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Abstract

We study the stability of the pentaquarks uuddQ, uudsQ and udssQ (Q = c

or b) of positive parity in a constituent quark model based on Goldstone

boson exchange interaction between quarks. The pentaquark parity is the

antiquark parity times that of a quark excited to a p-shell. We show that the

Goldstone boson exchange interaction favors these pentaquarks much more

than the negative parity ones of the same flavour content but all quarks in

the ground state. We find that the nonstrange pentaquarks are stable against

strong decays.

The existence of particles made of more than three quarks is an important issue of QCD

inspired models. The interest has been raised so far by particles described by the colour state

[222]C , the tetraquarks q
2q2, the pentaquarks q4q and the hexaquarks q6. The present study

is devoted to pentaquarks, first proposed independently by Gignoux, Silvestre-Brac and

Richard [1] and Lipkin [2] about ten years ago. Within a constituent quark model based on

one-gluon exchange (OGE) interaction, these authors found that the states P 0

cs = |uudsc〉

and P−

cs = |uddsc〉 and their conjugates are stable against strong decays. Within better

approximations, they turned out to be unstable [3]. A systematic theoretical study [4] in a

model with OGE interaction suggested several candidates for stability, and especially those
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with strangeness S = -1 or -2. In particular, the uudsc system was bound by -52 MeV. The

nonstrange systems uuddQ (Q = c or b) were unbound.

If bound, the lifetime of the pentaquark uudsc or uddsc is expected to be comparable

to that of the D±

s meson [5] . The typically estimated pentaquark production cross section

is of the order of 1 % that of D±

s [6]. Based on these predictions, experiments are being

planned and the first search for the pentaquarks P 0

cs and P−

cs , performed at Fermilab, has

just been reported [7]. No convincing evidence for strange pentaquarks was observed so far.

The theoretical predictions are definitely model-dependent. Reference [8], discussed the

stability of heavy-flavoured pentaquarks within a chiral constituent quark model [9–11]. In

this model, the hyperfine splitting in hadrons is obtained from the short-range part of the

Goldstone boson exchange (GBE) interaction between quarks, instead of the OGE interac-

tion of conventional models. The main merit of the GBE interaction is that it reproduces

the correct ordering of positive and negative parity states in all parts of the considered spec-

trum, in contrast to any other OGE model. On the other hand, in its present form, it does

not apply to hyperfine splitting in mesons. But the GBE interaction induces a strong short-

range repulsion in the Λ-Λ system, which suggests that a deeply bound H-dibaryon should

not exist [12]. This is in agreement with the high-sensitivity experiments at Brookhaven

[13] where no evidence for H production was observed.

Reference [8] considered pentaquarks with strangeness ranging from S = -3 to S = 0.

There, it was assumed that all light quarks are identical and the ground-state orbital (O)

wave function is symmetric under permutation of light quarks, i.e. it corresponds to the

Young diagram [4]O. The subsystem of light quarks must necessarily be in a [211]C state.

Then, the Pauli principle allows a certain number of spin [f ]S and flavour [f ]F states to be

combined with [4]O and [211]C to give a total antisymmetric four-quark state. It was found

that any of these states together with a heavy antiquark Q where Q = c or b gave rise to a

pentaquark energy which was at least 300-400 MeV above the dissociation threshold nucleon

plus meson, i.e. the considered pentaquarks cannot be bound compact objects. Their parity

is P = -1, due to the antiquark.
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The novelty of this study is that, within the same GBE model, we analyse the stability

of pentaquarks with P = +1. In such a case, the parity of the pentaquark is given by

P = (−)L + 1, with L odd. Here we consider the case L = 1 and construct below the

lowest variational solution where the light quarks carry an angular momentum L odd. This

implies that the subsystem of four light quarks must be in a state of orbital symmetry [31]O,

where a light quark is excited to the p-shell. In this case the resulting intrinsic angular

momentum is also the total angular momentum of the pentaquark system. Although the

kinetic energy of such a state is higher than that of the [4]O state, a schematic estimate

suggests that [31]O would lead to a stable pentaquark. Below we give the arguments of Ref.

[14] based on a simplified GBE interaction of the form

Vχ = − Cχ

∑

i < j

λFi .λ
F
j ~σi.~σj (1)

with λFi the Gell-Mann matrices, ~σi the Pauli matrices and Cχ
∼= 30 MeV, determined

from the ∆-N splitting [9]. In the spirit of Ref. [9], there is no meson-exchange interaction

between quarks and antiquarks. It is assumed that the qq pseudoscalar pair interaction

is automatically included in the GBE interaction. Then, for the spin-spin interaction, the

discussion is restricted to the light q4 subsystem. The Pauli principle allows the following

lowest totally antisymmetric states with [31]O symmetry

|1〉 =
(

[31]O[211]C

[

14
]

OC
; [22]F [22]S[4]FS

)

(2)

|2〉 =
(

[31]O[211]C

[

14
]

OC
; [31]F [31]S[4]FS

)

(3)

The expectation value of (1) calculated, for example, according to the Appendix of Ref.

[15], is −28 Cχ for |1〉 and −64/3 Cχ for |2〉 . These two states would actually couple via a

quark-antiquark spin-spin interaction to a total angular momentum J = 1/2 or 3/2 where

~J = ~L + ~S + ~sQ, with ~L, ~S the angular momentum and spin of the light system and ~sQ the

spin of the antiquark. As the quark-antiquark interaction is neglected here, in the following

we restrict our discussion to the lowest state, i.e. |1〉 . The quark-antiquark interaction is
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neglected in the description of mesons as well, as for example in Ref. [16], so that the meson

Hamiltonian contains a kinetic and a confinement term only.

We are interested in the quantity

∆E = E(q4Q)− E(q3)− E(qQ) (4)

In our schematic estimate, we suppose that the confinement energy roughly cancels out in

∆E. Then, the kinetic energy contribution to ∆E is ∆KE = 5/4 h̄ω in a harmonic

oscillator model and the GBE interaction associated with the state |1〉 leads to ∆Vχ =

−14 Cχ. With h̄ω ≈ 250 Mev. determined from the N(1440) - N splitting [9], this gives

∆E = 5/4 h̄ω − 14 Cχ = − 107.5 MeV (5)

i.e. a substantial binding. This is to be contrasted with the negative parity pen-

taquarks studied in Ref. [8] where the lowest state with S = 0 has the structure

|[4]O[211]C [211]OC ; [211]F [22]S[31]FS〉. In this case the expectation value of (1) is −16 Cχ.

Hence ∆E = 3/4 h̄ω − 2 Cχ = 127.5 MeV , This suggests that the pentaquarks of

negative parity are unstable, consistent with the detailed study made in [8].

The estimate (5) is a consequence of the flavour dependence of the GBE interaction. For

a specific spin state [f ]S, a schematic OGE interaction of type Vc m = − Cc m

∑

λci .λ
c
j ~σi.~σj

does not make a distinction between [4]O and [31]O so that the [31]O state will appear higher

than [4]O due to the kinetic energy. The GBE interaction overcomes the excess of kinetic

contribution in [31]O and generates a lower expectation value for [31]O than for [4]O.

The GBE Hamiltonian considered below has the form [10] :

H =
∑

i

mi +
∑

i

~p 2

i

2mi

− (
∑

i ~pi)
2

2
∑

imi

+
∑

i<j

Vconf(rij) +
∑

i<j

Vχ(rij) , (6)

with the linear confining interaction :

Vconf(rij) = −3

8
λci · λcj C rij , (7)

and the spin–spin component of the GBE interaction in its SUF (3) form :
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Vχ(rij) =

{

3
∑

F=1

Vπ(rij)λ
F
i λ

F
j

+
7
∑

F=4

VK(rij)λ
F
i λ

F
j + Vη(rij)λ

8

iλ
8

j + Vη′(rij)λ
0

iλ
0

j

}

~σi · ~σj, (8)

with λ0 =
√

2/3 1, where 1 is the 3×3 unit matrix. The interaction (8) contains γ = π,K, η

and η′ meson-exchange terms and the form of Vγ (rij) is given as the sum of two distinct

contributions : a Yukawa-type potential containing the mass of the exchanged meson and a

short-range contribution of opposite sign, the role of which is crucial in baryon spectroscopy.

For a given meson γ, the exchange potential is

Vγ(r) =
g2γ
4π

1

12mimj

{θ(r − r0)µ
2

γ

e−µγr

r
− 4√

π
α3 exp(−α2(r − r0)

2)} (9)

For the Hamiltonian (6)-(9), we use the parameters of Refs. [10,12]. These are :

g2πq
4π

=
g2ηq
4π

=
g2Kq

4π
= 0.67,

g2η′q
4π

= 1.206,

r0 = 0.43 fm, α = 2.91 fm−1, C = 0.474 fm−2, mu,d = 340MeV , ms = 440MeV , (10)

µπ = 139MeV , µη = 547MeV , µη′ = 958MeV , µK = 495MeV .

The masses of the threshold hadrons are calculated variationally as in Ref. [8] where we

assume an s3 configuration for baryons. They are given in Table 1.

For pentaquarks, we used the internal Jacobi coordinates

~x = ~r1 − ~r2 , ~y = (~r1 + ~r2 − 2~r3) /
√
3

~z = (~r1 + ~r2 + ~r3 − 3~r4) /
√
6 , ~t = (~r1 + ~r2 + ~r3 + ~r4 − 4~r5) /

√
10

(11)

First, we expressed the q4 orbital wave functions of symmetry [31]O in terms of Jacobi coor-

dinates. We assumed an s3p structure for [31]O and inspired by Moshinski’s method [17], we

found the content of the three independent [31]O states [18], denoted below by ψi, in terms

of shell model functions |n ℓ m〉. The result is

ψ1 =
1 2 3
4

= 〈~x |000〉 〈~y |000〉 〈~z |010〉 (12)
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ψ2 =
1 2 4
3

= 〈~x |000〉 〈~y |010〉 〈~z |000〉 (13)

ψ3 =
1 3 4
2

= 〈~x |010〉 〈~y |000〉 〈~z |000〉 (14)

where, for convenience, we took the quantum number m = 0 everywhere. The pentaquark

orbital wave functions ψ5

i are then obtained by multiplying each ψi by the wave function
〈

~t |000
〉

which describes the relative motion of the q4 subsystem and the antiquark Q.

Assuming two variational parameters, a for the internal motion of q4 and b for the relative

motion of q4 and Q, we have explicitly

ψ5

1
= N exp

[

− a

2

(

x2 + y2 + z2
)

− b

2
t2
]

z Y10 (ẑ) (15)

ψ5

2
= N exp

[

− a

2

(

x2 + y2 + z2
)

− b

2
t2
]

y Y10 (ŷ) (16)

ψ5

3
= N exp

[

− a

2

(

x2 + y2 + z2
)

− b

2
t2
]

x Y10 (x̂) (17)

where

N =
23/2a11/4b3/4

31/2π5/2
(18)

The kinetic energy part of (6) can be calculated analytically. For the state (2) or (3), its

form is

〈T 〉 =
1

3

[〈

ψ5

1
|T |ψ5

1

〉

+
〈

ψ5

2
|T |ψ5

2

〉

+
〈

ψ5

3
|T |ψ5

3

〉]

= h̄2
(

11

2µ1

a +
3

2µ2

b

)

(19)

with

4

µ1

=



































1

m1

+
3

m2

for q1q
3

2

2

m1

+
2

m2

for q2
1
q2
2

(20)
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where q1, q2 are light quarks and

5

µ2

=
1

µ1

+
4

mQ

(21)

mQ representing the heavy antiquark mass. Here, we choose mc = 1.35 GeV and mb = 4.66

GeV according to Ref. [8] . Taking mu = md = ms = mQ and setting a=b, the identical

particle limit 〈T 〉 = 7/2 h̄ω with h̄ω = 2 ah̄2/m is recovered correctly.

Integrating in the colour space as shown in Ref. [8], the confinement part of (6) becomes

〈Vconf〉 =
C

2
(6 〈r12〉 + 4 〈r45〉) (22)

where the coefficients 6 and 4 account for the number of light-light and light-heavy pairs,

respectively, and

〈rij〉 =
1

3

[〈

ψ5

1
|rij|ψ5

1

〉

+
〈

ψ5

2
|rij|ψ5

2

〉

+
〈

ψ5

3
|rij|ψ5

3

〉]

(23)

An analytic evaluation gives

〈r12〉 =
20

9

√

1

πa
(24)

and

〈r45〉 =
1

3
√
2π



2

√

3

a
+

5

b
+

√
5b

(

1

2a
+

1

b

)



 (25)

The matrix elements of the spin-flavour operators of (8) have been calculated using the

fractional parentage technique described in Ref. [18] based on Clebsch-Gordan coefficients

of the group S4.

In Table 2, we present results for S = 0, S = -1 and S = -2 pentaquarks. The quantity

∆E, defined by (4), is obtained from E
(

q4Q
)

calculated variationally for the state |1〉

defined by (2). The optimal values of the parameters a and b are indicated in each case. In

all cases, one has a > b. The inverses 1/a and 1/b give an idea of the quark-quark and

quark-antiquark distances, respectively. More precisely, these distances are proportional to

the corresponding harmonic oscillator parameters. Due to the normalization (11) of the
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Jacobi coordinates, taken in fermi units these parameters are h̄ω/
√
2a and h̄ω/

√
2b . Then,

using Table II, one gets for example, for uuddc, 0.42 fm and 0.70 fm respectively. These

estimates suggest that, at equilibrium, the light quarks are clustered together, orbitting

around the heavy antiquark.

The present variational solution does not give binding for uudsQ and udssQ. But the

nonstrange positive parity pentaquarks uuddQ are bound by -75.6 MeV and -95.6 MeV

for Q = c and b, respectively. The reason is that the GBE interaction is stronger in the

nonstrange case than in the strange one because of the 1/mimj factor in Eq. (9). Thus, the

GBE model suggests that the nonstrange positive parity pentaquarks are the best candidates

for stable compact systems. This in contrast to OGE based models where strangeness is

required [4] in order to reach stability for heavy-flavoured pentaquarks. Note that nonstrange

pentaquarks associated with orbital symmetry [4]O and having total angular momentum

J = 1/2 or 3/2 are forbidden by Pauli principle ( see ref. [8] Table 1 ). Hence strangeness

is a necessary condition imposed by the color-spin structure of OGE operators to lowest

pentaquark states.

The present results have important similarities with those obtained in [19] from the

Skyrme model : 1) the lowest pentaquark states have positive parity for any flavour content

and 2) stability does not necessarily require strangeness.

For nonstrange positive parity pentaquarks, the masses obtained in these calculations

are M (uuddc) = 2.895 GeV and M
(

uuddb
)

= 6.176 GeV. One should be aware that these

are upper bounds. Note however that their difference is very close to mc - mb, consistent

with heavy quark effective theory [20].

In conclusion we encourage experimental search for nonstrange positive parity pen-

taquarks.
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TABLES

TABLE I. Masses of hadrons required to calculate the threshold energy ET = Ebaryon+Emeson.

The experimental mass for mesons represents the average M = (M + 3M∗) /4, where M and M∗

are the pseudoscalar and vector meson masses respectively [21] .

Hadron Mass (GeV)

variational experiment

N 0.970 0.939

Σ 1.235 1.192

D 2.008 1.973

Ds 2.087 2.076

B 5.302 5.313

Bs 5.379 5.375
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TABLE II. Lowest positive parity pentaquarks of total angular momentum J = 1/2, 3/2 .

Column 1 gives the flavour content, column 2 the isospin I, columns 3 and 4 the optimal variational

parameters of (15)-(18), column 5 gives ∆E = E − ET where E is the expectation value of the

Hamiltonian (6)-(10) and ET = Ebaryon + Emeson for the threshold from the last column.

Pentaquark I Variational parameters (GeV 2) ∆E Threshold

a b (MeV)

uuddc 0 0.110 0.040 -75.6 N +D

uuddb 0 0.110 0.053 -95.6 N +B

uudsc 1/2 0.101 0.041 104.7 N +Ds

uudsb 1/2 0.102 0.054 93.4 N +Bs

udssc 1 0.092 0.041 81.0 Σ +Ds

udssb 1 0.092 0.055 69.3 Σ +Bs
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