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Abstract. This paper presents the numerical simulation of a cyclic simple shear test.
The blank tested is a high strength steel sheet for which we use three different constitutive
plastic laws derived from Teodosiu’s model. These laws take into account respectively
isotropic, kinematic and mized isotropic-kinematic hardening. The goal of the paper is to

provide a first numerical idea of the stress-strain path in the center of an erperimental
test sample.
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1 INTRODUCTION

The industrial requirements (aerospace, car manufacturing) of lighter parts with high
mechanical resistance, and at the same time high geometrical accuracy, have motivated
the study of metals such as high strength steel and aluminium alloys, and their appropriate
forming process. Forming process involves large strains and severe strain-path changing
and following its modelisation requires complex laws including anisotropy, isotropic and
kinematic hardening as well as texture evolution.

Several essays can be found in literature in order to describe the initial yield locus and
to find parameters required by the hardening laws (for example [12]). Taking as a model
the essay machine designed at University of Twente [13], a bi-axial test machine is being
constructed in the Solid Mechanics Laboratory of the University of Liege. This machine
is able to carry out a plane strain test, shear test (monotonic and cyclic) and a simulta-
neously combination of both, which is very practical when orthogonal path changing is
being studied. In this article, we focus on cyclic shear test and reverse shear test.

The hardening model used is the one proposed by Teodosiu [8] that is a physically-based
microstructural model. It introduces internal variables taking into account the direc-
tional strength of dislocation structures and their polarity to describe both isotropic and
kinematic hardening. For the present, only the comparison between kinematic, isotropic
and mixed hardening will be considered. The influence of the polarity will be neglected
to avoid intrusions between the two kinds of hardening. About the yield locus, three
types of model can be used: Von-Mises or Hill surface to take into account the material
anisotropy and texture-based models (discrete points of the yield locus are computed from
the Taylor’s model). In this paper, we use Hill yield locus. The laws described above have
been implemented in the Finite Element code lagamine developed by M&S department
at University of Liége. It is a non-linear large deformations code for solid mechanics.

A brief description of the model is proposed in section 2. In section 3 the choose of the
different parameter values is explained and a description of the test performed is proposed.
The goal of these tests is to give a first idea: in one hand of the effect of the different
hardening, on the other hand of the behaviour of the numerical simulation.

2 CONSTITUTIVE MODEL

2.1 Description of the model

The model depicted hereafter has been developped by Teodosiu and Hu [8]. It takes
into account the intregranular heterogeneity of the microstructure due to the evolution
of dislocation structures, in addition to the isotropic and non linear kinematic hardening.
This model is here depicted for the anisotropic Hill yield locus but it adapts to other ones.
It depends on four state variables :

P, 3 X, R (1)
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where P depicts the polarity, S the evolution of the dislocation structures, X is the back
stress and R the isotropic hardening. These state variables evolve as following, depending
on the equivalent plastic strain rate "

R = CR (Rsat - R) EP

P=Cy(Ny—P)&

X =Cx (Xm z mLS zc_) 2 2)

Sp = Csp (9(Ssat — Sp) — hSp) &

S, =—Csp (S—L) s, &

Sp) =L

with N, the plastic strain rate direction (Ng = €P/|€P|), Sp the strength of the disloca-
tion structure associated with the currently active slip systems whereas S, is related to
the persistent dislocation structure (S = |S, |).
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o
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The yield equation is given by
F=6-0y—R-m|S|=0 (5)
with
g=1/(c'-X): H: (o' - X) (6)
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In the equations (5) and (6), oo is the initial elastic limit and ¢’ is the deviatoric part of
g, X being deviatoric from the evolution law (2a). The usual flow rule is

. . . '-—-—
épz)\a_Fz)\M (7)
(o4 [0}

with & = (/&P : B : €” to get A = &". In fact in the case of Hill criteria, H is not reversible
and B# H —1. However, working in the five order deviatoric space, it is possible to build
a pseudo reverse matrix B. Thanks to this choice of the equivalent plastic strain rate, the
following energy relation (8) is fulfilled. Indeed, the dissipation power is

@ -x)e=- 203 B _gi_ow ®

For this model, 13 material parameters must be identified Ryqs, Cr, X2, Ssat,Cp, Csp,
Cst, Cx, m,np,q and ng. Note that an alternative to the formulation (2) of the kinematic
hardening is the one proposed by Armstrong and Frederick (see [1] for example):

X =C(se? — X&) (9)

where C is the kinematic hardening parameter speed and s the saturation parameter.
The two formulations differ by the direction of the back stress speed but the last one will
not be investigated in this paper.

In the code lagamine, the integration of the constitutive law is achieved in a local frame
[L1] . Stress tensor is turned to this local frame at the beginning of each step of the non
linear process and turned back to the global frame at the end of the step. The internal

parameters are always expressed in this frame such that no Jauman correctors need to be
added.

2.2 Hardening Laws selection

In view to split kinematic and isotropic hardening, the influence of the evolution of
the dislocation structures matrix S is not taken into account by setting Csp = Cs, = 0.
Fictitious steel parameters are assumed, Cx = 10, Xgqo¢ = 100MPa and Cr = 10,
R,.: = 200M Pq for mixed hardening. The reminding hardening parameters needed in
the computation are m = 1 and ¢y = 126M Pa while the other are not used (Cjp, ny,
ng and g). The elastic behaviour of the high strength steel is assumed to be isotropic:
E = 209880MPa, v = 0.28. For anisotropic Hill’s parameter we use F' = 0.380365,
G = 0.413445, H = 0.586555 and N = L = M = 1.414855.

In the cyclic test, the load is broken up into three phases : the phase 1 is the monotonic
loading, the phase 2 corresponds to the reverse loading and the phase 3 leads back to
the end of the phase 1. This cyclic test is initially performed for a single element, for
which we impose exactly the simple shear strain in the plan of the sheet. True stress/true
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strain in global axes are depicted figure 1 below. The hardening parameters values are
chosen such that the saturation is not reached at the end of the monotonic loading (here
10% strain). The ”single” kinematic or isotropic hardening parameters have been fitted
on the monotonic loading obtained for mixed hardening. We get respectively Cr = 0,
Cx = 10.1405, Xg,; = 295.5413M Pa for single kinematic and Cx = 0, Cr = 10.1405,
Ryt = 295.5413M Pa for single isotropic.

— mixed
T o o T g ) - [gotropic
015 0 / -0.05 b o.g/ 1 0145 |—kinematic

true stress (MPa)
™

Figure 1: Hardening in simple shear test - 04y /€5y in global axes - for a single 3D isoparametric element

In the case of kinematic hardening the slopes are different from the end of the previous
phase to the beginning of a new one. Indeed, equation (2) shows that X depends on
¢ — X. For a unidimensional problem in the shear direction, it means that if X is the
same, o changes from g, = o9 + X (ie 01 — X = 0¢) at the end of the phase 1 to
o3 = 01 — 209 = X — 0y (ie 02 — X = —0p) at the beginning of the phase 2. Using the
equation (2) with & = oy we get X /08P = Cx(Xgq — X) at the end of the phase 1 while
0X/0e? = Cx(—Xgq — X) at the end of the phase 2. This phenomena does not appear
in the case of isotropic hardening since R depends only on R.

3 FEM simulation

In this section, we modelise the cyclic shear test of a steel sheet. The dimensions of
the sample are respectively 30 mm for the length, 3 mm for the width and 1 mm for the
thickness. The sheet is 3D meshed as shown on figure 2, = being the rolling direction and
y the transverse direction. Only 0.5mm in the thickness is meshed because of symmetry.
One face zz is jammed while on the opposite, y displacements are blocked and z dis-
placements are imposed. We use an isoparametric, 8 nodes, 1 integration point element.
The computation is not trivial to perform because of strain localization and hour glass
deformation. This is why the mesh is not structured. Like in the previous section, loading
is split in three phases. We present on the figure 3, o,, stress component at the end of
the cycle, for a 3mm displacement.
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Figure 2: 3D mesh for a sheet
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Figure 3: shear stress o4, in the deformed mesh at the end of a cycle

Two cases are studied: in the first one a 1mm displacement is imposed to avoid saturation
(Ezy maz = 0-12) and in the second one a 3mm displacement (€zy maz = 0.43) is imposed,
which is the width of the sample. For both, cyclic test is performed for the three sets of
parameters. For each of them, we exhibit the force with respect to the displacement in
the figures 4a and 5a. Moreover we extract mechanical values from an element chosen in
the center of the sheet. We exhibit true strain-true stress curves on the figures 5b and 5b.

These results show clearly the behaviour of the kinematic hardening (Baushinger ef-
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Figure 4: displacement 1mm a. force/displacement b. true stress/true strain in the heart of the sample
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Figure 5: displacement 3mm a. force/displacement b. true stress/true strain in the heart of the sample

fect) and of the isotropic one. In the case where saturation is attempted before the end of
the monotonic loading (figure 5), the two hardenings have only effects in a reduced area,
when the material goes in plasticity at the beginning of the different phases. This shows
that the reverse phase is compulsory to determine the set of parameters Cx, Xsa, Cr
and RSat-

A light softening is observed at then end of the different phases in figures 5. However,
the plastic limit oy + r reaches saturation without softening. More investigation will be
performed to well understand this behaviour.

From an experimental standpoint, this simulation exhibits a large homogeneous deforma-
tion zone and a force/displacement curve having the same shape as the strain/stress one,
which shows that the edge effects has a negligible influence.

4 CONCLUSION

In this article, we have shown a simulation of an ordinary test where the most simple
hardening parameters where studied. In future, more complicated tests(orthogonal test
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and simultaneous shear plane strain test) will be simulated and compared with more
elaborated hardening laws and yield locus descriptions. The final goal is a good knowledge
of the different models in view to apply inverse method efficiently.

Aknowledgements

As Senior Research Associate of National Fund for Scientific Research, AM Habraken
thanks this Belgian research fund for its support. This work has been performed in the
programme " Ples d’attraction interuniversitaires” granted by Belgian state.



Pierre de Montleau, Laurent Duchéne, Paulo Flores and Anne-Marie Habbraken

REFERENCES
[1] Khan, S., Huang S.: Continuum theory of Plasticity. J. Whiley & Sons, Inc (1995).

[2] Harbraken, A-M.: Contribution to constitutive laws of metals: micro-macro and
damage models. Thesis (2001).

[3] Arnold, G., Hubert, O., Billardon, R.: Identification of kinematic and isotropic hard-

enings using a pure bending test machine. The 5th International Esaform, 2002, pp.
507-510.

[4] Weyler, R., Duffett, G., de la Cruz, C.: Effect of material hardening on springback
problems in sheet metal forming . The 5th International Esaform, 2002, pp. 527-530.

[5] Bouvier, S., Haddadi, H.: Modelling the behaviour of a bake-hardening steel using a
dislocation structure based model. The 4th International Esaform, 2002, pp. 429-432.

[6] Reis, A., Santos, A.D., Ferreira Duarte J., Rocha A.B., Say-Yi Li, Horfelin, E., Van
Bael A., Van Houtte, P., Teodosiu, C.: Experimental validation of a new plasticity

model of texture and strain-induced anisotropy. The 4th International Esaform, 2002,
pp. 433-436.

[7] Lemaitre, J., Chaboche, J-L.: Mcanique des Matriaux solides. Dunod, 2e dition,
2001, pp. 163-251.

[8] Teodosiu, J., Hu, Z.: Evolution of the intergranular microstructure at moderate and
large strains: modelling and computational significance. in Simulation of material
processing: theory, methods and application (Proc. NUMIFORM’ 95) ed. S.F Shen
and P.R. Dawson, Balkema, Rotterdam, pp. 173-182.

[9] Duchéne, L.: Rapport de programmation de la loi Hill3D. Octobre 2001.

[10] Bouvier, S., Teodosiu C., Haddadi H., Tabacaru V.: Anisotropic Work-Hardening
Behaviour of Structural Steels and Aluminium Alloys at Large Strains. EMMC6
Lige 2002, pp. 329-336.

[11] Munhoven, S.: Velocity gradients and local axes in three-dimensional finite element
simulations. M.S.M Internal Report N 219, April 1995.

[12] Rauch, E. F.: Plastic anisotropy of sheet metals determined by simple shear tests.
Material Science and Engineering A241 1998, pp. 179-183.

[13] Pijlman, H.H.: Sheet material characterization by multi-axial experiments. Doctoral
Thesis presented at the University of Twente, The Neederlands 2001.



