penalty to large deviations. Each test 

quantity is calculated for observed and predicted data over the 500 posterior draws. 

 

The test quantities with the corresponding Bayesian p-values are presented in Table 5. In general, both models 

provide satisfactory Bayesian p-values for squared distances, which are close to the ideal value of 0.5. 

Predictions from the PIG model seem to replicate better the observed data for small deviations from the expected 
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values and also with respect to the Poisson distributional assumption. Note that the aim here is not model 

comparison, but examination of the characteristics of predictions. 

 

Fig. 4. Observed quantities (|) and kernel estimates of predictive distributions for going-to-work or school trips 

from the PG model (---------) and the PIG model (- - -) for (a) incoming trips to the city of Antwerp (PG p-value 

0.46; PIG p-value 0.43), (b) all trips to Flanders (PG p-value 0.52; PIG p-value 0.14), and intrazonal trips for 

the five Flemish provinces (c) Antwerp (PG p-value 0.21; PIG p-value 0.18), (d) Limburg (PG p-value 0.57; PIG 

p-value 0.41), (e) East Flanders (PG p-value 0.74; PIG p-value 0.52), (f) Flemish Brabant (PG p-value 0.76; 

PIG p-value 0.66) and (g) West Flanders (PG p-value 0.33; PIG p-value 0.22) 

 
 

An interesting feature of OD modelling is that the administrative structure allows for various aggregations of 

observed and replicated data with respect to administrative levels and also types of trip. From a statistical 

perspective, the aggregated distributions can be compared with the observed aggregated values, thus resulting in 

Bayesian p-values for case-specific tests. Examples of such tests for incoming trips to the municipality of 

Antwerp, total trips for Flanders and intrazonal trips for the five Flemish provinces are presented in Fig. 4. In 

general, all p-values are within acceptable limits. From a transportation planning perspective, such predictions 

are particularly useful for policy evaluation. 

 

4.5. Predictive inference for link flows 

 

For traffic assignment we utilize the deterministic user equilibrium (DUE) model which is based on Wardrop's 

first principle (Wardrop, 1952), which is also known as the equilibrium principle. In short, DUE assignment uses 

an iterative process to reach a convergent solution in which travellers cannot reduce their travel times by 

switching routes. At each iteration link capacity restraints and link-flow-dependent travel times are taken into 

account to calculate link flows. As link performance function we adopt the common Bureau of Public Roads 

formulation (Bureau of Public Roads, 1964) which relates link travel times to volume-over-capacity, VIC, ratios, 

specifically t = tf{1 + α(υ/c)
β
}, where t is the link travel time, tf is link free-flow travel time, υ is link volume 

(flow), c is link capacity and α and β are calibration parameters which are set equal to their historical values of 

0.15 and 4 respectively. If we denote by A the DUE assignment operator, we execute 500 individual assignments 

from the predictive ODs of each model and obtain 500 corresponding link flow or link volume vectors v, i.e. 

Ay
pred(m)

 = v
(m)

 for m = 1, 2,..., 500, where v
(m)

 = (υ1
(m)

, υ2
(m)

,..., υl
(m)

)
T
 and l is the total number of network links. 

For the Flemish network l is equal to 97450. The assignments concern the morning peak hour interval between 7 

a.m. and 8 a.m. for a normal weekday. 

 

The mean state of the Flemish network under DUE assignment and OD predictions from the PIG model is 

presented in Fig. 5. By 'mean state' it is meant that the 500 link flow vectors were averaged first and then 
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visualized. To make Fig. 5 simpler to comprehend only volumes and V/C-ratios for highway links are 

highlighted. The main findings are as follows. Higher V/C-ratios (between 0.5 and 0.75) are observed in specific 

segments on or near the highways rings of Antwerp (R1) and Ghent (R4). Relatively high V/C-ratios (between 

0.25 and 0.5) also occur on the northern part of highway ring R0 around Brussels, on highway E40 near Leuven, 

highway E313 which connects Antwerp with Hasselt and to a lesser degree on highways E17 and E19 which 

connect Antwerp with Ghent and Brussels respectively. The corresponding visualization map based on PG 

predictions is not presented as it is almost identical to Fig. 5, with differences being difficult to spot on a global 

scale. 

 

An interesting application is the identification of congested links on the network. Congestion identification is 

related to critical link identification, which is customarily a subject of vulnerability analysis and relies 

significantly on traffic assignment procedures (see for example Jenelius et al. (2006)). Through our approach 

congested links are evaluated directly in terms of probability estimates. As congested links we define those links 

on which the V/C-ratio exceeds a certain threshold value t with a certain probability P(V/C > t). As a 

conservative choice and in order not to overestimate the number of critical links a threshold value of 0.95 is 

adopted, based on the assumption that the majority of trips taking place between 7 a.m. and 8 a.m. are either 

work- or school-related trips. For t = 0.95 congestion is identified in 11 links which all belong to large Flemish 

municipalities; five in Antwerp, five in Ghent and one link in Bruges. The V/C-distributions from both models 

are presented in Fig. 6. 

 

Certain remarks can be made, based on Fig. 6, regarding V/C-distributions and consequently link flow 

distributions from DUE assignment. First, the choice of statistical model does not seem to affect individual V/C-

distributions as the corresponding distributions are very similar. Second, individual V/C- and link distributions 

are not necessarily close to normal distributions— for instance bimodalities are observed—in contrast with 

aggregated distributions (e.g. link flows for highways—not presented here) which converge to normality in 

accordance with the central limit theorem. Third, the bimodalities may be attributed to the iterative user 

equilibrium procedure; when the flows on a specific link and at a given iteration exceed a certain threshold—

leading to a high V/C-ratio—and there is an alternative link with a marginally lower cost, then, in the following 

iteration a switch of flows will occur from the high cost link to the low cost link. This 'switching' effect will 

eventually result in bimodal distributions like those observed in Fig. 6. 

 

Seven out of the 11 links have a V/C-value greater than 0.95 with probability 1. Visual examination of the 

distributions in Fig. 6 additionally reveals that these seven links also exceed the value t = 1 with probability 1, 

except perhaps link 106252 which has its minimum near 1 and may therefore include smaller values than 1 with 

a low probability. The remaining four links have lower V/C-ratios and exceed the value 0.95 with a probability 

lower than 1. The expected values and the corresponding probabilities for the 11 congested links are presented in 

Table 6. 

 

Assignment with PG predictions results in slightly higher probabilities for links 22149, 29060, 83662 and 92846. 

We also note that if the analysis was based on the expected values congestion would not have been identified on 

those four links. 

 

Fig. 5. Mean visualization of highway flows and V/C-ratios for going-to-work or school trips between 7 a.m. and 

8 a.m. in Flanders under DUE assignment and PIG OD predictions 

 
 



Published in : Journal of the Royal Statistical Society. Series A Statistics in Society (2015) 

Status : Postprint (Author’s version) 

 

Fig. 6. Kernel estimates of the PG (--------) and PIG (- - -) V/C-distributions of the 11 congested links which 

either include or exceed the threshold value of 0.95 (|) in the distributions which include this value: (a) link 

18641, small regional roads, Antwerp; (b) link 17493, local roads, Antwerp; (c) link 22149, local roads, 

Antwerp; (d) link 28980, highways, Antwerp; (e) link 29060, local roads, Antwerp; (f) link 83662, local roads, 

Ghent; (g) link 83928, highways, Ghent; (h) link 84514, main regional roads, Ghent; (i) link 92846, local roads, 

Ghent; (j) link 92849, local roads Ghent; (k) link 106252, local roads, Bruges 

 
 

Table 6. Expected V/C-ratios and probabilities of exceeding a V/C of 0.95 for the 11 congested links under DUE 

assignment and PG and PIG predictions 

Congested link Link type Results for PG model Results for PIG model 

  E (V/C) P (V/C > 0.95) E (V/C) P (V/C > 0.95) 

16841 Small regional road 1.384 1 1.383 1 

17493 Local road 1.152 1 1.151 1 

22149 Local road 0.935 0.046 0.934 0.022 

28980 Highway 2.114 1 2.114 1 

29060 Local road 0.935 0.046 0.934 0.022 

83662 Local road 0.941 0.236 0.941 0.208 

83928 Highway 1.260 1 1.259 1 

84514 Main regional road 1.144 1 1.144 1 

92846 Local road 0.941 0.236 0.941 0.208 

92849 Local road 1.098 1 1.097 1 

106252 Local road 1.024 1 1.024 1 

 

 

5. Discussion 
 

In this paper we investigated the use of Poisson mixtures in OD modelling as a viable alternative to traditional 

transportation models. The advantages of the approach proposed are that (i) it incorporates the steps of trip 

generation and trip distribution in statistical models which provide a wider inferential scope and (ii) it allows for 

probabilistic inference on link traffic and congestion, conditional on the assignment model. 

 

At the same time, the approach may be viewed as a statistical, direct demand, gravity model, thus retaining a 

strong relationship with traditional transportation models. 

 

The case-study focused on a large, sparsely distributed and overdispersed OD matrix derived from the 2001 

Belgian travel census covering the region of Flanders. In particular, we considered the PG, PLN and PIG models 

as alternative modelling options. The PIG model—a model that is not as popular as its competing alternatives—
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provided the best marginal fit and resulted in consistent short-term predictions. Given the convenient 

distributional properties of the PIG model, we recommend its use when analysing large-scale OD matrices. In 

addition, we investigated the performance of INLA compared with MCMC methods for the PG and PLN models 

and found that the INLA approach can provide fast and accurate approximations. From this point of view, the 

INLA is particularly suited for the PLN, which proved to be the most cumbersome model to work with by using 

MCMC sampling. Further development of the R-INLA package, in terms of prior extensions, will make it a 

useful tool for large-scale OD analysis. 

 

Future research directions concerning transportation issues are many. First, the set of covariates that was used in 

this study is by no means conclusive. As pointed out by one referee the models could improve in terms of 

capturing representation of activities in destination zones. This can be achieved by including the number of 

workplaces and shopping facilities as predictors. This type of information was not available and could not be 

included in the current analysis. Second, the issue of modal split which was not pursued here can be potentially 

incorporated in the modelling approach proposed. A third issue concerns dynamic modelling of short-term OD 

matrices, e.g. analysis of OD matrices on hourly intervals. A fourth category of issues is related to a series of 

traffic assignment comparative studies between the DUE model, which was utilized here, and other assignment 

models such as the stochastic user equilibrium model, conditional on Bayesian predictions. 

 

From a statistical perspective, discrete random effects could have been considered as an alternative approach for 

clustering purposes. This approach was not pursued here as the focus of this study was on modelling and 

capturing the heterogeneity per OD pair. Finally, the PIG model can be of potential value to any other count data 

analysis problem under the presence of overdispersion. From this point of view, it will be interesting to consider 

zero-inflated model extensions and also to compare with other mixing or prior distributional designs. 
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Appendix A: Metropolis-Hastings simulation 
 

We utilize MH simulation on the marginal structures to bypass sampling 94 864 random effects at each MCMC 

iteration. Although sampling u in a Gibbs-like fashion is straightforward for the hierarchical PG and PIG models, 

memory limitations would require discarding u at the end of each iteration. MH sampling for the marginal PG 

and PIG structures is far more efficient with β, θ and ζ being easy to sample, whereas u can be generated 

subsequently as described in Sections 2.1 and 2.3. The PLN model is more problematic since an additional 

Metropolis step or rejection sampling is required for the hierarchical structure, which is an obvious burden for 94 

864 random effects. In contrast, simulation for the marginal PLN structure requires numerical or MC integration 

within the MCMC algorithm and—in addition—vector u is not easy to sample subsequently. 

 

In particular, we employ an independence chain MH algorithm where the location and scale of the proposals are 

fixed (see for example Chib and Greenberg (1995)) to the corresponding ML estimates. For regression vector β a 

multivariate normal proposal is used, i.e. q(β) = Np+1(β
ML

, V
ML

) with β
ML

 being the ML estimate of β and V
ML

 the 

estimated variance-covariance matrix of β
ML

 for each model. For the dispersion parameters θ, σ
2
 and ζ we used 

the following gamma proposals: q(θ) = gamma(aPG, bPG), q(σ
2
) = gamma(aPLN, bPNLNand q(ζ) = gamma(aPIG, 

bPIG) with proposal parameters set to satisfy the conditions aPG/bPG = θ
ML

, aPG/bPG
2
 = var(θ

ML
), aPLN/bPLN = σ

2ML
, 

aPLN/bPLN
2
 = var(σ

2ML
), aPIG/bPIG = ζ

ML 
and aPIG/bPIG

2
 = var(ζ

ML
). Regarding probability calculations from the PLN 

distribution we implemented both numerical and MC integration. Results showed that the MC sample L should 

be preferably 2000 to obtain stable estimates, similar to the estimates from numerical integration, and numerical 

integration was already twice as fast as MC integration with a sample of 200. Therefore, numerical integration 

was preferred. 

 

We utilized five independent MH chains of size 4200 and discarded the first 200 iterations as burn-in, resulting 

in posterior samples of 20 000 draws. The 10th, 30th, 50th, 70th and 90th percentile points of the proposal 

distributions were used as starting values. The resulting acceptance ratios were 72% for the PG model, 67% for 

the PLN model and 33% for the PIG model, on average. The multichain diagnostics of Gelman and Rubin 

(1992) and Brooks and Gelman (1998) were used to asses convergence. All univariate potential scale reduction 
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factors were very close to 1 for all three models. The multivariate potential scale reduction factor for the PG, 

PLN and PIG models were 1.01, 1.01 and 1.06 respectively. Finally, to reduce the computational burden of the 

subsequent analysis the posterior samples were thinned by an interval of 5, resulting in final posterior samples of 

4000 draws. 

 

Implementation of MCMC sampling was done in R version 2.8.2 on a 64-bit Windows server 2003 R2 with 32 

Gbytes of random-access memory. The simulations for the PG and PIG models required approximately 1 and 2.4 

h respectively, whereas the PLN model required 3.6 days owing to numerical integration. 

 

The INLA models based on the prior assumption β ~ N26(0, I26σ
2
), with σ

2
 = 10

3
, were fitted remotely in R 

version 3.0.1 through the Linux server maintained by the INLA support team. The PG model required 

approximately 2.2 h and the PLN model about 2.5 h. The Gaussian approximation was used for both models. 
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