

10th IWA International Conference on WSP-2013

FACULTY OF SCIENCES

Department of Environmental Science and Management

Monitoring the influence of light intensity on the growth and mortality of duckweed (*Lemna minor*) through digital image processing

By

Thierry TANGOU TABOU, Dehenould Trésor BAYA, Dieudonné MUSIBONO EYUL'ANKI and <u>Jean-Luc VASEL</u>

August 2013

Monitoring the influence of light intensity on the growth and mortality of duckweed (*Lemna minor*) through digital image processing

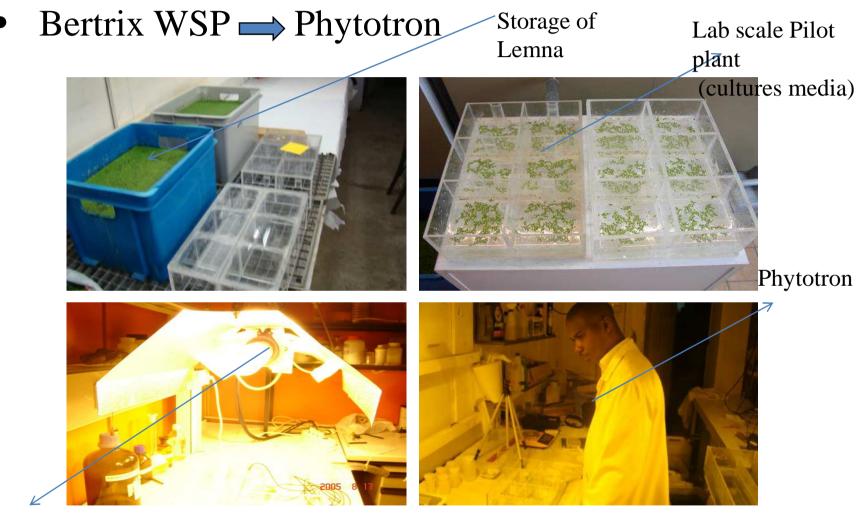
OUTLINE

1. INTRODUCTION

- 2. MATERIAL AND METHODS
- 3. RESULTS
- 4. CONCLUSION

INTRODUCTION

 \checkmark Various techniques involved in the treatment of wastewater


✓ Floating macrophyte ponds (i.e. *Lemna minor*)
 Excess or shortage may lead to dysfunctions
 -> Optimal management

INTRODUCTION

General objective

To develop a mathematical model [Kinetic, Stoechiometry, Mass balances i.e. gas exchanges (O_2, CO_2)] of growth of floating macrophytes (*Lemna minor*) in the operation of floating macrophytes WSP (I, T, N, P, pH). A "Gujer-Petersen matrix" approach, should be obtained compatible with more general WSP models.

More specifically, in this study we will focus on the influence of light intensity on (i) the growth and (ii) the mortality of *Lemna minor* under a constant temperature.

Sodium lamps (400 watts)

L. minor growth monitoring in laboratory

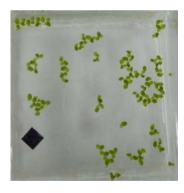
Experimental set up of duckweed growth monitoring (t = 4 days)

Test (Midst)	$[N-NH_4^+]_i$ (mg.L ⁻¹)	[P-PO ₄ ³⁻] _i (mg.L ⁻¹)	Light intensity (µmole.m ⁻² .s ⁻¹)	Temperature (°C)	Photoperiod (h/h)
1	5 - 15	1	200	20.6	12/12
2	5 - 15	1	250	20.9	12/12
3	5 - 15	1	300	21.2	12/12
4	5 - 15	1	350	21.5	12/12
5	5 - 15	1	400	21.7	12/12
6	5 - 15	1	450	21.9	12/12

Tank 1 (5 mg.N-NH₄⁺.L⁻¹); Tank 2 (7 mg.N-NH₄⁺.L⁻¹); Tank 3 (9 mg.N-NH₄⁺.L⁻¹); Tank 4 (11 mg.N-NH₄⁺.L⁻¹); Tank 5 (13 mg.N-NH₄⁺.L⁻¹); Tank 6 (15 mg.N-NH₄⁺.L⁻¹)

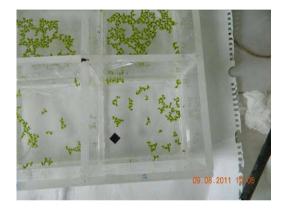
BIOMASS MONITORING

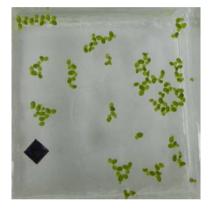

 Fresh weight (FW): less accurate and difficult to duplicate
 Dry weight (DW): more reliable but destructive method
 Images processing (Area, A): continuous monitoring and nondestructive (Camerawork and Processing)


✓ Relationship Biomass (DW/FW)-Covered area (A %):

- FW $(g.m^{-2}) = f(A)$

- DW $(g.m^{-2}) = f(A)$

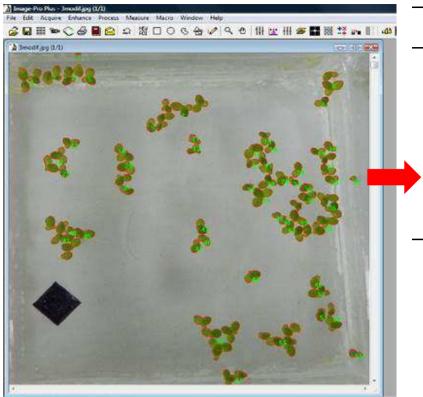

- Steps of *L. minor* camerawork
- Nikon[®] digital camera COOLPIX L120 [14.1 MP: 4320 x 3240 pixels; Focal length (integrated objective): 25-525 mm]
- Around 1g of fresh biomass in each tank
- A floating colored control (1cm x 1cm)
- Natural light in the lab (no flash, neon tubes turned off)
- -Automatic option (default): good resolution compensating 'no zoom' effect
- Tripod (45 cm above the water)



• Images processing

-ACD-see[®] : Pre-processing — Area covered by plants

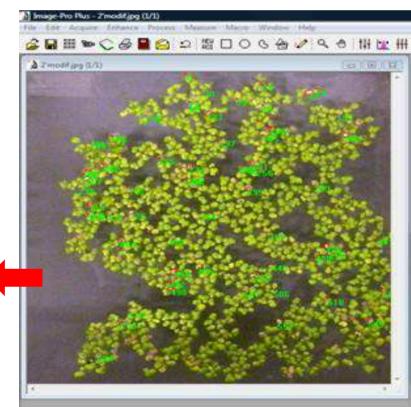
- Image Pro-Plus[®] : Processing \longrightarrow Counting and determining the geometrical characterics of *L. minor* (area, major axis, minor axis, perimeter color)

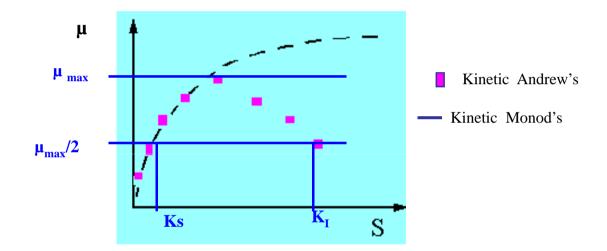

✓ Automatic count based on color:

Green color (*RGB between 100-255*) -> living duckweed White color (*RBG between 200-255*) -> dead duckweed

Colors are identified by the operator

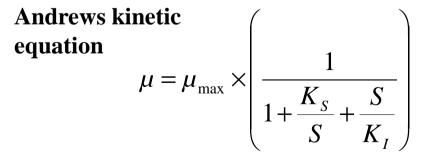
✓ Table of statistical characteristics automatically generated by the software.


✓ Expecting future automatic recognition method (i.e. neural network) for the determination of lemna objects and their color.


CHI	RGB 24/6	104,310 bytes).	Zoom 109%

Statistics Dead	Area (cm²)	Major axis (cm)	Minor axis (cm)	Perimeter (cm)
Min	0.001	0.036	0.019	0.066
(Object #)	30	198	446	198
Max	0.021	0.194	0.137	0.647
(Object #)	39	39	39	237
Range	0.019	0.158	0.117	0.581
Mean	0.004	0.086	0.053	0.217
Std Deviation	0.004	0.037	0.031	0.130
Sum	0.266	5.664	3.486	14.292
Samples	66	66	66	66

Statistics Living	Area (cm²)	Major axis (cm)	Minor axis (cm)	Perimeter (cm)
Min	0.0083	0.151	0.071	0.373
(Object #)	1	11	1	1
Max	0.674	1.462	0.886	5.560
(Object #)	54	7	54	7
Range	0.666	1.312	0.815	5.187
Mean	0.133	0.539	0.305	1.767
Std Deviation	0.123	0.271	0.152	1.224
Sum	7.449	30.184	17.087	<i>98.952</i>
Samples	56	56	56	56



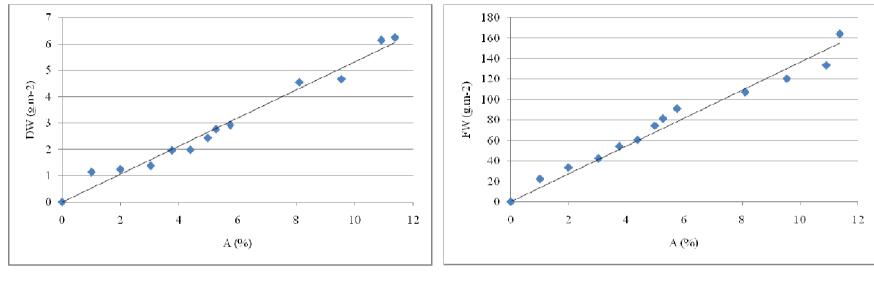
Kinetic parameters: μ , μ_{max} , K_S , K_I and b

Monod kinetic equation

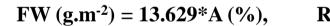
$$\mu = \mu_{\max} \times \left(\frac{S}{S + K_s}\right)$$

- Growth rate (μ)

 $X = X_0 \cdot e^{\mu t} \longrightarrow \ln X = \mu \cdot t + c$


- Mortality rate (*b*)

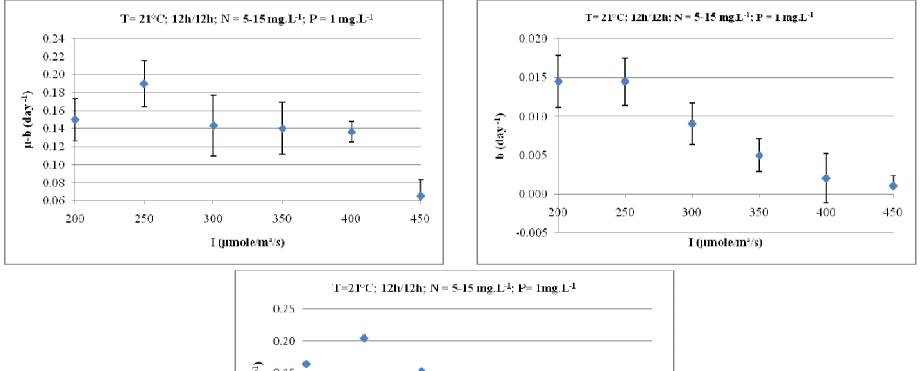
$$\frac{dXm}{dt} = b.Xv \implies b = \frac{1}{Xv} \cdot \frac{\Delta Xm}{\Delta t}$$

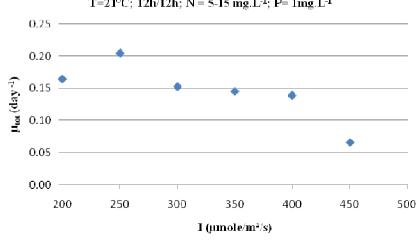

With Xm: Dead biomass Xv: Living biomass $-\mu_{tot} = \mu + b$

RESULTS

RELATIONSHIPS BIOMASS Vs % COVERED AREA

DW $(g.m^{-2}) = 0.5325*A(\%),$ $R^2 = 0.98$




 $R^2 = 0.97$

- \checkmark Good relationships between the dry or fresh weight and the area covered by duckweeds in the pilot
- \checkmark In natural conditions, weights depending on available nutrients

$\mu = f(I)$ and b = f(I)

RESULTS

Kinetic model of Lemna minor growth

$$\mu = \mu_{\max} \times f(I) \times f(T) \times \left(\frac{1}{1 + \frac{K_{S,N}}{[N - NH_4^+]} + \frac{[N - NH_4^+]}{K_{I,N}}} \right) \times \left(\frac{1}{1 + \frac{K_{S,P}}{[P - PO_4^{3^-}]} + \frac{[P - PO_4^{3^-}]}{K_{I,P}}} \right)$$

with $f(I) = A_I \frac{I}{I_M} \exp\left(1 - \frac{I}{I_M}\right)$ (Vatta *et al.*, 1995)

By Iteration: $I_M = 286.55 \ \mu mol.m^{-2}.s^{-1}$ $A_I = 1 \ ; \ T = 21^{\circ}C; \ \mu_{max} = 0.19 \ d^{-1} (I_{exp.} = 250 \ \mu mol.m^{-2}.s^{-1})$ $[N-NH_4^+] = 10 \ mg/l; \ K_{S,N} = 3.83 \ mg.L^{-1}; \ K_{I,N} = 204.27 \ mg.L^{-1}$ $[P-PO_4]^{3-} = 1 \ mg.L^{-1}; \ K_{S,P} = 1.26 \ mg.L^{-1}; et \ K_{I,P} = 13.33 \ mg.L^{-1}$ (Tangou *et al.*, 2013)

Optimum intensity for the growth of L. minor ranged between 250 and 300 μ mol.m-².s⁻¹ Saturation observed at 400 μ mol.m⁻².s⁻¹.

CONCLUSIONS

• Image processing method

- Interesting for the biomass determination : continuous and non destructive method

-Empirical-based relationships -> valid in the range of our experimental conditions

• Modeling

The model takes into account the influence of light at constant temperature. It calculates a production of living and mortality of *Lemna*. It could be combined with a system of natural WSP.

Thank you