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a b s t r a c t 

Multivariate classification is used in neuroimaging studies to infer brain activation or in medical applications 

to infer diagnosis. Their results are often assessed through either a binomial or a permutation test. Here, 

we simulated classification results of generated random data to assess the influence of the cross-validation 

scheme on the significance of results. Distributions built from classification of random data with cross- 

validation did not follow the binomial distribution. The binomial test is therefore not adapted. On the 

contrary, the permutation test was unaffected by the cross-validation scheme. The influence of the cross- 

validation was further illustrated on real-data from a brain–computer interface experiment in patients with 

disorders of consciousness and from an fMRI study on patients with Parkinson disease. Three out of 16 

patients with disorders of consciousness had significant accuracy on binomial testing, but only one showed 

significant accuracy using permutation testing. In the fMRI experiment, the mental imagery of gait could 

discriminate significantly between idiopathic Parkinson’s disease patients and healthy subjects according to 

the permutation test but not according to the binomial test. Hence, binomial testing could lead to biased 

estimation of significance and false positive or negative results. In our view, permutation testing is thus 

recommended for clinical application of classification with cross-validation. 
c © 2014 Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ). 

1. Introduction 

In the last few years, there has been a growing interest in the 

statistical assessment of classification results in biomedical appli- 

cations. Machine learning approaches are now increasingly used to 

study brain function ( Etzel et al., 2009 ; Pereira et al., 2009 ; Lemm et 

al., 2011 ) and have been proposed as a diagnostic and prognostic tool 

for patients (e.g., in the field of severe brain injury see ( Phillips et al., 

2011 ; Galanaud et al., 2012 ; Luyt et al., 2012 ; Lule et al., 2013 ) or 

Parkinson disease ( Focke et al., 2011 ; Orru et al., 2012 ; Schrouff et al., 

2012 ; Garraux et al., 2013 ; Schrouff et al., 2013 )). Such classification 

machines have also been designed for many other applications such 

as analyzing DNA microarray and predicting tumor subtype and clin- 

ical outcome ( Golub et al., 1999 ; Simon et al., 2003 ). Limitations and 

controversies of these approaches have been recently highlighted in a 
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study using brain–computer interfaces (BCIs) to unravel signs of con- 

sciousness in patients with disorders of consciousness ( Cruse et al., 

2011 ; Goldfine et al., 2013 ). A statistically significant classification ac- 

curacy is one where we can reject the null hypothesis that there is no 

information about task, patient diagnosis or outcome in the data from 

which it is being predicted. In a two-class problem with an equivalent 

number of elements in each class, e.g., disease vs. no-disease, the the- 

oretical chance level, which is valid in the case of an infinite number 

of trials, is 50%. In practice, we only have a limited number of trials, 

which can be in the order of 10, due to patient fatigue. If a specific set 

of features can classify the data with for example 58% accuracy, the 

question is whether this accuracy is trustworthy. To tackle this issue, 

several approaches have been proposed in the literature. 

A frequently used method is based on the binomial distribution 

( M ̈uller-Putz et al., 2008 ; Pereira et al., 2009 ; Billinger et al., 2013 ). 

With a limited number of trials, the results of a classifier are seen as 

the results of tossing a coin, an unfair coin, which can be modeled as 

a Bernoulli trial with probability p = 50% of success. The probability 

of achieving k successes out of N independent trials is given by the 

2213-1582/ $ - see front matter c © 2014 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license ( http: // creativecommons.org / licenses / by-nc-nd / 
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binomial distribution. Knowing the distribution and a given p -value, 

we can compute a lower bound for any classification accuracy. If 

the lower bound is higher than the chance level, we can reject the 

hypothesis that the accuracy was obtained by chance. Here, we are 

only interested on the accuracies higher than the chance level. We 

are not interested in the chance of coincidental deviations below the 

expected 0.50 because we would not pretend our features contain 

information in that case. Another approach is based on the Pearson 

chi-square coefficient ( Kubler and Birbaumer, 2008 ). However, for 

small number of trials, as it is often the case in the neuroimaging and 

electrophysiology literature, this approach is not reliable ( Pereira et 

al., 2009 ) and matches the binomial test for higher number of trials 

( Howell, 2012 ). 

Alternatively, permutation test based methods ( Good, 2005 ) have 

been employed ( Mukherjee et al., 2003 ; Etzel et al., 2009 ; Pereira et al., 

2009 ; Schrouff et al., 2013b ). A permutation test is a non-parametric 

test that has also been proposed as a substitute to the Student t -test 

in functional neuroimaging ( Nichols and Holmes, 2002 ) and electro- 

physiology ( Maris and Oostenveld, 2007 ) experiments. A permutation 

test estimates the distribution of the null hypothesis from the data. 

Assuming that there is no class information in the data, the labels are 

randomly permuted and the accuracy computed with the new labels. 

As the new labels are random, the new accuracy estimate is expected 

to reflect the chance distribution. The permutation is repeated hun- 

dreds to thousands of times. Then, the p -value is given by the fraction 

of the sample that is larger than or equal to the accuracy actually 

observed when using the correct labels. 

To estimate classification accuracy, ideally, the original data are 

split into two independent, complementary subsets: a training set 

(which is used to train the classifier and to define all parameters) 

and a testing set (which is used to validate the results). In practice, 

with small datasets, a cross-validation (CV) scheme is often used. The 

process of splitting the data into two is repeated several times using 

different partitions. The results obtained from all partitions are then 

averaged ( Lemm et al., 2011 ). The classification accuracy can then be 

tested. Following common practice ( Pereira et al., 2009 ; Pereira et al., 

2011 ), the accuracy estimate obtained through a CV could be treated 

as if it came from a single classifier. In that case, the binomial test sees 

all accuracies as independent. 

In the following, we will show on simulated and real data that the 

CV scheme has an effect on the calculation of the chance level and that 

this influence is accounted for by the permutation test but not by the 

binomial test. We will first present results from simulated data illus- 

trating the influence of the CV scheme. Next, we will exemplify how 

this may influence the “diagnosis” of patients with disorders of con- 

sciousness on real data from a previous EEG-based brain–computer 

interface (BCI) study ( Lule et al., 2013 ). We will then further illustrate 

the influence with an fMRI study on activation patterns in Parkinson’s 

disease ( Cremers et al., 2012 ; Schrouff et al. , 2012 , 2013a ). Finally, we 

will discuss some hypotheses underlying the observed differences be- 

tween classification testing methods. Our simulations make a simpli- 

fying assumption, e.g. type of features, and our example from real data 

does not cover all possible data source and classification approaches, 

but the issues presented here are quite general and apply to studies 

employing a cross-validation scheme to estimate the accuracy of the 

data. 

2. Material and methods 

2.1. Simulated data 

To test the validity of the binomial and permutation tests to assess 

classification accuracy, we generated random datasets for a two-class 

problem. We simulated three cases. First, we tested several scenar- 

ios with low number of features and trials. Second, we tested the 

influence of the number of repetitions of the CV scheme. Third, we 

tested scenarios with high number of features and low number of 

trials as often the case in the neuroimaging literature. The genera- 

tion of the random data and the classifiers used built-in MATLAB (The 

MathWorks, Natick, MA, USA) functions ( rand, randperm, classify ) 1 

and libsvm functions ( Chang and Lin, 2011 ). Datasets were generated 

with 10,000 simulations. Each simulation included two sets with an 

equal number of trials. Trial number was 100, 50 or 30. Trials of the 

100 trial set (respectively 50 and 30 trial sets) had 40 features (re- 

spectively 20 and 10). Features and labels were randomly assigned 0 

and 1 ( rand function thresholded at .5). We tested four CV schemes. 

In an ideal CV scheme, all possible partitions of the data should be 

tested. This is the case for the leave-one-out (LOO) CV but in prac- 

tice for classical N-fold CV schemes it is computationally intractable. 

Nevertheless, repeating the N-fold CV several times with different 

partitions is recommended and can reduce the variance of the es- 

timator ( Efron and Tibshirani, 1997 ; Etzel et al., 2009 ; Lemm et al., 

2011 ). The CV schemes were LOO, 10-fold, 5-fold and 2-fold CVs. The 

first three are the most used and recommended in the literature (e.g., 

Lemm et al., 2011 ). The 2-fold CV is an extreme case at the opposite 

of the LOO CV. A linear discriminant analysis and a support vector 

machine ( Burges, 1998 ) with linear kernel classified the data. 

To compute the binomial lower bound, the binomial distribution is 

often approximated by a normal distribution; for example to compute 

the Wald interval or adjusted Wald interval ( Kohavi, 1995 ; Martin and 

Hirschberg, 1996 ; Berrar et al., 2006 ; Billinger et al., 2013 ). However, 

the approximation of the binomial distribution by the normal distri- 

bution is only valid whenever the number of trials N and the accuracy 

p satisfy the following equation: N × p × (1 − p ) > 5 ( Berrar et al., 

2006 ). In the absence of problem specific knowledge, the best choice 

for estimation of the bound is derived from Jeffreys’ Beta distribution 

( Martin and Hirschberg, 1996 ; Berrar et al., 2006 ). This approxima- 

tion is adequate for 10 ≤ N ( Martin and Hirschberg, 1996 ). The bino- 

mial lower bound ( λ) was computed using Jeffreys’ Beta distribution 

( Berrar et al., 2006 ) as follows: 

λ ≈
{ 

a + 

2 ( N − 2 m ) z 
√ 

0 . 5 

2 N ( N + 3 ) 

} 

− z 

√ 

a ( 1 − a ) 

N + 2 . 5 

where N is the number of trials, m is the number of successful 

trials, a is the estimated accuracy and z is the z -score (1.65 for one 

sided test with p < .05 (resp. 2.33 for p < .01)). 

The permutation test ( Good, 2005 ) was based on 999 permutations 

plus the original accuracy ( Ojala and Garriga, 2010 ). Only accuracies 

higher than 0.5 were assessed using permutation testing. We did not 

compute permutation test for accuracies smaller or equal than 0.50 

because we would not pretend that our classifications contain in- 

formation in that case. The permutation test consisted of randomly 

exchanging the label and classifying the data with the CV scheme. 

The p -value was calculated as the sum of all values of the permuta- 

tion distribution equal or higher than the results of the original data 

divided by the number of permutations. 

In a first experiment, 12 datasets were built, three for each of the 

four CV schemes with 100, 50 or 30 trials, and with 10,000 simu- 

lations each. Every simulation involved two subsets with an equal 

number of trials and features. First, the classification accuracy of the 

trials from the first subset obtained with linear discriminant analysis 

was assessed with a chosen CV scheme ( Fig. 1 A). The distribution of 

accuracies obtained from all simulations was called: CV distribution. 

Second, to build an empirical binomial distribution, all trials from the 

first subset were used to train a classification algorithm which was 

applied to the second, independent, subset ( Fig. 1B ). A third distribu- 

tion, the CV-independent distribution, was built by applying a mixed 

CV scheme where the N-1 training folds came from the first subset 

1 The MATLAB code can be found at https: // github.com / CyclotronResearchCentre / 

BinomPermTest . 
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and the test fold came from the second subset ( Fig. 1C ). At each step 

of the CV, the classifier trained on N-1 folds from the first subset was 

applied on a fold from the second subset. Differences between com- 

puted distributions and binomial distribution were assessed with a 

chi-square goodness-of-fit test ( Howell, 2012 ). Results were consid- 

ered significant at p < .05 with a Bonferroni correction for multiple 

comparison. In a second experiment, we further tested the influence 

of the number of repetition of the CV scheme on the binomial test. 

Datasets with 10,000 simulations, each containing 100 trials with 40 

features, were generated as explained above. The CV schemes were 

tested without repetition and with 5, 10 and 20 repetitions to test the 

influence of the number of repetitions. A linear discriminant analysis 

classified the data. In a third experiment, we tested the influence of 

the number of features. To evaluate the binomial test, datasets with 

10,000 simulations, each containing 100 trials, were generated as ex- 

plained above. We tested the classification accuracy with 40, 100, 

400, 1000 and 4000 features. These configurations with more fea- 

tures than trials are often the case in neuroimaging studies. To better 

accommodate the increasing number of features, a support vector 

machine with linear kernel classified the data. Classification accuracy 

was estimated with LOO CV. To evaluate the permutation test, we 

generated datasets with 1000 simulations, each containing 100 trials. 

Classification accuracy was estimated with a support vector machine 

and a LOO CV. The difference in number of simulations is due to the 

time of the permutation test. “1000 simulations” with the permuta- 

tion test mean fifty million classifications. Each simulation generates 

100 classifications with the LOO CV. On average, half of the simu- 

lations have a classification accuracy above 0.5 which are tested for 

significance with a permutation test (500 simulations × (1 + 999 

permutations) × 100 classifications with the LOO CV). The other half 

are not tested for significance (500 simulations × 100 classifications). 

On the contrary, “10,000 simulations” with the binomial test mean 

only 1 million classifications (10,000 simulations × 100 classifica- 

tions with the LOO CV). 

2.2. Brain–computer interface diagnostic application 

In a recent study ( Lule et al., 2013 ), we used a stepwise linear dis- 

criminant analysis (LDA) to classify data from an EEG-based brain–

computer interface (BCI) experiment with severely brain-damaged 

patients who had survived a coma. The experiment aimed at correctly 

diagnosing non-responding patients by determining if they were able 

to respond to command using a motor-independent BCI method. Re- 

sponse to command differentiates patients in a minimally conscious 

state from patients in a vegetative state / unresponsive wakefulness 

syndrome ( Laureys and Schiff, 2012 ). We studied 16 severely brain 

damaged patients who had survived a coma. Thirteen were diag- 

nosed with minimally conscious state (aged 42 ± 21 years, 9 males, 

5 of traumatic etiology, mean time postinjury 70 ± 109 months) 

and three patients were in a vegetative state / unresponsive wakeful- 

ness syndrome (aged 61 ± 17 years, 2 males, 2 with anoxic etiol- 

ogy, time postinjury 10 ± 15 months). An auditory P3 four-choice 

speller paradigm was used ( Sellers and Donchin, 2006 ; Furdea et al., 

2009 ). Patients were presented with four stimuli (“yes”, “no”, “stop”, 

“go”) in a random sequence. Each trial encompassed 15 presenta- 

tions of four words (60 words in total). The order of presentation was 

pseudo-randomized (sound duration: 400 ms; inter-stimulus inter- 

val: 600 ms, a trial lasting about 1 min). The participants’ task was 

to count the number of times a target, either “yes” or “no”, was pre- 

sented. Stimulus presentation and data collection were controlled by 

the BCI2000 software 2 ( Schalk et al., 2004 ). The EEG was recorded 

using an Ag / AgCl electrode cap with 16 channels (F3, Fz, F4, T7, T8, C3, 

2 http: // www.bci2000.org / . 

Cz, C4, Cp3, Cp4, P3, Pz, P4, PO7, PO8, and Oz) based on the interna- 

tional 10–20 system ( Sharbrough et al., 1991 ). Each channel was ref- 

erenced to the right and grounded to the left mastoid. The recordings 

were divided in a training session and a question session. The training 

session lasted 4 trials, and participants were instructed to concentrate 

on either the “yes” or the “no” word. During the question session, par- 

ticipants had to respond to 10 questions with known answers using 

the BCI. Amplitude values from particular channel locations and time 

samples were classified with a stepwise linear discriminant analysis 

method ( Farwell and Donchin, 1988 ; Donchin et al., 2000 ; Krusienski 

et al., 2006 ). Offline, all data were pooled together and a LOO scheme 

was used to determine the classification accuracy of each participant. 

From the 16 patients, 3 patients obtained an accuracy above chance 

level following the binomial test (accuracy equal or above 50% for a 

theoretical chance level at 25% and 14 trials). Two patients obtained 

an accuracy of 50% (7 / 14 questions) and one reached 57% (8 / 14 ques- 

tions). These 3 patients were in a minimally conscious state. Here, we 

reassessed the previously published data with a permutation test (999 

permutations) with a LOO CV and a 2-fold CV with 10 repetitions. We 

used a 2-fold CV scheme as it was one of the only possible partition 

of 14 trials and quite different from the LOO CV. The labels of the data 

were randomly exchanged within each trial. Results were considered 

significant at p < .05. 

2.3. Discriminant BOLD activation patterns in Parkinson’s disease 

Recently, we used BOLD fMRI to study the brain activation pattern 

underlying mental imagery of walking in idiopathic Parkinson’s dis- 

ease as compared with healthy controls ( Cremers et al., 2012 ; Schrouff 

et al., 2012 ; Schrouff et al., 2013 ). Behavioral and brain imaging data 

acquisition and processing have been described in Cremers et al. 

(2012) . In brief, participants enrolled in this study were 14 patients (8 

males; aged 65.1 ± 9.5 years) diagnosed with idiopathic Parkinson’s 

disease ( Hughes et al., 1992 ) with different degrees of severity of gait 

disturbances and 15 controls matched for age (63.8 ± 8.1 years) and 

gender (7 males). Before fMRI, all participants were trained to walk 

comfortably and then briskly on a 25 m path and to mentally rehearse 

themselves walking on the path. Brain activity changes were recorded 

using BOLD fMRI during three main experimental conditions: mental 

imagery of standing (STAND), walking at a comfortable pace (COMF) 

and walking briskly (BRISK). Eight trials of each condition (12 for 

BRISK to account for shorter trial duration) were randomly presented 

within and between subjects. The COMF and BRISK conditions were 

self-paced, subjects indicating when they had completed each trial by 

a key press, while each trial of the STAND condition was constrained 

by the duration of the previous COMF trial. fMRI data preprocess- 

ing and first-level univariate analyses were performed using SPM8 3 

as previously reported ( Cremers et al., 2012 ). Three images per sub- 

ject were generated from these first-level fMRI analyses representing 

BOLD signal changes associated with STAND, COMF and BRISK condi- 

tions, respectively. 

We aimed to assess whether the multivariate analysis of these 

images using binary SVM ( Burges, 1998 ) as implemented in PRoNTo 4 

could be used to accurately discriminate patients from controls. A 

leave-one-subject per group out CV was performed to compute model 

performance, its significance being assessed by a permutation testing 

using 1000 permutations. Either all voxels within the brain served 

as features (140,305 voxels), or only voxels from the areas involved 

in gait (both in healthy subjects and in patients), as described in 

Table 1 of Maillet et al. (2012) (“motor mask”, 45,825 voxels). The 

between group classification was based on either individual task (e.g., 

STAND in controls vs. STAND in patients) or a combination of task (e.g., 

3 http: // www.fil.ion.ucl.ac.uk / spm . 
4 http: // www.mlnl.cs.ucl.ac.uk / pronto . 
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Fig. 1. For each simulation, three distributions of accuracies were computed. The CV distribution (A) was computed through the estimation of accuracy with a CV scheme. Here a 

5-fold CV with repetition is used as an example. The empirical binomial distribution (B) was computed by training the classification algorithm on the first subset and testing on the 

second, independent, subset. In the CV-independent distribution (C), the classification algorithm was trained on N-1 fold from the first subset and the accuracy estimated on one 

fold from the second subset. 

BRISK + COMF in controls vs. BRISK + COMF in patients). Here, we 

reassessed the previously published data with a binomial test. Results 

were considered significant at p < .05. 

3. Results 

3.1. Simulated data 

Results of the first experiment on evaluating binomial and permu- 

tation tests with a two-class problem and low number of features and 

trials are shown in Fig. 2 for the 10-fold CV with 100 trials and 40 fea- 

tures, and Table 1 for the LOO, 10-fold, 5-fold and 2-fold CVs with 100, 

50 and 30 trials. The binomial lower bound is 59% accuracy for 100 

trials with significance level p < .05 (62% accuracy at p < .01) inde- 

pendently of the CV scheme. For the simulations with 50 and 30 trials, 

the lower bound at p < .05 was, respectively, 62% and 65% (67% and 

71% at p < .01). All computed distribution differed significantly of the 

binomial distribution (chi-square goodness-of-fit test, p < .05). LOO 

CV produced the widest distribution. More than 8% of the accuracy 

values from random data were above the binomial accuracy lower 

bound at p < .05, and 3% at p < .01. 10 × 10-fold CV also produced a 

wider distribution than the binomial distribution. The 10 × 5-fold CV 

distribution was closest to the binomial distribution. The 10 × 2-fold 

CV produced a distribution narrower than the binomial distribution 

with 0–1% of the random data above the binomial accuracy lower 

bound at p < .05 and 0% above the lower bound at p < .01. For the 

permutation test, the percentage of p -values below .05 and .01 was 

less than 5% and 1% respectively for all CV schemes. For all datasets, 

the empirical distribution matched the binomial distribution. The CV- 

independent distribution matched the binomial distribution with the 

LOO scheme. For all other schemes, the CV-independent distribution 

differed significantly from the binomial distribution ( Fig. 3 ). 

In the second experiment, the distributions built from the 4 CV 

schemes without repetition were wider than the binomial distribu- 

tion ( Fig. 4 ), with the LOO CV showing the most deviation. Repeating 

the CV narrowed the cumulative distribution function (CDF) of the 

10-fold ( Fig. 5 ), 5-fold and 2-fold CVs resulting in a mixed effect. The 

number of repetition had an influence up to 10 repetitions, increasing 

the number of repetitions to 20 changed only slightly the distribu- 

tion. In the third experiment, the distributions estimated with LOO CV 

and 100 trials narrowed with the increased number of features. The 

binomial test evolved from being not enough conservative to being 

too conservative ( Table 2 ). For the permutation test, the percentage 

of p -values below .05 and .01 was less than 5% and 1% respectively for 

all number of features ( Table 3 ). 

Fig. 2. Histogram of the distribution of the classification accuracy (bars; left axis) and 

p -values from the permutation test (for accuracy > .5; dots; right axis) for 10,000 

simulations with 100 trials, 40 features, 10 × 10-fold cross-validation. The vertical 

thick line illustrates the binomial test lower bound and the horizontal thick line shows 

the permutation test accuracy level at p < .05. 

Fig. 3. Cumulative distribution functions (CDFs) of classification accuracy values ob- 

tained using a classifier trained on N-1 fold of one subset and applied on a fold from an 

independent subset. Classification accuracy values obtained from 10,000 simulations 

with 100 trials and 40 features. The leave-one-out independent CDF overlaps with 

the binomial CDF. Note that the 10-, 5- and 2-fold independent CVs show a narrower 

distribution. 

3.2. Brain–computer interface diagnostic application 

As presented in the original paper, three patients had an accuracy 

of 50%, 50% and 57% with the LOO CV. These three accuracies are above 

the binomial lower bound (above or equal to 7 / 14 compared to a the- 

oretical chance level at 25%). Their permutation p -values were .06, 

.08 and .03 respectively. When reanalyzing the three patients’ data 

with the 2-fold CV, they obtained an accuracy of 6%, 31% and 39%. 
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Table 1 

Percentage of the 10,000 simulations with results thresholded for significance at p < .05 and p < .01 for the binomial and permutation tests. The simulations included either 100, 

50 or 30 trials with, respectively, 40, 20 or 10 random features and randomly assigned binary labels. Lower bound thresholds for binomial test were computed using Jeffreys’ priors. 

Permutation tests used 999 permutations. Cross validation schemes included leave-one-out (LOO), 10-fold, 5-fold and 2-fold cross validations. Folding and computing classification 

was repeated 10 times with different folds. 

CV scheme # of trials Binomial Permutation 

p < .05 p < .01 p < .05 p < .01 

LOO 100 8% 3% 4% 1% 

50 10% 3% 4% 1% 

30 9% 3% 4% 1% 

10 × 10-fold 100 7% 2% 5% 1% 

50 7% 2% 5% 1% 

30 7% 2% 5% 1% 

10 × 5-fold 100 5% 1% 5% 1% 

50 4% 1% 5% 1% 

30 5% 1% 5% 1% 

10 × 2-fold 100 0% 0% 5% 1% 

50 1% 0% 5% 1% 

30 1% 0% 5% 1% 

Table 2 

Percentage of the 10,000 simulations with results thresholded for significance at p < .05 and p < .01 for the binomial tests. The simulations included 100 trials with random 

features and randomly assigned binary labels. Lower bound thresholds for binomial test were computed using Jeffreys’ priors. Classification accuracy was estimated with a support 

vector machine with linear kernel and a leave-one-out cross validation. 

# of features p < .05 p < .01 

40 13% 7% 

100 7% 3% 

400 8% 3% 

1000 6% 2% 

4000 5% 2% 

10,000 2% 1% 

Table 3 

Percentage of the 1000 simulations with results thresholded for significance at p < .05 and p < .01 for permutation tests. The simulations included 100 trials with random features 

and randomly assigned binary labels. Permutation tests used 999 permutations. Classification accuracy was estimated with a support vector machine with linear kernel and a 

leave-one-out cross validation. 

# of features p < .05 p < .01 

40 4% 1% 

100 4% 1% 

400 5% 1% 

1000 4% 1% 

4000 4% 1% 

10,000 4% 1% 

Fig. 4. Cumulative distribution functions for the binomial, leave-one-out, 10-fold, 5- 

fold and 2-fold cross-validations for 10,000 simulations of 100 trials with 40 features 

without repetition. 

All accuracies were below the binomial lower bound but the permu- 

tation p -values were .94, .17 and .046, respectively. The histograms 

of permuted accuracy for the patient with highest accuracy for the 

LOO and 2-fold CV are reported in Fig. 6 . Both histograms peak at 0.25 

which is the theoretical chance level. The use of a 2-fold CV narrowed 

Fig. 5. Cumulative distribution functions for the binomial and the 10-fold cross- 

validated data with 1, 5, 10 and 20 repetitions for 10,000 simulations of 100 trials 

with 40 features. 

the histogram. The binomial significant level at p < .05 (50%) was too 

wide for the LOO CV (8% of the data above the limit) and too narrow 

for the 10 × 2-fold CV (less than a 1% of the data above the limit) as 

compared to the accuracies obtained by permutation testing. 
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Fig. 6. Clinical data obtained from a patient with significant diagnostic accuracy using 

a BCI. Histogram of accuracies obtained with permutation testing for the leave-one-out 

cross-validation (black) and the 2-fold cross-validation (gray). The vertical line shows 

the binomial lower bound (50%) for significant accuracy at p = .05. 

3.3. Discriminant BOLD activation patterns in Parkinson’s disease 

Overall, using all brain voxels led to a poor discrimination be- 

tween idiopathic Parkinson’s disease patient and controls. The bino- 

mial lower bound for 29 trials with equal probability of both classes is 

66%. The estimated balanced accuracies with the different configura- 

tions of features were all below the binomial lower bound ( Table 4 ). 

However, using the permutation test, one combination of features 

(BRISK + CONF) with accuracy reaching 62% was significant. The 

normalized weights from the classifier had a good overlap with the 

results from the univariate analysis ( Schrouff et al., 2013 ). Slightly 

better results were obtained while decreasing the number of features 

with the motor mask, as shown by a higher balanced accuracy for the 

BRISK–COMF combination, as well as for the BRISK condition both 

significant at p < 0.05 with the permutation and binomial tests. 

4. Discussion 

Our results on artificially generated random data and real clinical 

data illustrate that the CV scheme has an influence on the statistical 

significance of obtained classification accuracies. This influence seems 

to bias results from binomial testing. The permutation test took the 

cross-validation scheme into account and was therefore not biased. 

We hypothesize that the observed differences between CV distribu- 

tion and binomial distribution are due to counterbalancing factors. A 

first factor is the decreased independence among trials, a key assump- 

tion of the binomial testing, in CV scheme. The influence of this factor 

is well illustrated in the extreme case of the LOO scheme or using CV 

without repetition. A second factor is that the repetition of the CV 

scheme virtually increases the number of test examples. This is illus- 

trated through the change in the CV-independent distributions. The 

number of repetitions and the CV-scheme both influence the size of 

the test set. In turn, the size of the test set influences the significance 

of the test, as a random classifier is less likely to maintain the same 

level of accuracy on an extended test set. This has been previously 

shown for the permutation test ( Mukherjee et al., 2003 ) and is repro- 

duced here using a real dataset. The 2-fold CV with 10 repetitions had 

a narrower distribution than the LOO CV ( Fig. 6 ); therefore smaller 

accuracy could be significant. The reported simulated data here also 

illustrate this effect for the distribution of classification accuracies. 

A third factor is the number features. Increasing the number of fea- 

tures narrowed the CV distribution in our third simulation study. This 

effect was also illustrated in the Parkinson disease dataset where, 

despite the use of a LOO CV, the permutation distribution was nar- 

rower than the binomial distribution. High number of features makes 

the classifier more prone to generalization problem. The classifier has 

more chance to pick features that correlate well with training data 

but not with test data. The final accuracy is therefore less likely to be 

high. A feature selection method to reduce dimensionality ( Lemm et 

al., 2011 ), a priori knowledge, or a regularization method may help 

reducing over-fitting. In our fMRI dataset, physiological a priori infor- 

mation helped reducing the features set and improved the classifica- 

tion. The feature selection or regularization method must be included 

in the CV loop and may also influence the CV distribution. Another 

factor which may influence the distribution of classified accuracies 

is the classifier. We show that the distributions build with LOO CV 

and with LDA and SVM classifiers yielded slightly different results for 

simulated data with 100 trials with 40 features. 

It is important to stress, that the results and conclusions presented 

here were obtained on small dataset but with number of trials often 

found in neuroimaging or brain–computer interface studies. These 

results are not in line with current common practice ( Pereira et al., 

2009 ; Pereira and Botvinick, 2011 ) which treats the accuracy obtained 

through cross-validation as if it came from an independent dataset, 

and then test it in exactly the same way. One more point to take into 

consideration with small dataset is the stability of the classifier. The 

independence of accuracies obtained through cross-validation holds, 

as long as the classifier is stable under the perturbation induced by 

deleting one of the folds from the data in a cross-validation scheme 

( Kohavi, 1995 ). A classifier is stable for a given dataset and set of 

perturbations if it makes the same prediction with the perturbed 

datasets. This is most probably not the case for small datasets. How 

large should be a dataset to prevent these issues should be the subject 

of further studies. 

Using a permutation test is more demanding than binomial test- 

ing, as the classification must be repeated hundreds of times. The 

number of permutations has an influence on the shape of the distri- 

bution. However, the p -value can be monitored to limit the number 

of permutations, computing all permutations only for a value around 

or below the level of significance and stopping the test much earlier 

for the others ( Mukherjee et al., 2003 ; Ojala and Garriga, 2010 ). In the 

case of the two real datasets presented here with linear discriminant 

analysis and support vector machine classifiers, the permutation test 

took only a few seconds. With other classifier, e.g. Gaussian Processes, 

the computation time may be much longer. If the permutation test 

has to be applied independently on all voxels of an image, this could 

take a considerable time (thousands of voxels times a few seconds). 

Furthermore, it has been mentioned that a large number of permuta- 

tions may be required to get p -values in a range that would survive 

multiple comparison correction ( Pereira and Botvinick, 2011 ). Build- 

ing a unique distribution for all voxels ( Nichols and Holmes, 2002 ) or 

cluster based permutation test may circumvent that problem ( Maris 

and Oostenveld, 2007 ). 

In the data from the BCI dataset ( Lule et al., 2013 ), one patient had 

significant accuracy with the permutation test. In ‘clinical ’ settings, 

with a predefined and validated threshold of accuracy this would 

mean that the patient demonstrated command following, an impor- 

tant landmark for a diagnosis related to consciousness. In a scientific 

‘study ’ , where the aim is to validate the approach, which is the case 

in the original and the present papers, we would protect ourselves 

against false claims, i.e., stating that the patient followed the com- 

mand when he did not. If we test 20 patients with a threshold based 

on a p -value < .05, just by chance one patient may have positive 

results. In the original study, 16 patients were included. We there- 

fore corrected for multiple comparisons via the false-discovery rate 
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Table 4 

Balanced accuracy for the idiopathic Parkinson’s disease patient vs. control classification for each combination of the three tasks. Significant results with the permutation test are 

displayed with an *. No result was significant with the binomial test. 

Condition Balanced accuracy (%) 

Whole brain Motor mask 

STAND 14 35 

COMF 58 62 

BRISK 59 66* 

STAND + BRISK 37 36 

STAND + CONF 36 40 

COMF + BRISK 62* 66* 

STAND + COMF + BRISK 43 48 

( Benjamini and Hochberg, 1995 ), significance at p < .05 and no pa- 

tients survived the corrected threshold ( Goldfine et al., 2013 ). The fi- 

nal threshold for clinical application should not depend on the num- 

ber of patients tested as this number would permanently increase 

changing the threshold continuously ( Cruse et al. , Brain Injury ). This 

threshold should be based on the accuracies obtained on an extended 

cohort of patients and healthy controls and balance the sensitivity 

and specificity of the method. This threshold should depend of the 

number of trials and the obtained accuracy. The quality of the data 

may also be taken into account but must be checked previously to any 

classification. The threshold may be adapted if the test is repeated or 

joined to results from other tests. 

Here, we tested only a limited number of validation schemes. We 

have not tested bootstrapping ( Efron and Tibshirani, 1997 ) or Monte- 

Carlo CV ( Picard and Cook, 1984 ). These approaches should be tested 

in future studies even if the latter has most probably the same prop- 

erties as the k-folds CV with repetitions. Furthermore, our results 

do not extend to the validation of an independent dataset which is 

still the gold standard for validating classification accuracy and rec- 

ommended whenever possible; unfortunately this is not practical in 

the two diagnostic cases presented here: brain–computer interface 

applied to the detection of consciousness and the mental imagery 

of gait in idiopathic Parkinson’s disease patients. With an indepen- 

dent validation set, the binomial test is perfectly valid. Eventually, a 

small test set may be tested multiple times with classifiers trained on 

slightly different subsets of the training set. The repetition of testing 

should virtually increase the size of the test set as illustrated by our 

CV-independent distribution. Regarding the selection of a CV scheme, 

the first priority should be to decrease the variance and the bias of the 

estimated classification accuracies. For a good compromise, the use 

of 10-fold or 5-fold CVs is often recommended ( Lemm et al., 2011 ). 

Here, we tested only a limited number of parameters (number of 

trials and features) and presented results for two classifiers. However, 

we believe that one example is enough to demonstrate that the dis- 

tribution of accuracies obtained by classifying random data with a CV 

scheme does not follow a binomial distribution. 

To conclude, the CV scheme has an influence on the distribution 

of classification accuracies. This influence biases the binomial test- 

ing. Therefore, a permutation test is recommended, especially when 

dealing with small sample sizes and non-independent CV schemes, 

as often is the case in clinical datasets. 
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