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SUMMARY

Perfectly Matched Layers (PMLs) are widely used for the numerical simulation of wave-like problems
defined on large or infinite spatial domains. However, for both the time-dependent and the time-harmonic
cases, their performance critically depends on the so-called absorption function. This paper deals with
the choice of this function when classical numerical methods are used (based on finite differences, finite
volumes, continuous finite elements and discontinuous finite elements). After reviewing the properties of
the PMLs at the continuous level, we analyse how they are altered by the different spatial discretizations. In
the light of these results, different shapes of absorption function are optimized and compared by means of
both one- and two-dimensional representative time-dependent cases. This study highlights the advantages
of the so-called shifted hyperbolic function, which is efficient in all cases and does not require the tuning of
a free parameter, by contrast with the widely used polynomial functions. Copyright c© 2014 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The numerical simulation of wave propagation problems set in very large or infinite spatial domains

remains a major challenge. A classical strategy consists in truncating the spatial domain to diminish

the computational cost without altering too much the original solution. The artificial boundary of the

truncated domain then requires a specific treatment allowing outgoing waves to leave the domain

without spurious reflection. To this aim, numerous artificial boundary conditions, absorbing layers

and special numerical techniques have been developped (see e.g. [2, 10, 14, 19, 21, 22, 23, 46]

and references therein). Among them, the perfectly mached layer (PML) of Bérenger [5] exhibits

features that have motivated its adaptation and its use in a wide range of cases from acoustics

[28, 29], electromagnetism [1, 6, 31, 40], geophysical fluid dynamics [3, 33, 37], elastodynamics

[4, 44, 45] and quantum mechanics [38]. Basically, the truncated domain is extended beyond the

artificial boundary with an artificial layer where the original governing equations are transformed.

When the PML techniques are used, outgoing waves are perfectly transmitted from the truncated

domain to the PML whatever the angle of incidence – this is the perfect matching – and are then

damped. The decay of the outgoing waves is controled by an additional parameter: the absorption

function σ(x). Under a specific condition on σ(x), the outgoing waves are completely damped and

every spurious reflection is then avoided (see e.g. [5, 7]), which is the goal to achieve.

Unfortunately, the properties of the PMLs are altered when the problem is discretized [11, 47].

At the discrete level, the perfect matching is lost and, in the worst cases, the PML becomes
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highly reflective. Spurious reflection of outgoing waves can hopefully be reduced by ajusting

the discretization and the PML parameters. To this aim, very thick layers, mesh adaptation [34],

modified discrete schemes [17, 20] and optimized absorption functions [11, 47] can all be used.

However, the first two approaches imply an increase of the computational cost, and the others are

case-dependent. In particular, polynomial functions are commonly used as absorption functions in

order to ensure a progressive damping of the outgoing waves in the layer (see e.g. [6, 18]). These

functions involve free parameters that are generally optimized by means of costly computational

procedures or a priori error estimates [13, 16, 25, 38, 41]. Unfortunately, the optimum parameters

depend on both the equations and the numerical scheme considered.

An alternative approach is offered by two promising absorption functions: the hyperbolic function

σh(x) and the shifted hyperbolic function σsh(x). With them, a PML provides an exact treatment of

the artificial boundary at the continuous level. At the discrete level, these functions do not require

any tuning since the optimum value of their free parameter possesses a physical interpretation.

This result is of high interest in industrial cases where the optimization of a free parameter is

computationally very expensive, and sometimes downright impossible. This has been highlighted

in several works [7, 8, 35, 36, 42] for a few wave-like problems and numerical schemes. However,

conflicting conclusions about the relative performances of σh and σsh can be found in the litterature.

In the specific context of the Helmholtz equation with a continuous finite element scheme, Bermúdez

et al. [8] showed that σh outperforms both σsh and classical optimized polynomial functions. By

contast, for a time-dependent first-order wave-like system with a finite difference scheme, we

showed [35] that σsh performs very well, while σh provides bad results.

This paper deals with the optimization of PMLs in discrete contexts for wave-like problems based

on first-order systems. In order to reach conclusions as case-independent as possible, all simulations

are systematically performed with different numerical methods, and interpretations are proposed.

Since the absorption function is a key parameter of this optimization problem, a large part of the

paper is dedicated to its study. In particular, we confirm that the functions σh and σsh do not require

any tuning whatever the numerical method. In all cases, σsh provides good results that are at least

comparable to those obtained with the optimized polynomial functions, while σh is less robust.

This paper is organized as follows. The PML equations are derived for a fundamental case in

Section 2. Classical results on PMLs at the continuous level are reviewed in Section 3. In Section 4,

we propose a preliminary analysis of the PML in one-dimensional discrete contexts. The change of

properties of the discretized PMLs and the influence of the problem parameters on their effectiveness

are then highlighted. In particular, the specific role of the absorption function σ(x) is shown

and interpreted, together with the existence of optimum values in discrete contexts. In Section

5, the polynomial and hyperbolic absorption functions are optimized and compared by means of

benchmarks involving waves with normal and oblique incidences. Thereby, an interpretation of the

results obtained with the hyperbolic functions is proposed.

2. THE PERFECTLY MATCHED LAYER

Let us consider a general problem with non-dispersive scalar waves, defined on the unbounded

domain R
d, where d is the dimension of the space. The time-evolution of a scalar field p(x, t) and a

vector field u(x, t) is governed by the first-order system











∂p

∂t
+ a∇ · u = 0,

∂u

∂t
+ b∇p = 0,

(1)

where a and b are physical parameters, x denotes the spatial position and t is the time. Initial

conditions on both fields close the differential problem. This problem corresponds to a basic case

encoutered in various physical contexts.

The PML equations are introduced for a modified version of this problem that is defined on the

truncated domain Ω = {x ∈ R
d : x < 0} extended with the layer Σ = {x ∈ R

d : x ∈ [0, δ]}, where
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OPTIMIZING PERFECTLY MATCHED LAYERS IN DISCRETE CONTEXTS 3

x is the Cartesian coordinate corresponding to the direction es and δ denotes the thickness of the

layer. Most PMLs can be interpreted as media where the coordinates are stretched in the frequency

space, as firstly introduced by Chew and Weedon [12]. Following this idea, the PML equations are

built by considering the time-harmonic form of the system (1), i.e.

{−ıωp̂+ a∇ · û = 0,

−ıωû+ b∇p̂ = 0,
(2)

where p̂ and û are the time-harmonic fields and ω is the angular frequency. The real coordinate x is

then stretched using the complex mapping

x → x⋆(x) = x− 1

ıω

∫ x

0

σ(x′) dx′, (3)

where σ(x) is the absorption function, which is positive in Σ and equal to zero inside the domain

Ω. Basically, the original variable x is replaced with x⋆ in the differential operators of the system

(2). The resulting system is then rewritten in terms of the physical variable x thanks to the change

of variable x⋆(x). The time-harmonic system then becomes







−ıωp̂+ a∇ · û = − σ

ıω − σ
a
∂ûx

∂x
,

−ıωû+ b∇p̂ = −σûxex,

where ûx is the x−component of û and ex indicates the x−direction. The time-dependent system is

finally obtained by defining an additional equation and applying the inverse Fourier-transform:



























∂p

∂t
+ a∇ · u = −σq,

∂u

∂t
+ b∇p = −σuxex,

∂q

∂t
+ a

∂ux

∂x
= −σq,

(4)

where q(x, t) is an additional field, which is defined only in Σ. At the interface between Ω and Σ, the

continuity of the fields is prescribed. We choose to use a homogeneous Dirichlet condition on u for

the external boundary, i.e. u · ex = 0 at x = δ. Note that the exact nature of this boundary condition

has little influence on the solution if the outgoing waves are efficiently damped in the PML [39].

In the fundamental case where all waves propagate along the normal to the artificial boundary,

the problem becomes one-dimensional. In both the one-dimensional domain Ω = R
− and the layer

Σ = [0, δ], the scalar fields p(x, t) and u(x, t) are then governed by











∂p

∂t
+ a

∂u

∂x
= −σp,

∂u

∂t
+ b

∂p

∂x
= −σu.

This system is an important asymptotic case for all first-order PML systems of the literature. The

scope of the discussion based on it is therefore very large, and does not only apply for problems

with non-dispersive scalar waves.

3. KEY PROPERTIES IN THE CONTINUOUS CONTEXT

At the continuous level, the PML has interesting properties that make it an attractive method to

deal with the truncation of a large or infinite domain. These are reviewed and demonstrated in this

section by means of a classical plane-wave analysis (see e.g. [5, 6, 9]).

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
Prepared using nmeauth.cls DOI: 10.1002/nme



4 A. MODAVE ET AL.

The original system (1) supports time-harmonic plane-wave solutions of the form
(

p(x, t)
u(x, t)

)

=

(

P
U

)

eı(k·x−ωt), (5)

where P and U are the amplitudes and k is the wave vector, which are related by the dispersion

relation

ω =
√
ab ‖k‖

and the amplitude relation

P
k

‖k‖ =

√

a

b
U. (6)

These waves correspond to a non-dispersive and non-dissipative medium. In the PML, the properties

of the waves are modified due to the complex coordinate stretch (3). The travelling modes (5) indeed

become damped waves shaped as
(

p(x, t)
u(x, t)

)

=

(

P
U

)

eı(k·x−ωt)e−γ(x), (7)

with the attenuation factor

γ(x) =
cos θ√
ab

∫ x

0

σ(x′) dx′, ∀x ∈ [0, δ],

where θ = arccos(kx/ ‖k‖) is the angle of incidence. Both the dispersion relation and the amplitude

relation are identical to those of the original medium. Therefore, plane waves propagating in

the PML medium have exactly the same properties as those of the original medium, but with

an additional damping factor (the second exponential of the solution (7)). The PML medium is

both non-dispersive and dissipative. Note that the shape of the wave decay is independent of the

frequency, but not of the angle of incidence.

The interface between the domain Ω and the layer Σ is transparent to all travelling waves. This

can be shown by considering a representative problem where the domain Ω is extended with a semi-

infinite layer, i.e. with δ → +∞. Let us assume that an incident wave propagating in Ω towards the

layer splits into a reflected part (in Ω) and a transmitted part (in Σ). The solution then reads

p(x, t) =

{

P ieı(k·x−ωt) + P re−2ıkxxeı(k·x−ωt), ∀x ∈ Ω,
P teı(k·x−ωt)e−γ(x), ∀x ∈ Σ,

(8)

u(x, t) =

{

Uieı(k·x−ωt) +Ure−2ıkxxeı(k·x−ωt), ∀x ∈ Ω,
Uteı(k·x−ωt)e−γ(x), ∀x ∈ Σ.

(9)

Injecting this solution in the interface conditions and using the amplitude relation (6), one

immediately obtains that the amplitudes of the reflected wave, P r and Ur, are zero whatever the

value of σ. Therefore, the reflection coefficient associated with the interface is zero, i.e.

rinterf =

∣

∣

∣

∣

P r

P i

∣

∣

∣

∣

= 0. (10)

Every incident wave is perfectly transmitted from the truncated domain to the layer whatever its

frequency and angle of incidence. Therefore the interface is perfectly matched.

If the layer thickness δ is finite, the outgoing waves that are not sufficiently damped in Σ can be

reflected at the external boundary (i.e. at x = δ) and come back in Ω. This is shown by assuming the

plane-wave solution has an additional component that is reflected by the external boundary, i.e.

p(x, t) =

{

P ieı(k·x−ωt) + P re−2ıkxxeı(k·x−ωt), ∀x ∈ Ω,
P teı(k·x−ωt)e−γ(x) + P be−2ıkxxeı(k·x−ωt)eγ(x), ∀x ∈ Σ,

(11)

u(x, t) =

{

Uieı(k·x−ωt) +Ure−2ikxxeı(k·x−ωt), ∀x ∈ Ω,
Uteı(k·x−ωt)e−γ(x) +Ube−2ıkxxeı(k·x−ωt)eγ(x), ∀x ∈ Σ.

(12)
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OPTIMIZING PERFECTLY MATCHED LAYERS IN DISCRETE CONTEXTS 5

Injecting this solution in the boundary condition ex · u = 0 at x = δ and using the perfect matching

and the amplitude relation, one obtains the reflection coefficient associated with a finite layer, i.e.

rpml =

∣

∣

∣

∣

P r

P i

∣

∣

∣

∣

= exp

[

−2
cos θ√
ab

∫ δ

0

σ(x′) dx′

]

. (13)

This coefficient gives an indication on the reflection of outgoing waves by the layer. In the particular

case where the absorption function σ(x) has an unbounded integral, i.e.

∫ δ

0

σ(x′) dx′ = +∞, (14)

the reflection coefficient is zero. There is then no reflection and the layer is perfectly absorbing.

4. PRELIMINARY ANALYSIS IN DISCRETE CONTEXTS

When using a PML together with a numerical scheme, it is worthwhile to preserve its ability to

accurately simulate the artificial boundary of the truncated domain. This can be studied from two

complementary points of view.

1. The different contributions to the global error on the solution can be identified and quantified

separately: the modeling error, caused by the replacement of the original continuous problem

(defined on R
d) with the modified version (defined on Ω), and the numerical error, generated

by the discretization of the modified continuous problem. The former can be quantified with

the reflection coefficient rpml (13) or a L2-error on the solution. For a finite difference scheme,

the latter can be evaluated using the truncation error of the scheme.

2. The discrete problem can also be considered itself as a wave-like problem, where the discrete

equations support discrete plane-wave solutions. The purpose of a discretized PML is then to

absorb as accurately as possible the discrete outgoing waves. The challenge consists here in

defining and computing discrete versions of the reflection coefficient.

These points of view lead to different approaches to optimize PMLs: minimizing both modeling

and numerical errors [38], and minimizing a discrete reflection coefficient [13, 25, 41]. The former

way has the advantage of highlighting the different sources of error, while the latter provides a single

quantity to minimize. In this section, the properties of the PML are analysed in discrete contexts

taking the second point of view. Discrete reflection coefficients are first provided by a discrete time-

harmonic plane-wave analysis in a basic one-dimensional finite difference case. Then, our approach

is validated and extended to other numerical methods by using simulations in the time domain.

4.1. Discrete plane-wave analysis – Finite difference scheme

Let us consider a spatial discretization of the problem in a one-dimensional case with a finite

difference (FD) method. The semi-discrete fields p̃i+1/2(t) and ũi(t) take their values on staggered

regular grids, at the discrete points xi+1/2 = (i+ 1/2)∆x and xi = i∆x, respectively, where i is the

spatial index and ∆x is the spatial step. Using central finite differences, the governing semi-discrete

equations read











dp̃i+1/2

dt
+ a

ũi+1 − ũi

∆x
= −σi+1/2 p̃i+1/2,

dũi

dt
+ b

p̃i+1/2 − p̃i−1/2

∆x
= −σi ũi.

(15)

The discrete values of the absorption function, σi and σi+1/2, are equal to zero in the truncated

domain (i < 0) and are positive in the PML (i ≥ 0).

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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Figure 1. Illustration of the exponential decay of a plane wave in a one-dimensional PML for a constant
absorption function σ(x) = σ̄. The characteristic length of the decay is c/σ̄.

The semi-discrete system (15) supports plane-wave solutions similar to the continuous systems,

but with slightly different properties. In the domain Ω, where the source terms are removed, the

elementary solution reads

p̃i+1/2(t) = Peı(k(i+
1/2)∆x−ωt), (16)

ũi(t) = Ueı(ki∆x−ωt), (17)

and the wave number k (real) and the angular frequency ω (real and positive) are now related to

each other by the dispersion relation

k = ± 2

∆x
arcsin

(

∆x

2

ω

c

)

, (18)

with c =
√
ab. Since the phase velocity ω/ |k| depends on the wave number, these plane waves are

dispersive, contrary to their continuous versions. The non-dispersive behavior of continuous waves

is recovered when the spatial step ∆x is small with respect to the wavelength c/ω. This means that

the discrete lattice must be fine enough to be able to capture the oscillatory behavior of waves. In

the PML Σ, the oscillatory behavior of discrete plane waves is altered by the source terms, and

the decay of these waves varies with the frequency, in contrast with the continuous case. If the

absorption function is constant (σi = σi+1/2 = σ̄, ∀i ≥ 0), the elementary solution of the system can

be written as a damped plane wave

p̃i+1/2(t) = Peı(β(i+
1/2)∆x−ωt), (19)

ũi(t) = Ueı(βi∆x−ωt), (20)

where β is a complex number that is linked to the problem parameters by the dispersion relation

β = ± 2

∆x
arcsin

(

∆x

2

ω + ıσ̄

c

)

. (21)

The real part of β corresponds to the wave number and its imaginary part gives the attenuation factor.

To recover the continuous dispersion relation, the spatial step ∆x must be small with respect to both

c/ω and c/σ̄. The first condition is the same as in the domain Ω (with σ = 0). The second condition

can be interpreted considering the shape of the solution in the layer, which is illustrated in Figure

1. For a constant absorption function, the decay of waves is exponential, with the characteristic

length c/σ̄. This decay is captured by the discrete mesh only if the spatial step is smaller than the

characteristic length, i.e. ∆x << c/σ̄.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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Figure 2. Reflection coefficients provided by plane-wave analyses in both continuous (rinterf and rpml) and

discrete (r⋆interf and r⋆pml) contexts. The parameters are δ = 5 ∆x, λ = 13 ∆x and ∆x = 103. All quantities

are normalized to both the phase velocity
√
ab and the impedance

√

a/b, and are then dimensionless.

The discrete versions of the reflection coefficients can be derived using the same procedure as in

the continuous case (Section 3). Let us assume a semi-infinite truncated domain terminated with a

PML of infinite or finite thickness, and semi-discrete solutions similar to the continuous ones (8)–

(9) and (11)–(12). The discrete reflection coefficients are the ratio of the amplitudes of the incident

and the reflected discrete plane waves. Injecting the semi-discrete solutions in the discrete scheme

and using the discrete versions of both dispertion and amplitude relations, we get, respectively, the

coefficient associated to the interface (or an infinite PML)

r⋆interf =

∣

∣

∣

∣

e−ıβ∆x/2 − e−ık∆x/2

e−ıβ∆x/2 + eık∆x/2

∣

∣

∣

∣

and the one corresponding to the PML of thickness δ

r⋆pml =

∣

∣

∣

∣

ı cos(βδ + β∆x/2)− sin(βδ) e−ık∆x/2

ı cos(βδ + β∆x/2) + sin(βδ) eık∆x/2

∣

∣

∣

∣

, (22)

where k and β are given by the dispersion relations (18) and (21) with the plus sign in either case.

The complete calculations are detailed in Appendix A.2.

Both continuous and discrete versions of the reflection coefficients are plotted as functions of

σ̄ for a set of parameters in Figure 2. It is interesting to compare and interpret these curves for

small and large values of σ̄ separately. For a small value of σ̄, the behaviour of the continuous

solution is accurately reproduced by the numerical scheme. Indeed, when σ̄ < c/δ, the curves of

the discrete reflection coefficients are close to those of the continuous ones. The outgoing waves are

perfectly transmitted from the domain to the PML. However, they are not sufficiently damped, and

are then reflected by the external boundary and come back in the domain. This undesirable behavior

is due to the modeling error that is already present in the continuous model, and is reproduced

by the discrete model. If σ̄ is large, the interface domain/layer is reflective in the discrete context,

while it is perfectly mached in the continuous one. This spurious reflection of waves is caused by

the discretization error. When the characteristic length of the exponential decay of outgoing waves

is smaller than the spatial step, i.e. c/σ̄ < ∆x, the behavior of the solution cannot be reproduced

with the discrete lattice and large numerical errors appear. A constant absorption function σ̄ must

therefore be chosen in such a way to damp enough outgoing waves without inducing a too sharp

decrease of the fields. There exists an optimum value σ̄opt that corresponds to this compromise. It

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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(b) Minimum reflection coefficient r⋆pml
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Figure 3. The optimum value σ̄opt of the constant absorption function and the corresponding minimum
reflection coefficient r⋆pml as a function of the wavelength λ. Same parameters as in Figure 2.

minimizes the coefficient (22), and is such that the characteristic length of the exponential decay

c/σ̄opt is in the range [∆x, δ], as shown in Figure 2.

The impact of the spatial step ∆x and the tickness of the layer δ on the errors can be also

interpreted from Figure 2. An increase of δ moves the curve rpml(σ̄) to the left, and a decrease of ∆x
moves the curve r⋆interf(σ̄) to the right. Therefore, for a given value of σ̄, this leads to a decrease of

the modeling or numerical error, respectively. Both ways can potentially decrease the global error.

However, they require an increase of the computational cost, and it is not certain that the global error

will actually decrease in all cases. Indeed, an increase of δ (resp. decrease of ∆x) does not improve

the layer if the global error is largely dominated by the numerical error (resp. modeling error).

The curves associated to the discrete reflection coefficients do not notably change with the

wavelength λ. In particular, as shown in Figure 3a, the optimum values σ̄opt remain in the

range [c/δ, c/∆x], whatever the wavelength. The corresponding minimum values of the reflection

coefficient do not vary significantly for large enough wavelength (Figure 3b). Therefore, the

effectiveness of the PML is equivalent for all plane waves with nearly the same optimum value

σ̄opt, except when the wavelength is close to the spatial step. The formulas of the discrete reflection

coefficients for the low-frequency asymptotic case are given at the end of Appendix A.2. It is a

remarkable fact that these formulas are independent of the frequency, which confirms our analysis.

As a conclusion, σ̄, δ and ∆x are the key parameters that influence the effectiveness of the PML

in this discrete finite difference context. For a constant absorption function, the modeling error is

related to the value δ, while the numerical error obviously depends on ∆x. The most appropriate

approach to improve a PML is to choose δ and ∆x according to the acceptable computational cost,

and after to find the corresponding optimum value of σ̄. If the obtained global error is too large,

the procedure must be done again with a larger δ and/or a smaller ∆x, and thus an increase of the

computational cost.

4.2. Time-dependent simulations – Extention to other numerical schemes

In order to validate our approach and to extend the discussion to other numerical methods, the

properties of the PML are now studied with time-dependent numerical simulations. We consider

numerical schemes based on the finite difference (FD) method, as well as finite volume (FV),

stabilized continuous finite element (CG) and discontinuous finite element (DG) methods. For

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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(a) Initial solution

−L −L/2 0 δ

x
σ

(b) Final solution

−L −L/2 0 δ

x
σ

Figure 4. Illustration of the solution of the one-dimensional benchmark at the initial and final instants. A
Gaussian-shaped pulse that moves to the right is prescribed by the initial condition. After a reflection by the
layer, the reflected part of the pulse moves to the left, and is finally centered in the right part of the domain.

convenience, all quantities are normalized to both the velocity
√
ab and the impedance

√

a/b, and

are then dimensionless.

The time-harmonic one-dimensional benchmark is adapted for the time domain with a transient

incident signal. The finite truncated domain Ω = [−L, 0] is extended with the PML Σ = [0, δ]. An

incident Gaussian-shaped pulse is used as initial condition with

p(x, 0) = exp

(

− (x+ L/4)2

R2

)

,

u(x, 0) = exp

(

− (x+ L/4)2

R2

)

,

where R is a constant parameter. This pulse covers a broad range of frequencies, in contrast to the

incident sine wave of the time-harmonic benchmark. As illustrated in Figure 4, it is initially centered

at the middle of [−L/2, 0]. The parameter R is chosen such that both fields are initially negligible

outside this region. As time goes by, the pulse moves towards the layer and is partly reflected. At

the end of the simulation (tf = L/2), the reflected part of the pulse is mainly in [−L/2, 0]. Due to

the numerical dispersion of the discrete scheme, some numerical modes can reach [−L,−L/2] and

the shape of the reflected signal can be non-Gaussian. The boundary condition u = 0 is used at both

x = −L and x = δ.

The effectiveness of the PML is now quantified using the relative error ξr on the numerical

solution defined by

ξr =

√

Epml(tf )

Ewall(tf )
, (23)

where Epml(tf ) is the global energy associated to the numerical solution in [−L, 0] at the end of the

simulation, and Ewall(tf ) is the one obtained by remplacing the PML with the perfectly reflecting

boundary condition u = 0 at x = 0. In this dimensionless context, the global energy E is defined by

E(tf ) =

∫ 0

−L

(

1

2
p2(x, tf ) +

1

2
u2(x, tf )

)

dx.

The value of ξr can be interpreted as the part of the global energy that is reflected by the layer. The

value 0 corresponds to a perfectly absorbing layer, while 1 is for a perfectly reflective layer.
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The discrete reflection coefficient r⋆pml and the relative error ξr are complementary ways of

quantifying the effectiveness of a discretized PML. The former is for a particular frequency (time-

harmonic context), while the latter directly accounts for a range of frequencies through the initial

incident pulse (time-dependent context). In the particular case where a harmonic plane wave is used

instead of the Gaussian-shaped incident pulse, the relative error reduces to the discrete reflection

coefficient, i.e. ξr = r⋆pml.

The relative error ξr has been computed for different values of the parameter σ̄ in [10−6, 100] with

different numerical schemes in a unique setting. The curves of ξr as a function of σ̄ are plotted in

Figure 5 (linear scale) and Figure 6 (logarithmic scale). The finite difference (FD) scheme described

in Section 4.1 is considered, as well as a finite volume (FV) scheme and finite element schemes

based on continuous and discontinuous Galerkin methods (CG and DG). Both CG and DG schemes

are described in Appendix B, while the FV scheme corresponds to the DG scheme with piecewise

constant basis functions. We use centered and upwind fluxes for FV and DG schemes, and first- and

second-order polynomial basis functions for CG and DG schemes. In all cases, the spatial step is

∆x = 103, the size of the domain is L = 500 ∆x, the thickness of the layer is δ = 5 ∆x, and the

parameter of the initial pulse is R = 10 ∆x. The time-stepping is performed using the Leapfrog

scheme with ∆t = 0.5 103 (FD) or the Crank-Nicolson scheme with ∆t = 2.5 103 (FV, CG and

DG). To stabilize the CG scheme, PSPG terms are added in the formulation (see Appendix B) with

the numerical diffusion parameter κ = 103.

The numerical results obtained with the FD scheme are consistent with the plane-wave analysis

of the previous section. Indeed, in Figure 5a, the curve of the relative error ξr(σ̄) is close to

the one of the discrete reflection coefficient r⋆pml(σ̄) obtained with the plane-wave analysis. The

small difference can be explained by the change of incident signal: a harmonic one with a single

frequency for r⋆pml and a Gaussian-shaped one covering a range of frequencies for ξr, including high

frequencies.

For σ̄ < c/δ, the continuous solution, and then the corresponding modeling error, is accurately

reproduced by all schemes. All relative error curves are indeed close to the one of the continuous

reflection coefficient rpml. By contrast, for σ̄ > c/δ, i.e. when the exponential decay of outgoing

waves is too sharp to be reproduced by the discrete mesh, the behavior of the discretized PML varies

with the numerical scheme. With the CG scheme and the FV/DG schemes (with centered fluxes), the

curves ξr(σ̄) look like the one obtained with the FD scheme (Figures 5b and 5c): there is an optimum

value of σ̄ and, beyond this value, the relative error increases with σ̄. For very high values of σ̄, the

interface domain/layer becomes perfectly reflective. The optimum value of σ̄ increases when the

order of the polynomial basis functions increases (Figures 6b and 6c). This can be explained by

considering that a higher order method can more accurately reproduce the rapid variations of the

solution. Therefore, a higher σ̄, which reduces the characteristic length of the exponential decay, can

be used. With the FV/DG schemes and upwind fluxes, unlike with other schemes, the PML remains

highly absorbing for large values of σ̄ (Figure 5d). This particular behavior is due to the upwind

fluxes, which are based on an exact Riemann solver. At the interface, this solver naturally splits the

parts of the solution that propagate inward and outward. The outgoing Riemann invariant, which

contains outgoing waves, is correctly computed, while the incoming Riemann invariant is computed

using the overdamped values of the fields of the layer, and is then close to zero. This corresponds

to prescribing that there are no incoming waves. Prescribing the incoming Riemann invariant to

zero is a common absorbing boundary condition (ABC) strategy, which is exact in one-dimensional

cases. As shown in Figure 6d, the PML reaches the accuracy of this ABC for large values of σ̄.

Unfortunately, as shown later, this ideal behavior is lost for multidimensional problems with oblique

incident waves. Indeed, the ABC is then approximate and becomes reflective. Similarly, the PML

becomes reflective for too large values of σ̄.

All these numerical results corroborate the conclusion of the plane-wave analysis performed in

the FD context, and extend it to other numerical methods. In nearly all cases, there is an optimum

value of the constant absorption function σ̄ to use in discrete contexts. The important exception

observed with the FV/DG schemes and upwind fluxes is a particular case that does not occur in

multidimensional problems.
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(a) FD scheme
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(b) CG scheme
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(c) FV and DG schemes with centered fluxes
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(d) FV and DG schemes with upwind fluxes
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Figure 5. Relative errors ξr of the one-dimensional benchmark as a function of the constant absorption
function σ̄ for different numerical methods. The continuous reflection coefficient rpml is plotted in each

graph, as well as the discrete version r⋆pml in FD case for λ = 13 ∆x. All values are dimensionless.
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(a) FD scheme
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(b) CG scheme
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(c) FV and DG schemes with centered fluxes
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(d) FV and DG schemes with upwind fluxes
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Figure 6. Same as Figure 5, but with a logarithmic scale. In Figure 6d, horizontal lines are plotted at the
levels corresponding to the relative errors obtained with an ABC prescribed at x = 0.
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5. SPATIALLY VARYING ABSORPTION FUNCTIONS

Smoothly increasing functions are widely used as absorption functions. They induce a gradual decay

of outgoing waves that is more easily captured by numerical methods than a sharp exponential

decay. At the discrete level, the effectiveness of the PML is then easily improved at no additional

cost. Polynomial absorption functions are most frequently used (see e.g. [18] and the references of

the present paper), i.e.

σn(x) = α
(x

δ

)n

,

where n and α are positive parameters. The power n is generally equal to 2 or 3, which correspond

respectively to parabolic σ2 and cubic σ3 functions. Similarly to the value σ̄ of constant absorption

functions, the parameter α of polynomial functions must be large enough to damp the outgoing

waves, and small enough to avoid a too sharp variation of the solution that cannot be reproduced

accurately by the numerical scheme. Nevertheless, the optimum α is currently not clearly identified,

and no general rule exists to choose it.

As an alternative, hyperbolic functions were proposed by Bermúdez et al. [8]:

σh(x) =
α

δ − x

σsh(x) =
α

δ − x
− α

δ
,

where α is an additional positive parameter to choose. The second function is called shifted

hyperbolic function, because it is pushed down to ensure a zero value at the interface domain/layer

(i.e. at x = 0). Since both functions have an unbounded integral, the PML is theoretically perfectly

absorbing at the continuous level (the condition (14) is met). In discrete contexts, the parameter

α must be optimized for the same reason as with other functions. Fortunately, both functions are

close to optimum with α ≈ c (or α ≈ 1 in the dimensionless context). This was first observed by

Bermúdez et al. [7] in a specific time-harmonic acoustic context with a continuous finite element

scheme. This result is extended hereafter in time-dependent contexts with different numerical

methods and interpretations are proposed.

This section deals with the choice of the spatially varying function to use as absorption function

σ(x). Polynomial and hyperbolic functions are optimized and compared, and the optimum value

of the free-parameter α is discussed. To this aim, the one-dimensional benchmark is used again, as

well as a two-dimensional benchmark that deals with waves having oblique incidences.

5.1. Optimization for normal waves

Consider again the one-dimensional benchmark of Section 4.2. The relative error ξr (23) is now

computed with different values of the parameter α for the different absorption functions and

different numerical settings. We consider FD, CG and DG schemes, with first-order polynomial

basis functions for the finite element schemes (CG and DG), and both centered and upwind fluxes

for the DG scheme. In each case, two PML thicknesses δ are considered, as well as two sets of

numerical parameters: those of Section 4.2 (set A) and smaller ones (set B). The curves of the

relative error ξr as a function of α are shown in Figures 7, 8, 9 and 10.

The curves ξr(α) exhibit the same behavior in all cases, except when the DG scheme is used with

upwind fluxes (Figure 10). In this case, the result obtained with the constant absorption function is

recovered: the PML is highly absorbing with very high value of α, and the value of the relative error

is close to the one provided by the ABC. This particularity can be explained again by the specific

definition of the upwind fluxes (see Section 4.2).

With the other numerical schemes, the curves ξr(α) can present several minima. A systematic

optimization of absorption functions must then be carefully done. For polynomial functions, the best

α, which corresponds to the global minimum of each curve, is always in the range 10−3 − 10−2,

except for the DG scheme with centered fluxes, where the best α can have very different values:
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(a) FD scheme with δ = 5 103 and set A
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(b) FD scheme with δ = 104 and set A
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(c) FD scheme with δ = 5 103 and set B
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(d) FD scheme with δ = 104 and set B
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Figure 7. One-dimensional benchmark with the finite difference (FD) scheme. Relative error ξr as a function
of the parameter α for different absorption functions σ(x) and two PML thicknesses δ. In each case, two

sets of numerical parameters are considered: ∆x = 103, ∆t = 500 (set A) and ∆x = 100, ∆t = 50 (set B).
All values are dimensionless.
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(a) CG scheme with δ = 5 103 and set A
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(b) CG scheme with δ = 104 and set A
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(c) CG scheme with δ = 5 103 and set B
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(d) CG scheme with δ = 104 and set B
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Figure 8. One-dimensional benchmark with the continuous Galerkin (CG) scheme. Relative error ξr as a
function of the parameter α for different absorption functions σ(x) and two PML thicknesses δ. In each

case, two sets of numerical parameters are considered: ∆x = 103, ∆t = 2.5 103 (set A) and ∆x = 250,
∆t = 625 (set B). κ = 1000 for both settings. All values are dimensionless.
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(a) DG scheme with centered fluxes,

δ = 5 103 and set A
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(b) DG scheme with centered fluxes,

δ = 104 and set A
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(c) DG scheme with centered fluxes,

δ = 5 103 and set B
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(d) DG scheme with centered fluxes,

δ = 104 and set B
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Figure 9. One-dimensional benchmark with the discontinuous Galerkin (DG) scheme and centered fluxes.
Relative error ξr as a function of the parameter α for different absorption functions σ(x) and two PML

thicknesses δ. In each case, two sets of numerical parameters are considered: ∆x = 103, ∆t = 2.5 103

(set A) and ∆x = 250, ∆t = 625 (set B). All values are dimensionless.
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(a) DG scheme with upwind fluxes,

δ = 5 103 and set A

10
−4

10
−2

10
0

10
2

10
−8

10
−6

10
−4

10
−2

10
0

DG − lpml 5000 − dec 1 − dx 1000 − dt 2500

Parameter  α

R
el

at
iv

e 
er

ro
r 

 ξ
r

 

 

σ
2

σ
3

σ
h

σ
sh

ABC

(b) DG scheme with upwind fluxes,

δ = 104 and set A
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(c) DG scheme with upwind fluxes,

δ = 5 103 and set B
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(d) DG scheme with upwind fluxes,

δ = 104 and set B
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Figure 10. One-dimensional benchmark with the discontinuous Galerkin (DG) scheme and upwind fluxes.
Relative error ξr as a function of the parameter α for different absorption functions σ(x) and two PML

thicknesses δ. In each case, two sets of numerical parameters are considered: ∆x = 103, ∆t = 2.5 103

(set A) and ∆x = 250, ∆t = 625 (set B). The level of the dashed line corresponds to the relative error
obtained with the ABC. All values are dimensionless.
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close to 10−3, 100 or 102 (Figure 9). By contrast, for the functions σh and σsh, the best α is always

in a single range of values 10−1 − 101.

Figure 11 shows the minimum ξr and the corresponding optimum α as functions of the number

of grid cells in the layer. These optimum values are obtained using the line-search algorithm. They

are searched in the range 10−4 − 10−2 for polynomial functions, and 10−1 − 101 for hyperbolic

ones. Although there is no guarantee that the obtained values correspond to the global minimum of

ξr(α), all the curves show coherent behaviors: by increasing the thickness of the layer, the minimum

relative error ξr decreases.

For each absorption function, the optimum value of α is similar in all discrete contexts (Figure

11, right). It lies in the range 10−3 − 10−2 for polynomial functions (σ2 and σ3), and close to 100 for

hyperbolic ones (σh and σsh). In the first case, this optimum value varies slightly with the numerical

scheme, and diminishes when the layer thickness increases. With the hyperbolic functions, it is

almost always constant, except for σsh with the DG scheme and centered fluxes, where the optimum

value slightly oscillates.

The effectiveness of the different absorption functions at their best, i.e. when the optimum α
is used, changes depending on the numerical method (Figure 11, left). With the FD scheme, the

optimized polynomial functions give the smallest relative error. Among the hyperbolic functions,

the shifted one σsh works better than the other. With the CG scheme, σh outperforms all other

optimized functions, which give equivalent results. Finally, with the DG scheme and centered fluxes,

the functions σ2, σh and σsh are the best, and nearly equivalent.

The performance of the hyperbolic and shifted hyperbolic functions and the optimum value

of their free-parameter α can be interpreted by considering the particular shape of the obtained

solutions. Indeed, since there is no modeling error with these functions, the global error is entirely

due to the numerical error, which depends on the ability of the numerical scheme to reproduce the

solution, as highlighted in Section 4. Therefore, the best absorption function corresponds to the most

adequate solution shape in a given numerical context. When the functions σh(x) and σsh(x) are used

with α = c, the plane-wave solution (7) becomes respectively

p(x, t) = Peı(k·x−ωt)
[(

1− x

δ

)]cos θ

(24)

and

p(x, t) = Peı(k·x−ωt)
[

ex/δ
(

1− x

δ

)]cos θ

.

If the plane waves are normal to the interface (i.e. θ = 0), their decay is then respectively linear and

exponential-linear, as illustrated in Figure 12. Since linear variations are accurately represented by

numerical schemes on regular grids, the decay induced by σh is ideal. In particular, in a previous

work [35], we showed that the linear decay of waves is perfectly captured by the FD scheme if α
is equal to the group velocity cg (27)†. Therefore, if the spatial step is small enough to capture the

oscillations, the solution is correctly simulated. We expect the same behavior with other numerical

schemes. However, at the interface between the domain Ω and the layer Σ, the spatial derivative of

the plane-wave solution is discontinuous (Figure 12a). Such a solution can be correctly represented

with the CG and DG schemes, whose piecewise polynomial solutions are only continuous (not

continuously differentiable) and discontinuous, respectively, at the interface between elements. By

contrast, the classical FD scheme considered here is based on the direct replacement of partial

derivatives using finite differences in the equations. Since the partial derivative is discontinuous at

the interace between Ω and Σ, this strategy is not efficient without specific interface treatement

(e.g. an ad hoc transmission condition). This explains the observed results for the one-dimensional

benchmark: σh is good with both CG and DG schemes and bad with the FD one. The shifted

hyperbolic function σsh provides a nonlinear decay of plane waves, without discontinuity of the

spatial derivative at the interface, as illustrated in Figure 12b. The shape of this solution exhibits a

slow decay that is accurately represented by the FD scheme without specific interface treatment.

†This assumption is reasonable since cg differs from the propagation velocity c only for wavelengths close to the spatial
step ∆x [26]. However, in practical cases, ∆x is chosen small enough in comparison to the considered wavelengths.
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(a) FD scheme
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(b) CG scheme
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(c) DG scheme with centered fluxes
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Figure 11. One-dimensional benchmark. Minimum relative error ξr (left) and corresponding optimum
parameter α (right) as a function of the PML thickness δ for the different absorption functions σ(x). When
δ increases, the spatial step ∆x remains constant and the number of cells in the PML increases. For all

schemes, ∆x = 103. The time step ∆t is 500 (FD) or 2.5 103 (CG and DG). All values are dimensionless.
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(a) Decay with σh(x)
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Figure 12. Illustration of the decay of a plane wave in a one-dimensional PML for (a) a hyperbolic function
σh(x) and (b) a shifted hyperbolic function σsh(x). The decay is respectively linear and exponential-linear.

5.2. Optimization for oblique waves

In order to test the PML with waves entering in the layer with an oblique incidence, we now consider

a two-dimensional benchmark. A Gaussian-shaped pulse is initially prescribed in the center of a

squared domain using the initial condition on p(x, t):

p(x, 0) = exp

(

−‖x‖2
R2

)

,

where R is a constant parameter. At the initial instant t = 0, the field u(x, t) and the additional field

q(x, t), are equal to zero in Ω ∪ Σ and Σ, respectively, and p(x, t) is negligible outside Ω. As time

goes by, the pulse collapses and circular waves appear. The simulation stops when the main wave

reaches the lateral boundary of the domain (see the snapshots of the reference solution in Figure 13).

The homogeneous Dirichlet condition u · n = 0 is prescribed at each border of the square, where n

is the outward normal.

The PML is tested considering a version of the problem with a truncated domain: the upper

part of the squared domain is removed, and replaced with a PML Σ (see Figure 13). The goal is

to reproduce the reference solution in the truncated domain Ω. The effectiveness of the PML is

quantified by using the relative error ξr that is now defined as

ξr =

√

Eerror with pml(tf )

Eerror with wall(tf )
,

where the global energies Eerror with pml(t) and Eerror with wall(t) are now associated to the error on the

fields in the truncated domain Ω. The former corresponds to the numerical solution obtained with

the PML, while the latter is obtained in the case where the interface is perfectly reflective (u · n = 0
is prescribed at the interface). In this dimensionless context, the first global energy reads

Eerror with pml(t) =

∫

Ω

(

(

ppml(x, t)− pref(x, t)
)2

+
∥

∥upml(x, t)− uref(x, t)
∥

∥

2
)

dx,

where the numerical fields ppml and upml are obtained with the PML, while pref and uref correspond

to the reference numerical solution obtained with the original squared domain (see Figure 13, left).

The layer is then perfectly absorbing for ξr = 0, and perfectly reflective for ξr = 1. In the latter
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Reference solution Solution with PML Error in the domain Ω

t
=

0

0 0.5 10 0.5 1 0 0.5 10 0.5 1 0 0 00 0 0

t
=

t f
/
2

0.15-0.17 -0.01 0.15-0.17 -0.01 -0.17 -0.01 0.15-0.17 -0.01 0.15 -0.002 0.001 0.004-0.002 0.001 0.004

t
=

t f

-0.11 -0.005 0.1-0.11 -0.005 0.1 -0.11 -0.005 0.1-0.11 -0.005 0.1 -0.0026 -0.0001 0.0024-0.0026 -0.0001 0.0024

Figure 13. Two-dimensional benchmark. Field p(x, t) at different instants of the simulation in the reference
domain (left) and the truncated domain Ω extended with a PML Σ (center). The difference between these

two solutions in the truncated domain is plotted on the right.

case, the energy reflected by the layer is indeed the same as with a perfectly reflective boundary

condition.

The relative error ξr is computed with numerous values of the parameter α for the different

absorption functions and FD, CG and DG numerical schemes. Figure 14 shows the curves of the

relative error ξr as a function of α. The spatial dimensions are 8 104 × 8 104 for the reference

squared domain, and 8 104 × 5 104 for the truncated domain. We consider the PML thickness

δ = 104, the characteristic length of the Gaussian-shaped pulse R = 5 103 and the simulation

duration tf = 3.6 103. For the FD scheme, the spatial steps are ∆x = ∆y = 500 and the time-

stepping leapfrog scheme is used with the time step ∆t = 300. The CG and DG schemes are

described in Appendix B. For both, the mesh is made of first-order triangular elements with the

edge length ℓ ≈ 1.75 103, and the Crank-Nicolson time-stepping scheme is used with the time step
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(a) FD scheme
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(b) CG scheme with κ = 200
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(c) CG scheme with κ = 103

10
−4

10
−2

10
0

10
2

10
−6

10
−4

10
−2

10
0

Parameter  α

R
el

at
iv

e 
er

ro
r 

 ξ
r

δ 10 − CG 1000

 

 

σ
2

σ
3

σ
h

σ
sh

(d) DG scheme with centered fluxes
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(e) DG scheme with upwind fluxes
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Figure 14. Two-dimensional benchmark. Relative error ξr as a function of the parameter α for the different
absorption functions in different numerical contexts. In Figure 14e, the level of the horizontal line indicates

the relative error obtained with the ABC.
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∆t = 3 103. We consider two values of the stabilization parameter κ for the CG scheme, and both

centered and upwind fluxes for the DG scheme.

As shown in Figure 14e, the PML discretized with the DG scheme and upwind fluxes is reflective

for large values of α, by contrast with the one-dimensional case. There is now an optimum α (at

the minimum of each curve) for each absorption function, like with the other numerical schemes.

In each case, the minimum relative error ξr is smaller than the one obtained with the ABC. As

expected, the ABC is only approximate for oblique outgoing waves, which can be treated by the

PML. The PML is then more accurate in this context, but it requires to choose a value of α neither

too large nor too small.

As an another difference with the one-dimensional case, the hyperbolic function σh provides now

worse results than other absorption functions in all the cases. When all functions are optimized, the

relative error corresponding to σh is indeed the worst in every discrete context, while this function

was efficient with both CG and DG schemes in one dimension. This contrasts with Bermúdez et

al. [8] who obtained better results with σh in a two-dimensional case with circular waves. This

can be explained by the different numerical schemes: Bermúdez et al. used a CG scheme without

stabilization based on the Helmholtz equation, which provides a different approximation of the

solution. The stabilization technique employed in the present work probably plays an important

role, since σh gets worse when the stabilization parameter κ increases (see Figures 14c–14d). By

contrast, the performance of other functions is not significantly affected. Therefore, σh provides

contrasted performances and is less robust than others.

The cubic function σ3 and the shifted hyperbolic one σsh exhibit similar relative error ξr when

they are optimized. The former is slightly better than the latter for the FD scheme and the DG

scheme with centered fluxes. The converse holds for the CG scheme with κ = 200. The parabolic

function σ2 is always worse than σ3.

As for the one-dimensional case, the optimum α of the functions σh and σsh remains close to 1,

while it is now systematically a bit smaller than 1 for σh. For polynomial functions σ2 and σ3, the

optimum α is always close to 10−3. This value is coherent with those obtained in one dimension with

the same PML thickness (see Figure 11 for a PML with 10 cells), while being currently devoided of

any interpretation.

6. CONCLUSION

PMLs provide an efficient way to simulate the truncation of a large or infinite domain. However,

their main features are altered when numerical methods are used. While the perfect matching

was automatic and the perfect absorption was ensured by a large absorption function σ(x) at the

continuous level, the parameters of a discretized PML must be carefully chosen in order to limit

both modeling and numerical errors.

The analytical and numerical results presented in this paper highlight the importance of the

absorption function σ, the layer thickness δ and the spatial discretization in this issue. In a discrete

context, the effectiveness of the PML critically depends on the ability of the numerical scheme to

accurately represent the decay of outgoing waves in the layer. Increasing the layer thickness δ or

refining the mesh can then improve the PML, but at the prize of an increase of the computational

cost. By contrast, taking a better σ improves the effectiveness of the layer at no additional cost.

Looking for efficient absorption functions is then a very attractive approach.

Polynomial functions are widely used as absorption functions, even if they require an optimization

procedure or empirical formula to choose their free parameter α. In this work, we confirm the

effectiveness of these functions, but the choice of the parameter remains an open issue: the optimum

value does not find any direct interpretation. By contrast, for the functions σh and σsh, the optimum

value for α is always very close to the propagation velocity c. They can therefore be used without

any tuning, as already observed by Bermúdez et al. [7] and in our previous works [35, 36] in more

specific contexts. We recommand the use of the shifted hyperbolic function σsh, which is as efficient

as optimized polynomial functions and more robust than σh. This recommandation concerns a wide

range of cases since fundamental one- and two-dimensional benchmarks are used with various
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classical numerical schemes (based on finite difference, finite volume, stabilized continuous finite

element and discontinuous finite element methods).

Many topics of further research about perfectly matched layers remains open. In the continuation

of this paper, the knowledge of error estimates should permit a better choice of the PML thickness

and the mesh refinement. Then, as mentionned in the introduction, the use of modified discrete

schemes or mesh adaptation, as well as specific transmission conditions at the interface, can also

improve the PML effectiveness. However, since these strategies change the approximation of the

solution, the conclusion of the present work could not be relevant, and ad hoc analyses should be

performed. In a general way, verifications should be made if numerical schemes not considered in

this work are used (e.g. finite elements schemes with other elements and basis functions). Finally,

detailed analyses and interpretation of optimum parameters should be proposed for other efficient

PML formulations where other additional parameters are introduced (e.g. [15, 18, 32, 43]).

A. PLANE-WAVE ANALYSES IN THE DISCRETE FINITE DIFFERENCE CONTEXT

When a differential problem is discretized, the qualitative properties of its solution change. As

dispersion and dissipation of waves are modified in the context of wave propagation, the features

of PMLs are equally altered. In this appendix, the dispersion and dissipation properties of waves

are studied for the basic one-dimensional problem with and without PML terms, discretized with

the finite difference method. The discrete reflection coefficients associated to both infinite and finite

PMLs are then derived for the constant absorption function σ̄.

A.1. Discrete scalar wave system without PML terms

Let us consider the finite difference (FD) scheme for the one-dimensional scalar wave system, given

by the semi-discrete system (15) without the sources terms. The dispertion and dissipation properties

of waves supported by this system are studied by considering the elementary plane-wave solution

(16)–(17). Injecting this solution in the system gives














−ıωP + a
eık∆x/2 − e−ık∆x/2

∆x
U = 0,

−ıωU + b
eık∆x/2 − e−ık∆x/2

∆x
P = 0,

⇐⇒















−ω∆x

2
P + a sin

(

k∆x

2

)

U = 0,

−ω∆x

2
U + b sin

(

k∆x

2

)

P = 0.

(25)

The last system has non-trivial solutions if

ω = ±c
2

∆x
sin

(

k∆x

2

)

,

P = ±
√

a

b
U, (26)

with c =
√
ab. The plus sign corresponds to k > 0 and the minus sign is for k < 0. The phase

velocity and the group velocity of waves are then

cp
def.
=

ω

|k| = c
2

k∆x
sin

(

k∆x

2

)

,

cg
def.
=

∂ω

∂k
= ±c cos

(

k∆x

2

)

. (27)

Since the phase velocity cp depends on k, the scheme is dispersive. Since the elementary plane-wave

solution is not damped, the scheme is non-dissipative.
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A.2. Discrete scalar wave system with PML terms and a constant function σ̄

Let us consider the FD scheme (15) for the one-dimensional problem with PML terms and a constant

absorption function σ̄. Injecting the elementary plane-wave time-harmonic solution (19)–(20) in the

system (15) gives














−ıωP + a
eıβ∆x/2 − e−ıβ∆x/2

∆x
U = −σ̄P,

−ıωU + b
eıβ∆x/2 − e−ıβ∆x/2

∆x
P = −σ̄U.

⇐⇒















− (ω + ıσ̄)
∆x

2
P + a sin

(

β∆x

2

)

U = 0,

− (ω + ıσ̄)
∆x

2
U + b sin

(

β∆x

2

)

P = 0,

This system has non-trivial solutions if

ω + ıσ̄ = ±c
2

∆x
sin

(

β∆x

2

)

, (28)

P = ±
√

a

b
U. (29)

From the first relation, one has an expression for the complex parameter β,

β = ± 2

∆x
arcsin

(

∆x

2

ω + ıσ̄

c

)

.

Because the real part of β non-linearly depends on the frequency, the waves are dispersive. If σ̄ is

nonzero, the imaginary part of β is positive and the waves are then damped.

Similarly to the continuous case (Section 3), the matching of the layer at the interface is studied

considering a one-dimensional problem defined on the domain Ω = R
− extended with the infinite

PML Σ = R
+. At the interface, the field ũ0(t) is governed by

dũ0

dt
+ b

p̃1/2 − p̃−1/2

∆x
= −σ̄u0. (30)

The solution of this problem is written as the superposition of incident, reflected and transmitted

waves, i.e.

p̃i+1/2(t) =

{

P ieı(k(i+1/2)∆x−ωt) + P reı(−k(i+1/2)∆x−ωt),
P teı(β(i+1/2)∆x−ωt),

for i = ...,−2,−1
for i = 0, 1, ...

ũi(t) =

{

U ieı(ki∆x−ωt) + Ureı(−ki∆x−ωt),
U teı(βi∆x−ωt),

for i = ...,−1, 0
for i = 0, 1, ...

with k > 0. Injecting this solution in the governing equation of ũ0(t) (30) gives

(σ̄ − ıω)(U i + Ur) +
b

∆x

(

P teıβ∆x/2 − P ie−ık∆x/2 − P reık∆x/2
)

= 0.

Using the continuity condition of the field ũi at the interface (i.e. U t = U i + Ur) and the amplitude

relations (26) and (29), it becomes

(σ̄ − ıω)(P i − P r) +
c

∆x

(

(P i − P r)eıβ∆x/2 − P ie−ık∆x/2 − P reık∆x/2
)

= 0.

Using the dispersion relation (28) with the plus sign, one has

e−ıβ∆x/2(P i − P r)− P ie−ık∆x/2 − P reık∆x/2 = 0.
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Finally, one has the discrete reflection coefficient

r⋆interf =

∣

∣

∣

∣

P r

P i

∣

∣

∣

∣

=

∣

∣

∣

∣

e−ıβ∆x/2 − e−ık∆x/2

e−ıβ∆x/2 + eık∆x/2

∣

∣

∣

∣

.

The discrete reflection coefficient is now derived for a PML of finite thickness, i.e. Σ = [0, δ]. Let

us consider an elementary solution written as the superposition of incident waves, their reflections

in the domain Ω, transmitted waves in the PML and their reflections by the outer boundary of the

layer (x = δ). It reads

p̃i+1/2(t) =

{

P ieı(k(i+1/2)∆x−ωt) + P reı(−k(i+1/2)∆x−ωt),
P teı(β(i+1/2)∆x−ωt) + P beı(−β(i+1/2)∆x−ωt),

for i = ...,−2,−1
for i = 0, 1, ...

ũi(t) =

{

U ieı(ki∆x−ωt) + Ureı(−ki∆x−ωt),
U teı(βi∆x−ωt) + U beı(−βi∆x−ωt),

for i = ...,−1, 0
for i = 0, 1, ...

with k > 0 and ℜe(β) > 0. The continuity condition at the interface domain/layer and the boundary

condition at the outer boundary of the layer (ũNδ
= 0) gives the relations between the amplitudes

U i + Ur = U t + U b, U teıβδ + U be−ıβδ = 0,

and then

U t =
U i + Ur

1− e2ıβδ
, U b =

U i + Ur

1− e−2ıβδ
. (31)

The governing equation of u0(t) (30) gives

(σ̄ − ıω)(U i + Ur) +
b

∆x

(

P teıβ∆x/2 + P be−ıβ∆x/2 − P ie−ık∆x/2 − P reık∆x/2
)

= 0.

Using the dispersion relation (28) with the plus sign and the amplitude relations (26) and (29), this

relation becomes
(

e−ıβ∆x/2 + eıβ∆x/2
)

(U i + Ur) +
(

U teıβ∆x/2 − U be−ıβ∆x/2 − U ie−ık∆x/2 + Ureık∆x/2
)

= 0.

Using the relations (31) and the amplitude relations, one has

(

e−ıβ∆x/2 − eıβ∆x/2 +
eıβ∆x/2

1− e2ıβδ
− e−ıβ∆x/2

1− e−2ıβδ

)

(P i − P r)− P ie−ık∆x/2 − P reık∆x/2 = 0.

Finally, the discrete reflection coefficient reads

r⋆pml =

∣

∣

∣

∣

P r

P i

∣

∣

∣

∣

=

∣

∣

∣

∣

ı cos(βδ + β∆x/2)− sin(βδ) e−ık∆x/2

ı cos(βδ + β∆x/2) + sin(βδ) eık∆x/2

∣

∣

∣

∣

.

Assuming the frequencies are low, i.e. ω << c/∆x, the formulas of the discrete reflection

coefficients become

r⋆interf

∣

∣

ω<<c/∆x
≈ eτ − 1

eτ + 1
,

r⋆pml

∣

∣

ω<<c/∆x
≈ cosh (τ + 2δτ/∆x)− sinh (2δτ/∆x)

cosh (τ + 2δτ/∆x) + sinh (2δτ/∆x)
,

with

τ = arcsinh

(

σ̄∆x

2c

)

,

and are independent of the frequency.
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B. NUMERICAL SCHEMES

B.1. Continuous Galerkin finite element scheme

With the CG method, the exact continuous solution is approached by a piecewise polynomial

solution that verifies a weak form of the equations over the domain. This weak form is obtained

by multiplying the equations (4) by test functions, integrating them over Ω = Ω ∪ Σ and using

integration by part. It then reads



































(

∂p

∂t
, p̆

)

Ω

− 〈u, p̆〉∂Ω + (u,∇p̆)Ω = − (σqp, p̆)Σ ,

(

∂u

∂t
, ŭ

)

Ω

− (∇p, ŭ)Ω = − (σ(ex · u)ex, ŭ)Σ ,

(

∂q

∂t
, q̆

)

Σ

− 〈(ex · u)ex, q̆〉∂Σ + ((ex · u)ex,∇q̆)Σ = − (σq, q̆)Σ ,

(32)

where we use the notations (i, j)A =
∫

A
(ij) dA, (i, j)A =

∫

A
(i · j) dA, 〈i, j〉∂A =

∫

∂A
(ij) · n dB

and 〈i, j〉∂A =
∫

∂A
(ij) · n dB for the integrals over the region A and its boundary, and p̆, ŭ and

q̆ are the test functions. The vector n is the outward normal on the boundary ∂A. However,

this formulation generates spurious numerical oscillations, even without the PML terms and the

additional equation. Stabilization techniques have been developped to avoid them (see e.g. [24]).

In particular, the Pressure-Stabilization Petrov-Galerkin (PSPG) method proposed by Hughes at al.

[30], consists in adding a stabilisation term in the left-hand side of the continuity equation (the first

equation of the system (32))

Sp = − (κRu,∇p̆)Ω ,

where κ is the numerical stabilization parameter and Ru is the residual associated to the momentum

equation, i.e.

Ru =
∂u

∂t
−∇p+ σ(ex · u)ex.

Considering the similarities between the first and last equations of the formulation, we add a

corresponding stabilization term in the governing equation of q, i.e.

Sq = − (κ(ex ·Ru)ex,∇q̆)Σ .

An impermeability boundary condition u · n = 0 on ∂Ω is weakly incorporated in the formulation

by removing the boundary term of the first and last equations.

B.2. Discontinuous Galerkin finite element scheme

With the DG method, the exact continuous solution is approached by a piecewise polynomial

solution, discontinuous at the interfaces, that verifies weakly the equations over each element [27].

Multiplying the equations (4) by test functions, integrating them over each element Ωe and using

integration by part, one gets the weak form:







































(

∂p

∂t
, p̆

)

Ωe

+ 〈au⋆, p̆〉∂Ωe
− (au,∇p̆)Ωe

= − (σq, p̆)Ωe
,

(

∂u

∂t
, ŭ

)

Ωe

+ 〈bp⋆, ŭ〉∂Ωe
− (bp,∇ŭ)Ωe

= − (σ(ex · u)ex, ŭ)Ωe
,

(

∂q

∂t
, q̆

)

Ωe

+ 〈a(ex · u⋆)ex, q̆〉∂Ωe
− (a(ex · u)ex,∇q̆)Ωe

= − (σq, q̆)Ωe
.

Because the numerical solution is discontinuous at the interface between two elements, numerical

fluxes must be chosen at this interface. For a linear wave problem, the so-called upwing fluxes

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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are classicaly defined using a Riemann solver. They are computed using the Riemann invariants

p⋆ = p̄+ n · [[u]] and u⋆ = ū+ n[[p]], where the mean and the jump of p and u are defined as

p̄ =
p+ + p−

2
, [[p]] =

p+ − p−

2
, ū =

u+ + u−

2
and [[u]] =

u+ − u−

2
. (33)

As an alternative, the centered fluxes based on the mean values p⋆ = p̄ and u⋆ = ū can be used.
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