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ABSTRACT

A large number of problems can be formalized as finding the best symbolic expression
to maximize a given numerical objective. Most approaches to approximately solve such
problems rely on random exploration of the search space. This paper focuses on how
this random exploration should be performed to take into account expressions redundancy
and invalid expressions. We propose a learning algorithm that, given the set of available
constants, variables and operators and given the target finite number of trials, computes
a probability distribution to maximize the expected number of semantically different, valid,
generated expressions. We illustrate the use of our approach on both medium-scale and
large-scale expression spaces, and empirically show that such optimized distributions sig-
nificantly outperform the uniform distribution in terms of the diversity of generated expres-
sions. We further test the method in combination with the recently proposed nested Monte-
Carlo algorithm on a set of benchmark symbolic regression problems and demonstrate its
interest in terms of reduction of the number of required calls to the objective function.
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1 Introduction

A large number of problems can be formalized as finding the best expressions, or more gener-
ally the best programs, to maximize a given numerical objective. Such optimization problems
over expression spaces arise in the fields of robotics (Hu and Yang, 2004), finance (Kargupta
and Buescher, 1996), molecular biology (Jones, Willett, Glen, Leach and Taylor, 1997), pattern
recognition (Maulik and Bandyopadhyay, 2000), simulation and modeling (Kikuchi, Tominaga,
Arita, Takahashi and Tomita, 2003) or engineering design (Deb, Pratap, Agarwal and Meyari-
van, 2002) to name a few.
These optimization problems are hard to solve as they typically involve very large discrete
spaces and possess few easily exploitable regularities, mainly due to the complexity of the
mapping from an expression syntax to its semantic (e.g. the expressions c×(a+b) and c/(a+b)

differ only by one symbol but have totally different semantics). Due to the inherent difficulties
related to the nature of expression spaces, these optimization problems can rarely be solved
exactly and a wide range of approximate optimization techniques based on stochastic search
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have been proposed. In particular, a large body of work has been devoted to evolutionary
approaches known as genetic programming (Koza and Poli, 2005; Holland, 1992; O’Neill and
Ryan, 2001). While genetic programming algorithms have successfully solved a wide range of
real-world problems, these algorithms may be complex to implement and are often too difficult
to analyze from a theoretical perspective.
(Cazenave, 2010) recently proposed to use a search technique based on Monte-Carlo sam-
pling to solve optimization problems over expression spaces, a promising alternative approach
that avoids some important pitfalls of genetic programming. One key component of this Monte-
Carlo approach is the procedure that samples expressions randomly. The proposed approach
was based on uniformly sampling expression symbols. This choice fails to tackle the redun-
dancy of expressions: it is often the case that a large number of syntactically different ex-
pressions are equivalent, for example due to commutativity, distributivity or associativity. This
choice also does not take into account that some expressions may have an undefined seman-
tic, due to invalid operations such as division by zero.
This paper focuses on the improvement of the sampling procedure used in the context of
Monte Carlo search over expression spaces. Given a number T of trials, we want to determine
a memory-less sampling procedure maximizing the expected number of semantically different
valid expressions generated ST ≤ T . To reach this objective, we propose a learning algorithm
which takes as input the available constants, variables and operators and optimizes the set
of symbol probabilities used within the sampling procedure. We show that, on medium-scale
problems, the optimization of symbol probabilities significantly increases the number of non-
equivalent expressions generated. For larger problems, the optimization problem cannot be
solved exactly. However, we show empirically that solutions found on smaller problems can
be used on larger problems while still significantly outperforming the default uniform sampling
strategy.
The rest of this paper is organized as follows. Section 2 formalizes the problem and introduces
notations. Our symbol probabilities learning algorithm is described in Section 3. We evaluate
the quality of the improved sampling procedure in Section 4. Section 5 combines the approach
with random search and nested Monte-Carlo search and applies it on symbolic regression.
Finally, Section 6 concludes.

2 Problem formulation

We now introduce Reverse Polish Notation (RPN) as a way of representing expressions in
Section 2.1 and describe a generative process compliant with this representation in Section
2.2. Section 2.3 carefully states the problem addressed in this paper.

2.1 Reverse Polish Notation

RPN is a representation wherein every operator follows all of its operands. For instance, the
RPN representation of the expression c× (a+ b) is the sequence of symbols [c, a, b,+,×]. This
way of representing expressions is also known as postfix notation and is parenthesis-free as
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Algorithm 1 RPN evaluation
Require: s ∈ AD: a sequence of length D

Require: x ∈ X : variable values
stack ← ∅
for d = 1 to D do

if αd is a variable or a constant then

Push the value of αd onto the stack.
else

Let n be the arity of operator αd.
if |stack| < n then

syntax error

else

Pop the top n values from the stack, compute αd with these operands, and push the
result onto the stack.

end if

end if

end for

if |stack| �= 1 then

syntax error

else

return top(stack)
end if

long as operator arities are fixed, which makes it simpler to manipulate than its counterparts,
prefix notation and infix notation.
Let A be the set of symbols composed of constants, variables and operators. A sequence
s is a finite sequence of symbols of A: s = [α1, . . . , αD] ∈ A∗. The evaluation of an RPN
sequence relies on a stack and is depicted in Algorithm 1. This evaluation fails either if the
stack does not contain enough operands when an operator is used or if the stack contains
more than one single element at the end of the process. The sequence [a,×] leads to the
first kind of errors: the operator × of arity 2 is applied with a single operand. The sequence
[a, a, a] leads to the second kind of errors: evaluation finishes with three different elements on
the stack. Sequences that avoid these two errors are syntactically correct RPN expressions
and are denoted e ∈ E ⊂ A∗.
Let X denote the set of admissible values for the variables of the problem. We denote e(x)

the outcome of Algorithm 1 when used with expression e and variable values x ∈ X . Two
expressions e1 ∈ E and e2 ∈ E are semantically equivalent if ∀x ∈ X , e1(x) = e2(x). We denote
this equivalence relation e1 ∼ e2. The set of semantically incorrect expressions I ⊂ E is
composed of all expressions e for which there exists x ∈ X such that e(x) is undefined, due to
an invalid operation such as division by zero or logarithm of a negative number. In the context of
Monte-Carlo search, we are interested in sampling expressions that are semantically correct
and semantically different. We denote U = (E − I)/ ∼ the quotient space of semantically
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Table 1: Size of UD, ED and AD for different sequence lengths D.

D |UD| |ED| |UD|
|ED|% |AD| |ED|

|AD|%

1 4 4 100 11 36.4
2 20 28 71.4 121 23.1
3 107 260 41.2 1331 19.5
4 556 2 460 22.6 14 641 16.8
5 3 139 24 319 12.9 161 051 15.1
6 18 966 244 299 7.8 1 771 561 13.8
7 115 841 2 490 461 4.7 19 487 171 12.8

Table 2: Set of valid symbols depending on the current state. Symbols are classified into
Constants, Variables, Unary operators and Binary operators

State Valid symbols
|stack| = 0 C,V
|stack| = 1 & d < D − 1 C,V,U
|stack| = 1 & d = D − 1 U
|stack| ∈ [2, D − d[ C,V,U,B
|stack| = D − d U,B
|stack| = D − d+ 1 B

correct expressions by relation ∼. One element u ∈ U is an equivalence class which contains
semantically equivalent expressions e ∈ u.
We denote AD (resp. ED and UD) the set of sequences (resp. expressions and equivalence
classes) of length D. Table 1 presents the cardinality of these sets for different lengths D

with a hypothetical alphabet containing four variables, three unary operators and four binary
operators: A = {a, b, c, d, log ,√·, inv,+,−,×,÷}, where inv stands for inverse. It can be seen
that both the ratio between |ED| and |AD| and the ratio between |UD| and |ED| decrease when
increasing D. In other terms, when D gets larger, finding semantically correct and different
expressions becomes harder and harder, which is an essential motivation of this work.

2.2 Generative process to sample expressions

Monte-Carlo search relies on a sequential generative process to sample expressions e ∈ ED.
We denote by P [αd|α1, . . . , αd−1] the probability to sample symbol αd after having sampled the
(sub)sequence α1, . . . , αd−1. The probability of an expression e ∈ ED is then given by:

PD[e] =

D∏
d=1

P [αd|α1, . . . , αd−1]. (2.1)

An easy way to exclude syntactically incorrect sequences is to forbid symbols that could lead
to one of the two syntax errors described earlier. This leads to a set of conditions on the
current state of the stack and on the current depth d that Table 2 summarizes for a problem
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with variables, constants, unary and binary operators. As it can be seen, conditions can be
grouped into a finite number of states, 6 in this case. In the following, we denote S the set of
these states, we use the notation s(α1, . . . , αd) ∈ S to refer to the current state reached after
having evaluated α1, . . . , αd and we denote As ⊂ A the set of symbols which are valid in state
s ∈ S.
The default choice when using Monte-Carlo search techniques consists in using a uniformly
random policy. Combined with the conditions to generate only syntactically correct expres-
sions, this corresponds to the following probability distribution:

P [αd|α1, . . . , αd−1] =

⎧⎨
⎩

1
|As| if αd ∈ As

0 otherwise,
(2.2)

with s = s(α1, . . . , αd−1).
Note that the sampling procedure described above generates expressions of size exactly D.
If required, a simple trick can be used to generate expressions of size between 1 and D: it
consists in using a unary identity operator that returns its operand with no modifications. An
expression of size d < D can then be generated by selecting αd+1 = · · · = αD = identity.

2.3 Problem statement

Using a uniformly random strategy to sample expressions does neither take into account re-
dundancy nor semantic invalidity. We therefore propose to optimize the sampling strategy, to
maximize the number of valid, semantically different, generated expressions.
Given a budget of T trials, a good sampling strategy should maximize ST , the number of se-
mantically different, valid generated expressions, i.e. the number of distinct elements drawn
from UD. A simple approach therefore would be to use a rejection sampling algorithm. In order
to sample an expression, such an approach would repeatedly use the uniformly random strat-
egy until sampling a valid expression that differs from all previously sampled expressions in
the sense of ∼. However, this would quickly be impractical: in order to sample T expressions,
such an approach requires memorizing T expressions, which can quickly saturate memory.
Furthermore, in regards of the results of Table 1, the number of trials required within the rejec-
tion sampling loop could quickly grow.
In order to avoid the excessive CPU and RAM requirements of rejection sampling, and consis-
tently with the definitions given previously, we focus on a distribution PD[e] which is memory-
less. In other terms, we want a procedure that generates i.i.d. expressions. In addition to
the fact that it requires only limited CPU and RAM, such a memory-less sampling scheme
has another crucial advantage: its implementation requires no communication, which makes it
particularly adapted to (massively) parallelized algorithms.
In summary, given the alphabet A, a target depth D and a target number of trials T , the problem
addressed in this paper consists in finding the distribution P̂ [αd|α1, . . . , αd−1] ∈ P such that:

P̂ = argmax
P∈P

E{ST }, (2.3)

where ST is the number of semantically different valid expressions generated using the gener-
ative procedure PD[·] defined by P̂ .

International Journal of Artificial Intelligence

22



3 Proposed approach

We now describe our approach to learn a sampling strategy taking into account redundant
and invalid expressions. Section 3.1 reformulates the problem and introduces two approximate
objective functions with good numerical properties. Section 3.2 focuses on the case where
the sampling strategy only depends on the current state of the stack and depth. Finally, the
proposed projected gradient descent algorithm is described in Section 3.3.

3.1 Objective reformulation

Let PD[u] be the probability to draw any member of the equivalence class u:

PD[u] =
∑
e∈u

PD[e] (3.1)

The following lemma shows how to calculate the expectation of obtaining at least one member
of a given equivalence class u after T trials.

Lemma 3.1. Let Xu be a discrete random variable such that Xu = 1 if u is generated after T
trials and Xu = 0 otherwise. The probability to generate at least once u over T trials is equal
to

E{Xu} = 1− (1− PD[u])
T . (3.2)

Proof. Since at each trial the probability for u ∈ U to be generated does not depend on the
previous trials, the probability over T trials that Xu = 0 is given by (1 − PD[u])

T . Thus, the
probability that Xu = 1 is its complementary and given by 1− (1− PD[u])

T .

We now aggregate the different random variables.

Lemma 3.2. The expectation of the number TS of different equivalence classes u generated
after T trials is equal to

E{TS} =
∑
u∈UD

1− (1− PD[u])
T . (3.3)

Proof. This follows from E{
∑
u∈UD

Xu} =
∑
u∈UD

E{Xu}.

Unfortunately, in the perspective of a using gradient descent optimization scheme, the formula
given by Lemma 3.2 is numerically unstable. Typically, PD[u] is very small and the value
(1 − PD[u])

T has a small number of significant digits. This causes numerical instabilities that
become particularly problematic as T and |U| increase. Therefore, we have to look for an
approximation of (3.3) that has better numerical properties.

Lemma 3.3. For 0 < PD[u] <
1
T , using the Newton Binomial Theorem to compute 1 − (1 −

PD[u])
T , the terms are decreasing.
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Proof. Using the Newton Binomial Theorem, (3.1) reads

1− (1− PD[u])
T = 1−

T∑
k=0

(
T

k

)
(−PD[u])

k

=

(
T

1

)
(−PD[u]) +

(
T

2

)
(−PD[u])

2

+ · · ·+ (−PD[u])
T . (3.4)

If PD[u] is sufficiently small, the first term in (3.4) is the biggest. In particular, if PD[u] <
1
T , we

claim that

(
T

0

)
PD[u]

0 >

(
T

1

)
PD[u]

1 >(
T

2

)
PD[u]

2 > · · · >
(
T

n

)
PD[u]

n

As a proof, considering n ∈ {1, 2, . . . , T}, we have to check that

(
T

n

)
PD[u]

n <

(
T

n− 1

)
PD[u]

n−1

⇔ T !

n!(T − n)!
PD[u]

n <
T !

(n− 1)!(T − n+ 1)!
PD[u]

n−1

⇔ PD[u] <
n

T − n+ 1
(3.5)

(3.5) holds when 0 < PD[u] <
1
T , n ≥ 1 and T ≥ 0.

Observation 3.1. For 0 < PD[u] <
1
λT , two successive terms in the Newton Binomial Theorem

decrease by a coefficient of 1
λ .

Proof. (
T

n

)
PD[u]

n <
1

λ

(
T

n− 1

)
PD[u]

n−1

PD[u] <
n

λ(T − n+ 1)
(3.6)

Figure 1 shows the shape of (3.2) for a fixed T of 1000. It appears that, for small values of
PD[u], the expectation varies almost linearly as suggestd by Lemma 3.3. Observe that, for
large values of PD[u], the expectation tends rapidly to 1.

Observation 3.2. Let ε > 0. PD[u] > 1− ε
1
T implies that 1− ε ≤ 1− (1− PD[u])

T ≤ 1.

We observe from Figure 1 that the curve can be split into 3 rough pieces. The first piece, when
PD[u] <

1
2T , seems to vary linearly based on Figure 1 and Observation 3.1 since the leading

term of the Binomial expansion dominates all the others. The last piece can be approximated
by 1 based upon Observation 3.2. The middle piece can be fitted by a logarithmic function. We
therefore obtain
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Figure 1: Expected value of Xu as a function of PD[u] with T = 1000.

∑
u∈U

1− (1− PD[u])T 

∑

u|PD [u]< 1
2T

TPD[u] +
∑

u|PD [u]≥1−ε
1
T

1 +

∑
u| 1

2T <PD[u]<1−ε
1
T

(
1

(1− 1
T )

T
logPD[u] + (1− 1

T
)T
)
. (3.7)

An even rougher approach could be to consider only two pieces and write (3.2), using Lemma
3.3 and Observation 3.2 as

∑
u∈U

1− (1− PD[u])
T 


∑
u|PD[u]< 1

T

TPD[u] +
∑

u|PD[u]≥ 1
T

1. (3.8)

3.2 Instantiation and gradient computation

In this paper, we focus on a simple family of probability distributions with the assumption that
the probability of a symbol only depends on the current state s ∈ S and is otherwise indepen-
dent of the full history α1, . . . , αd−1. We thus have:

PD[e] =
D∏

d=1

P [αd|s(α1, . . . , αd−1)]. (3.9)

We denote {ps,α} the set of probabilities, such that for all s ∈ S, for all α ∈ As, P [α|s] = ps,α.
Using (3.8), we can write the optimization problem:

maximize
∑

u|PD [u]< 1
T

TPD[u] +
∑

u|PD[u]≥ 1
T

1.

subject to
∑
α∈As

ps,α = 1 , ∀ s ∈ S, (3.10)

ps,α > 0 , ∀s ∈ S, ∀ α ∈ As. (3.11)
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where T is the total number of trials, PD[u] is the probability to generate the unique expres-
sion u, (3.10) ensures that the probabilities sum to 1 and (3.11) represents the non-negativity
constraint.
Observe that the gradient is easy to compute for both objectives. We detail here the gradient
when (3.8) is used as the objective function.

Lemma 3.4. The derivative ∂(·)
∂ps,α

of Equation (3.8) is given by

T
∑

u|PD[u]< 1
T

∑
e∈u

ns,α(e)PD[e],

where ns,α(e) is the number of times the symbol α ∈ As is used from state s ∈ S when
generating e.

Proof.

∂f

∂ps,α
=

∂

∂ps,α
(

∑
u|PD[u]< 1

T

TPD[u] +
∑

u|PD[u]≥ 1
T

1 )

=
∂

∂ps,α
(T

∑
u|PD[u]< 1

T

∑
e∈u

PD[e] )

= T
∑

u|PD[u]< 1
T

∑
e∈u

∂

∂ps,α
(

∏
s,α|ns,α(e)>0

p
ns,α
s,α )

Note that this objective function is only locally convex. Figure 2 presents a problem with 3 vari-
ables projected on 2 dimensions. It shows that the problem is not convex. However, empirical
experiments show that it is rather easy to optimize and that obtained solutions are robust w.r.t.
to choice of the starting point of the gradient descent algorithm.

3.3 Proposed algorithm

We propose to use a classical projected gradient descent algorithm to solve the optimization
problem described previously. The algorithm is equipped with a line search optimization based
on the 2 Wolfe conditions. The algorithm stops when the next step in a given direction is smaller
than ζ. In our case, we fixed ζ to 10−10. Algorithm 2 depicts our approach. Given the symbol
alphabet A, the target depth D and the target number of trials T , the algorithm proceeds in
two steps. First, it constructs an approximated set ÛD by discriminating the expressions on the
basis of random samples of the input variables, following the procedure detailed below. It then
applies projected gradient descent, starting from uniform ps,α probabilities and iterating until
the stopping condition is reached.
To evaluate approximately whether e1 ∼ e2, we compare e1(x) and e2(x) using a finite amount
X of samples x ∈ X . If the results of both evaluations are equal on all the samples, then
the expressions are considered as semantically equivalent. If the evaluation fails for any of the
samples, the corresponding expression is considered as semantically incorrect and is rejected.
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Algorithm 2 Symbol probabilities learning
Require: Alphabet A,
Require: Target depth D,
Require: Target budget T ,
Require: A set of input samples x1, . . . , xX

Û ← ∅
for e ∈ ED do

if ∀i ∈ [1, X], e(xi) is well-defined then

Add e to Û using key k = {e(x1), . . . , e(xX)}
end if

end for

Initialize: ∀s ∈ S, ∀α ∈ As, ps,α ← 1
|As|

repeat

∀s ∈ S, ∀α ∈ As, gs,α ← 0

for each u ∈ Û with PD[u] <
1
T do

for each e ∈ u do

for each s ∈ S, α ∈ As with ns,α(e) > 0 do

gs,α ← gs,α + ns,α(e)PD[e]

end for

end for

end for

Apply gradient gs,α and renormalize ps,α

until some stopping conditions are reached
return {ps,α}
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Figure 2: Optimization using (3.8) with 3 variables projected onto 2 dimensions where the
y-axis and the x-axis represents different values of probability (%)

Empirical tests showed that with as little as X = 5 samples, more than 99% of U was identified
correctly for D ranging in [1, 8]. With X = 100 samples the procedure was almost perfect.
The complexity of Algorithm 2 is linear in the size of ED. In practice, only a few iterations of
gradient descent are necessary to reach convergence and most of the computing time is taken
by the construction of gs,α. The computation of the gradient is rather long since it requires that,
for each unique expression u, we must iterate through each e ∈ u and from each expression e,
we take the partial derivative for each symbol α ∈ A.
The requirement that the set ED can be exhaustively enumerated is rather restrictive, since
it limits the applicability of the algorithm to medium values of D. Nevertheless, we show in
next section that probabilities learned for a medium value of D can be used for larger-scale
problems and still significantly outperform uniform probabilities.

4 Experimental results

This section describes a set of experiments that aims at evaluating the efficiency of our ap-
proach. We distinguish between medium-scale problems where the set ED is enumerable in
reasonable time (Section 4.1) and large-scale problems where some form of generalization has
to be used (Section 4.2). We rely on the same alphabet as previously: A = {a, b, c, d, log ,√·,
inv,+,−,×,÷} and evaluate the various sampling strategies using empirical estimations of
E{ST }

T obtained by averaging ST over 106 runs.
We consider two baselines in our experiments: Syntactically Uniform is the default strategy
defined by Equation 2.2 and corresponds to the starting point of Algorithm 2. The Semantic
Uniform baseline refers to a distribution where each expression u ∈ Û has an equal probability
to be generated and corresponds to the best that can be achieved with a memory-less sampling
procedure. Objective 1 (resp. Objective 2) is our approach used with objective (3.7) (resp.
objective (3.8)).
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Figure 3: Ratio of E{ST }
T for different lengths D with T = |UD|.

4.1 Medium-scale problems

We first carried out a set of experiments by evaluating the two baselines and the two learned
strategies for different values of D. For each tested value of D, we launched the training
procedure. Figure 3 presents the results of these experiments, in the case where the number
of trials is equal to the number of semantically different valid expressions: T = |UD|.
It can be seen that sampling semantically different expressions is harder and harder as D

gets larger, which is coherent with the results given in Table 1. We also observe that the
deeper it goes, the larger the gap between the naive uniform sampling strategy and our learned
strategies becomes. There is no clear advantage of using Objective 1 over Objective 2 for the
approximation of (3.2). By default, we will thus use the simplest of the two in the following,
which is Objective 2.
Many practical problems involve objective functions that are heavy to compute. In such cases,
although the set UD can be enumerated exhaustively, the optimization budget only enables to
evaluate the objective function for a small fraction T � |UD| of candidate expressions. We thus
performed another set of experiments with T = |UD|/100, whose results are given by Figure
4. Since we have T = 0 for values D < 3, we only report results for D ≥ 3. Note also that the
small variations in Semantically Uniform comes from the rounding bias. The overall behavior
is similar to that observed previously: the problem is harder and harder as D grows and our
learned strategies still significantly outperform the Syntactically Uniform strategy. Note that all
methods perform slightly better for D = 8 than for D = 7. One must bear in mind that beyond
operators that allow commutativity, some operators have the effect to increase the probability
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of generating semantically invalid expressions. For instance, one could think that subtractions
should have a higher probability of being drawn than the additions or multiplications. However,
when combined in a logarithm or a square root, the probability to generate an invalid expression
increases greatly. The relation between the symbols is more convoluted then it looks at first
sight, which may be part of the explanation of the behavior that we observe for D = 8.

4.2 Generalization towards large-scale problems

When D is large, the set of ED may be hard to enumerate exhaustively and our learning algo-
rithm becomes inapplicable. We now evaluate whether the information computed on smaller
lengths can be used on larger problems. We performed a first set of experiments by targeting
a length of Deval = 20 with a number of trials Teval = 106. Since our approach is not applicable
with such large values of D, we performed training with a reduced length Dtrain � Deval and
tried several values of Ttrain with the hope to compensate the length difference.
The results of these experiments are reported in Figure 5 and raise several observations. First,
for a given Dtrain, the score

E{STeval
}

TTeval
starts increasing with Ttrain, reaches a maximum and

then drops rapidly to a score roughly equal to the one obtained by the Syntactically Uniform
strategy. Second, the value of Ttrain for which this maximum occurs (T ∗

train) always increases
with Dtrain. Third, the best value T ∗

train is always smaller than Teval. Fourth, for any Dtrain,
even for very small values of Ttrain the learned distribution already significantly outperforms
the Syntactically Uniform strategy. Based on these observations, and given the fact that the
complexity of the optimisation problem does not depend on Ttrain, we propose the following

International Journal of Artificial Intelligence

30



1 10 100 1000 10000 100000 1e+06 1e+07
0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Ttrain

E
[S
T]
/T

Syntactically Uniform
Dtrain=5
Dtrain=6
Dtrain=7

Figure 5: Ratio of
E{STeval

}
Teval

for different values of Dtrain and Ttrain with Teval = 106 and Deval =

20.

approach to tune these two parameters: (i) choose the largest possible Dtrain value, (ii) find
using a dichotomy search approach in {0, . . . , Teval} the value of Ttrain that maximizes the
target score.
Figure 6 reports for different values of Deval the results obtained when assuming that Dtrain

cannot be larger than 9 and when Ttrain has been optimized as mentioned above. Teval is
still here equal to 106. As we can see, even for large values of Deval, the learned distribution
significantly outperforms the Syntactically Uniform distribution, which clearly shows the interest
of our approach even when dealing with very long expressions.

5 Application to symbolic regression

We have showed that our approach enables to improve the diversity of valid generated expres-
sions when compared to a default random sampling strategy. This section aims at studying
whether this improved diversity leads to better exploration of the search space in the context
of optimization over expression spaces. We therefore focus on symbolic regression problems.

Symbolic regression problems. We use the same set of benchmark symbolic regression
problems as in (Uy, Hoai, ONeill, McKay and Galván-López, 2011), which is described in Table
3. For each of problem, we generate a training set by taking regularly spaced input points in the
domain indicated in the “Examples” column. The alphabet is {x, 1,+,−, ∗, /, sin, cos, log, exp}
for single variable problems ({f1, . . . , f8}) and {x, y,+,−, ∗, /, sin, cos, log, exp} for bivariable
problems.
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Search algorithms. We focus on two search algorithms: random search and the recently
proposed Nested Monte-Carlo (NMC) search algorithm. The former algorithm is directly related
to our sampling strategy, while the latter is relevant since it has recently been applied with
success to expression discovery (Cazenave, 2010). NMC is a search algorithm constructed
recursively. Level 0 NMC is equivalent to random search. Level N NMC selects symbols αd ∈
As by running the level N-1 algorithm for each candidate symbol and by picking the symbols
that lead to the best solutions discovered so far. We refer the reader to (Cazenave, 2009) for
more details on this procedure.

Protocol. We compare random search and level {1, 2} NMC using for each algorithm two
different sampling strategies: the syntactically uniform strategy (denoted U) and our learned
sampling strategy (denoted L). We use two different maximal lengths D, one for which the
optimization problem can be solved exactly (depth 8) and one for which it cannot (depth 20)
and for which we use the procedure described in Section 4.2. Note that since we use only two
different alphabets and two different depths, we only had to perform our optimization procedure
four times for all the experiments1. The quality of a solution is measured using the mean
absolute error and we focus on the number of function evaluations which is required to reach
a solution whose score is lower than a given threshold ε ≥ 0. We test each algorithm on 100

different runs.

Results. Table 4 and Table 5 summarize the results by showing the median number of
1More generally, when one has to solve several similar optimization problems, our preprocessing has only to be

performed once.
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Name Function Examples
f1 x3 + x2 + x 20 points ∈ [−1, 1]

f2 x4 + x3 + x2 + x 20 points ∈ [−1, 1]

f3 x5 + x4 + x3 + x2 + x 20 points ∈ [−1, 1]

f4 x6 + x5 + x4 + x3 + x2 + x 20 points ∈ [−1, 1]

f5 sin(x2) cos(x)− 1 20 points ∈ [−1, 1]

f6 sin(x) + sin(x+ x2) 20 points ∈ [−1, 1]

f7 log(x+ 1) + log(x2 + 1) 20 points ∈ [0, 2]

f8
√
x 20 points ∈ [0, 4]

f9 sin(x) + sin(y2) 100 points ∈ [−1, 1]× [−1, 1]

f10 2 sin(x) cos(y) 100 points ∈ [−1, 1]× [−1, 1]

Table 3: Description of the benchmark symbolic regression problems.

evaluations it takes to find an expression whose score is better than ε = 0.5 and ε = 0.1,
respectively. We also display the mean of these median number of evaluations averaged over
all 10 problems and the ratio of this quantity with uniform sampling over this quantity with our
improved sampling procedure.
We observe that in most cases, our sampling strategy enables to significantly reduce the re-
quired number of function evaluations to reach the same level of solution quality. The amount
of reduction is the largest when considering expressions of depth 20, which can be explained
by the observation made in Section 2.1: when the depth increases, it is harder and harder
to sample semantically different valid expressions. The highest improvement is obtained with
depth 20 random search: the ratio between the traditional approach and our approach is of 1.32
and 1.17 for ε = 0.5 and ε = 0.1, respectively. We observe that the improvements tend to be
more important with random search and with level 1 NMC than with level 2 NMC. This is prob-
ably related to the fact that the higher the level of NMC is, the more effect the bias mechanism
embedded in NMC has; hence reducing the effect of our sampling strategy.

6 Conclusion

In this paper, we have proposed an approach to learn a distribution for expressions written in
reverse polish notation, with the aim to maximize the expected number of semantically different,
valid, generated expressions. We have empirically tested our approach and have shown that
the number of such generated expressions can significantly be improved when compared to the
default uniform sampling strategy. It also improves the exploration strategy of random search
and nested Monte-Carlo search applied to symbolic regression problems.
A possible extension of this work would be to consider richer distributions making use of the
whole history through the use of a general feature function. Moreover, instead of optimizing
over one set of expressions, clustering into several sets could further improve the sampling
process. The generalization to several clusters is not trivial since the concept of distance in
this case can either be related to syntax or to semantic. Another extension is to compare
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Depth 8 (Depth 20)
Pr. Random NMC(1) NMC(2)
- U L U L U L
f1 5(7) 6(5) 6(8) 5(6) 6(6) 6(7)
f2 127(193) 95(113) 151(210) 89(97) 110(167) 98(97)
f3 317(385) 183(179) 331(323) 149(203) 143(236) 157(203)
f4 345(463) 272(365) 270(493) 194(318) 205(247) 262(278)
f5 21(28) 13(19) 22(24) 15(19) 18(19) 17(12)
f6 5(5) 6(6) 6(6) 6(5) 6(7) 7(5)
f7 7(9) 6(7) 10(10) 8(7) 7(6) 7(7)
f8 39(70) 18(46) 28(49) 21(38) 26(40) 22(32)
f9 4(5) 3(4) 4(6) 4(3) 4(4) 4(4)
f10 6(5) 5(5) 8(8) 4(6) 5(5) 5(5)

Mean 23.3(29.7) 18.0(22.0) 25.0(31.3) 17.8(21.1) 19.4(22.8) 19.7(20.0)
Ratio 1.3(1.4) 1.4(1.4) 1.0(1.1)

Table 4: Median number of iterations it takes to reach a solution whose score is less than
ε = 0.5 with random search and level {1, 2} nested Monte-Carlo search. Bold indicates cases
where our sampling strategy outperforms the syntactically uniform strategy. The mean repre-
sents the geometric mean.

and evaluate a wide range of techniques for the optimization problem, from derivative free
algorithms to stochastic gradient descent algorithms (e.g. (Omranpour, Ebadzadeh, Shiry and
Barzegar, 2012)).
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