

Validation de méthodes analytiques Une application classique

Stéphanie Heuskin, Bruno Godin

UNITE de CHIMIE ANALYTIQUE

Prof. Georges C. LOGNAY

Faculté Universitaire des Sciences Agronomiques de Gembloux

Sommaire

- > Introduction
- Objectif
- > La validation
 - Matériel expérimental
 - Pureté
 - Optimisation de la méthode d'analyse chromatographique
 - Limite de détection limite de quantification
 - Droites d'étalonnage : linéarité, justesse, robustesse
 - Fidélité : répétabilité, reproductibilité
 - Sélectivité
- Le recovery ou taux de recouvrement
- > Performances analytiques de l'appareil

Introduction

Introduction

- Validation classique la plus courante jusqu'à l'heure actuelle.
- Basée sur les normes VALIDANA (BPL Beagx),
 ISO 5725 et AOAC 2006.

Objectif

Objectif

Doser des sémiochimiques dans diverses formulations (matrices) :

- Dosage de E-β-farnésène dans des huiles essentielles et dans des extraits de celles-ci.
- Détermination de taux de relargage de EBF au départ de billes d'alginate.
- Valider les techniques de mesure en vue d'application en routine.

Sémiochimiques

Définition : molécules naturelles produites par des organismes vivants et intervenant comme moyen de communication intra- ou interspécifique

(du grec simeon = signal)

- molécules très diverses, volatiles ou non
- → stimuli émis par plantes et insectes

Sémiochimiques

Interactions interactions interspecifiques

Phéromones

- d'alarme
- sexuelles
- d'agrégation
- de piste

Substances allélochimiques

- Allomones : + émetteur
- Kairomones : + récepteur
- Synomones : + émetteur, + récepteur

Une même substance peut intervenir à la fois dans des interactions intra- et interspécifiques

gembloux faculté universitaire des sciences agronomiques

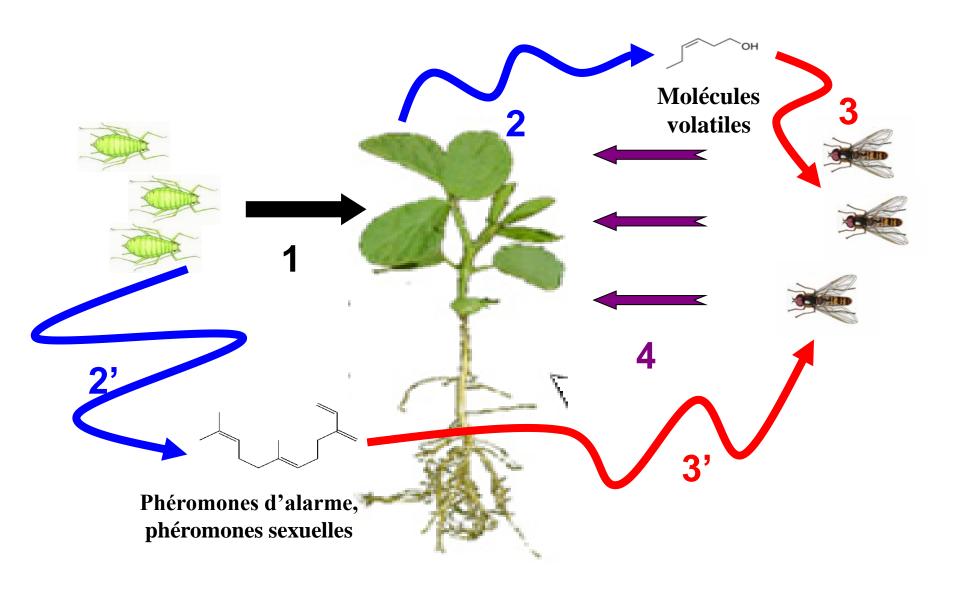
Système tritrophique

Cas du puceron

Plante – Insecte phytophage

- Prédateur
- Parasitoïde

Vicia fabae


Megoura viciae

Larve d'Episyrphus balteatus

Aphidius ervi

La validation

Matériel expérimental

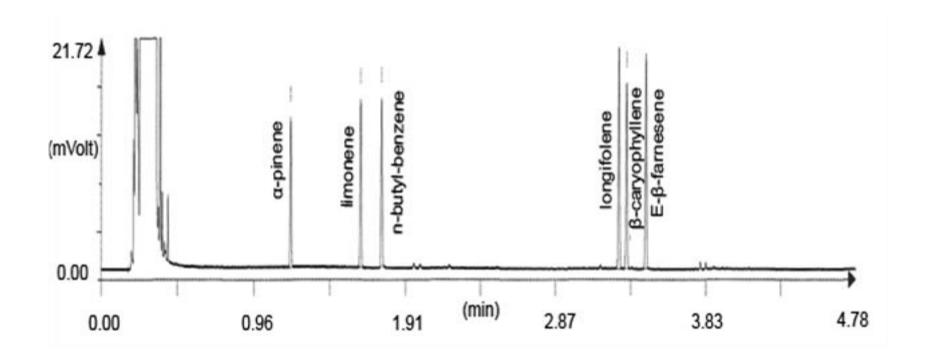
- Substances de référence : produits à doser
 - (E- β -farnésène, β -caryophyllène, limonène, α -pinène)
- Standard (étalon) interne de référence : attention au choix du SI
 - → de préférence, même famille chimique que molécule à doser, de façon à obtenir un facteur de réponse proche de 1

$$\mathbf{F} = (\mathbf{S}_{\mathbf{A}} \cdot \mathbf{C}_{\mathbf{SI}} / \mathbf{S}_{\mathbf{SI}} \cdot \mathbf{C}_{\mathbf{A}})$$

- → SI sesquiterpènes : longifolène
- → SI monoterpènes : n-butyl-benzène

Pureté

Déterminer la pureté des composés de référence


- Analyse des solutions (~ 1μg/μl dans *n*-hexane) au GC Ultra Fast
- 3 répétitions

Compound	Mean purity (%)	SD	RSD (%)
E-β-farnesene	98.17	0.0009	0.10
β-caryophyllene	94.67	0.0071	0.75
Longifolene	98.01	0.0003	0.03
n-butyl-benzene	100.00	0.0000	0.00
Limonene	100.00	0.0000	0.00
α-pinene	100.00	0.0000	0.00

Optimisation de la méthode d'analyse chromatographique

Optimiser la séparation et la résolution des pics

Limite de détection – limite de quantification

Limite de détection (LOD): définie selon le principe qu'une concentration est détectable si elle est plus grande que la dispersion du blanc. (*Chauveheid*, 2007)

$$LOD = f * s_{\theta}$$

Avec: -f = 3

- s₀, l'écart-type de répétabilité du blanc en concentration obtenu après 8 répétitions

Limite de quantification (LOQ) = 2 * LOD

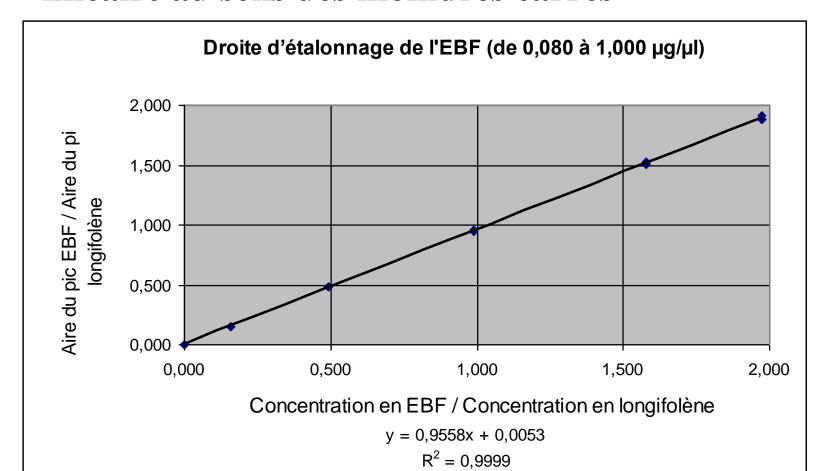
(Chauveheid, 2007)

Pour chacune des substances à doser :

- 2 gammes de concentrations (Range 1 : $0.008 0.100 \,\mu\text{g/\mu}\text{l}$;
 - Range $2:0.080-1.000 \,\mu g/\mu l)$
- Pour chaque gamme :
 - * 5 concentrations + 1 blanco : [SI] la même pour toute [analyte]
 - * 3 répétitions d'analyse

Gamme de concentrations 1, de 0,008 à 0,100 $\mu g/\mu l$

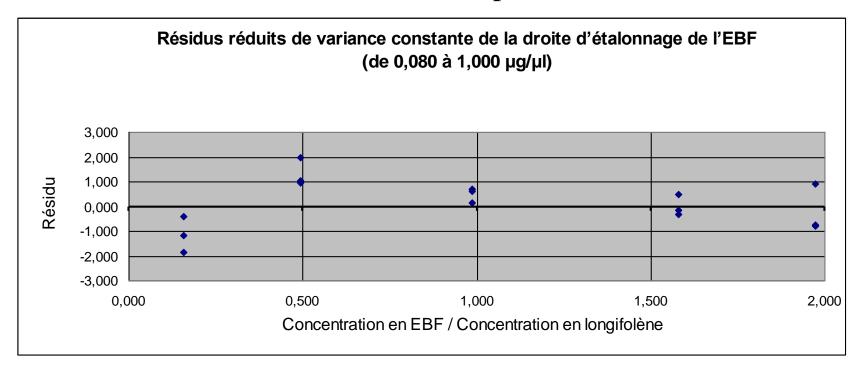
	Concentration 0 (μg/μl)	Concentration 1 (μg/μl)	Concentration 2 (μg/μl)	Concentration 3 (μg/μl)	Concentration 4 (μg/μl)	Concentration 5 (μg/μl)
EBF	0,0000	0,0078	0,0245	0,0490	0,0784	0,0980
β-Caryophyllène	0,0000	0,0078	0,0242	0,0484	0,0775	0,0978
Longifolène (SI)	0,0000	0,0497	0,0497	0,0497	0,0497	0,0497
Limonène	0,0000	0,0083	0,0259	0,0517	0,0828	0,1035
α-pinène	0,0000	0,0085	0,0266	0,0531	0,0850	0,1063
n-butyl-benzène (SI)	0,0000	0,0534	0,0534	0,0534	0,0534	0,0534


Gamme de concentrations 2, de 0,080 à 1,000 $\mu g/\mu l$

	Concentration 0 (μg/μl)	Concentration 1 (μg/μl)	Concentration 2 (μg/μl)	Concentration 3 (μg/μl)	Concentration 4 (μg/μl)	Concentration 5 (μg/μl)
EBF	0,0000	0,0784	0,2451	0,4901	0,7842	0,9803
β-Caryophyllène	0,0000	0,0775	0,2422	0,4845	0,7752	0,9775
Longifolène (SI)	0,0000	0,4966	0,4966	0,4966	0,4966	0,4966
Limonène	0,0000	0,0828	0,2586	0,5173	0,8276	1,0345
α-pinène	0,0000	0,5340	0,5340	0,5340	0,5340	0,5340
n-butyl-benzène (SI)	0,0000	0,5340	0,5340	0,5340	0,5340	0,5340

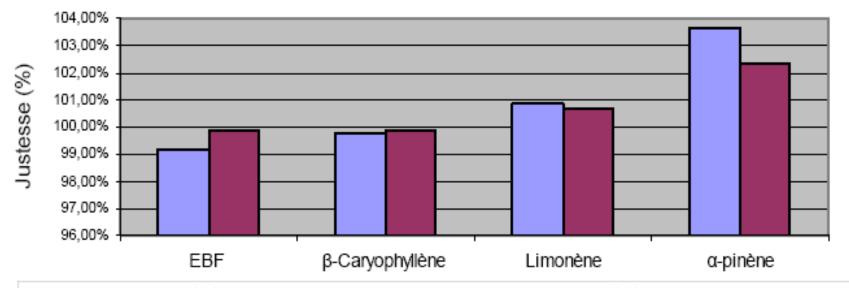
(Godin B., 2008)

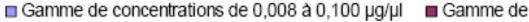
Droites d'étalonnage construites par régression linéaire au sens des moindres carrés

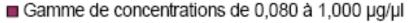


Linéarité: satisfaisante si

- $-R^2 > 0.996 (Roland, 2002)$
- Test de Grubb : résidus réduits de variance constante < 2.754 en valeur absolue (17DL :(3*6pt)-1; $\alpha = 0.05$) (*Dagnelie*, 2006)






Justesse (accuracy of calibration curve): définie comme le biais (%) entre la pente mesurée de la droite (construite ultérieurement) et la pente théorique de la droite validée.

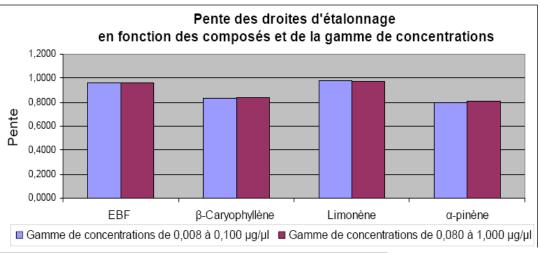
Comprise entre 90 % et 110 % (*Roland*, 2002)

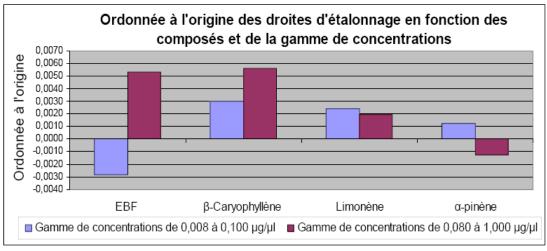
Justesse des pentes des droites d'étalonnage en fonction des composés et de la gamme de concentrations

Justesse (accuracy of calibration curve):

En pratique :

- construire la droite d'étalonnage de référence (5[], 3 répétitions)
- préparer à nouveau 5 [] et les analyser → 5 valeurs de signal
- reporter ces valeurs de signal sur la droite de référence
 - → 5 [] calculées
- Tracer une nouvelle droite avec ces 5 [] calculées
- Comparer la pente de la nouvelle droite avec celle de la droite de référence




Robustesse : estimée pour chaque analyte entre les deux gammes de concentrations par un test t de Student d'égalité des pentes et des ordonnées à l'origine (34 DL, $\alpha = 0.05$)

			EBF				
Populations normales					p > 0,05		
Egalité des variances résiduelles	Fobs	1,247	Fthéo	2,768	Fobs ≤ Fthéo	$\alpha = 0.05$	k ₁ =16, k ₂ =16
Egalité des pentes	tobs	0,840	tthéo	2,034	tobs ≤ tthéo	$\alpha = 0.05$	d1 = 32
Egalité des ordonnées à l'origine	tobs	1,789	tthéo	2,034	tobs ≤ tthéo	$\alpha = 0.05$	d1 = 32
		β-Ca	ryophyl	llène			
Populations normales					p > 0,05		
Egalité des variances résiduelles	Fobs	3,058	Fthéo	2,76	8 Fobs > Fthéo	$\alpha = 0.05$	k ₁ =16, k ₂ =16
Egalité des pentes		0,512		2,03	4 tobs ≤ tthéo	$\alpha = 0.05$	d1 = 32
Egalité des ordonnées à l'origine	tobs	0,457	tthéo	2,03	4 tobs ≤ tthé	o = 0,05	dl ⊰ 2
	•	L	imonèn	e			
Populations normales					p > 0,05		
Egalité des variances résiduelles	Fobs	2,754	Fthéo	2,76	8 Fobs ≤ Fthéo	α = 0,05	k ₁ =16, k ₂ =16
Egalité des pentes	tobs	0,126	tthéo	2,03	4 tobs ≤ tthéo	$\alpha = 0.05$	d1 = 32
Egalité des ordonnées à l'origine	tobs	0,116	tt éo	2,03	4 tobs≤tt ň o	α = 0,05	l l= 32
α-pinène							
Populations normales					p > 0,05		
Egalité des variances résiduelles	Fobs	1,775	Fthéo	2,76	8 Fobs ≤ Fthéo	$\alpha = 0.05$	k ₁ =16, k ₂ =16
Egalité des pentes	tobs	1,072	tthéo	2,03	4 tobs ≤ tthéo	$\alpha = 0.05$	d1 = 32
Egalité des ordonnées à l'origine	tobs	0,250	tthéo	2.03	4 tobs ≤ tthéo	$\alpha = 0.05$	d1 = 32

Robustesse:

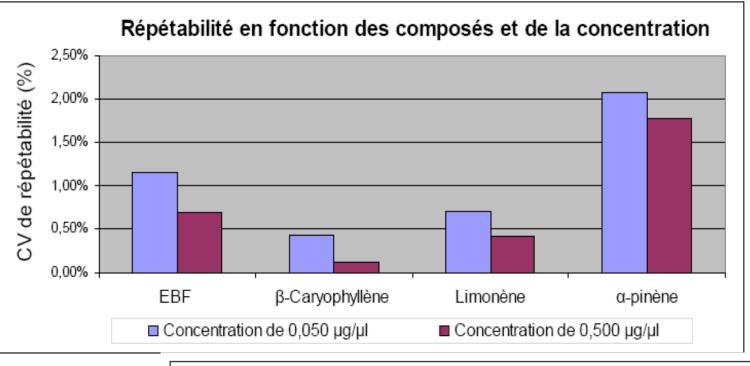
	E-β-fai	rnesene	β-caryophyllene		
Range (μg/μl)	0.008 - 0.100	0.080 - 1.000	0.008 - 0.100	0.080 - 1.000	
Equation of calibration curve	y = 0.9592x - 0.0028	y = 0.9558x + 0.0053	y = 0.8381x + 0.0030	y = 0.8408x + 0.0056	
R ²	0.9998	0.9999	0.9998	0.9999	
Reduced residual (Grubb's test)	2.668	1.866	2.147	1.880	
Accuracy of calibration curve (%)	99.19	99.86	99.77	99.90	
Internal standard	Longifolene	Longifolene	Longifolene	Longifolene	
LOD (pg)	2.38	2.40	1.79	0.74	
LOQ (pg)	4.76	4.80	3.58	1.48	

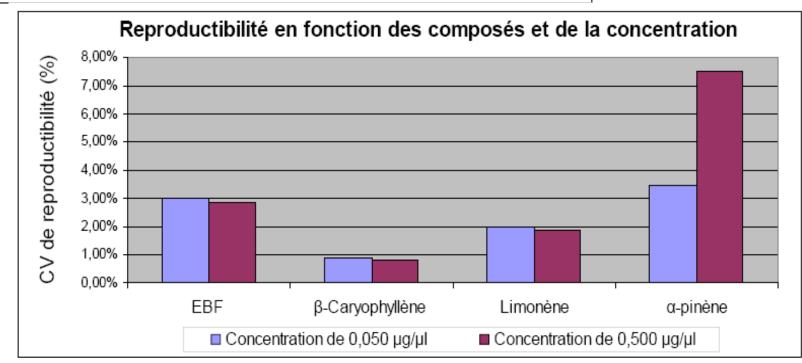
	Limo	onene	α-pinene		
Range (μg/μl)	0.008 - 0.100	0.080 - 1.000	0.008 - 0.100	0.080 - 1.000	
Equation of calibration curve	y = 0.9767x + 0.0024	y = 0.9690x + 0.0019	y = 0.8004x + 0.0012	y = 0.8097x - 0.0013	
R ²	0.9998	0.9999	0.9988	0.9993	
Reduced residual (Grubb's test)	2.394	1.826	2.134	2.276	
Accuracy of calibration curve (%)	100.85	100.67	103.65	102.36	
Internal standard	n-butyl-benzene	n-butyl-benzene	n-butyl-benzene	n-butyl-benzene	
LOD (pg)	2.43	1.37	2.11	2.05	
LOQ (pg)	4.86	2.74	4.22	4.10	

Fidélité

- La fidélité est définie par la répétabilité et la reproductibilité de la méthode.
- Répétabilité: pour chaque analyte et chaque gamme de concentration, 10 répétitions d'analyse d'un échantillon de concentration définie, le même jour, par une seule personne (n=10). (Range 1 : 0.05 μg/μl; Range 2 : 0.50 μg/μl)
- Reproductibilité: pour chaque analyte et chaque gamme de concentration, 10 répétitions d'analyse d'un échantillon de concentration définie, pendant 5 jours différents, par une seule personne (n=50). (Range 1 : 0.05 μg/μl ; Range 2 : 0.50 μg/μl)

<u>Fidélité</u>


Les valeurs limites acceptables des coefficients de variation de répétabilité et de reproductibilité dépendent de la concentration des solutions analysées.


Selon la norme AOAC (2006):

- Range 1 : CV_{répétabilité} : 8% ; CV_{reproductibilité} : 16%

- Range 2 : CV_{répétabilité} : 6% ; CV_{reproductibilité} : 12%

	E-β-farnesene		β-caryophyllene		Limonene		α-pinene	
Concentration (µg/µl)	0.050	0.500	0.050	0.500	0.050	0.500	0.050	0.500
Repeatability (RSD, %)	1.16	0.70	0.43	0.12	0.70	0.42	2.07	1.78
Reproducibility (RSD, %)	3.00	2.82	0.89	0.81	1.98	1.89	3.48	7.51

Sélectivité

La sélectivité de la méthode est définie par le facteur de sélectivité (α) entre les pics chromatographiques les plus proches (longifolène et β -caryophyllène)

Pour que la méthode soit sélective, α doit être supérieur à 1.

$$\alpha = (t'_{R \beta - caryophyllène} / t'_{R Longifolène}),$$

où t'_R = temps de rétention réduit

	Concentration range :	Concentration range :
	0.008 – 0.100 μg/μl	0.080 – 1.000 μg/μl
α	1.016	1.016

Le recovery ou taux de recouvrement

Recovery

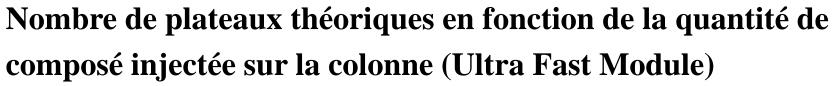
Le recovery ou taux de recouvrement (%) se définit comme le pourcentage d'analyte récupéré après toute manipulation de celuici. Le taux de récupération limite est fonction de la concentration (AOAC, 2006).

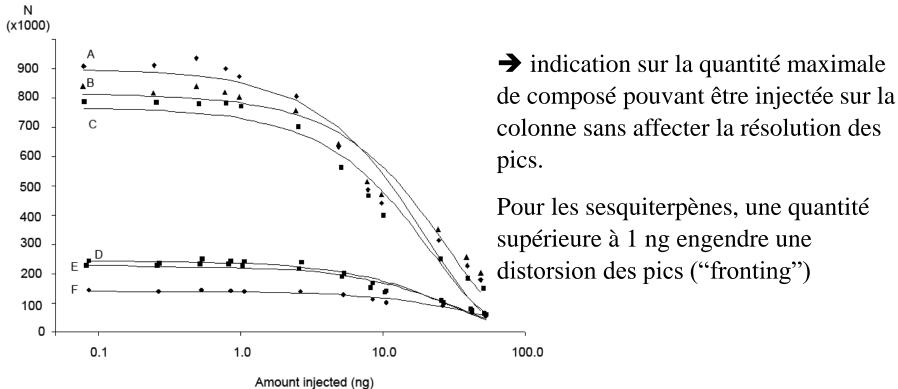
Concentration		Recovery limits
100	%	98-101%
10	%	95-102%
1	%	92-105%
1000	μg/g (ppm)	90-108%
	μg/g (ppm)	85-110%
	μg/g (ppm)	80-115%
1	μg/g	75-120%
10	μg/kg (ppb)	70-125%

Recovery

Taux de récupération du E-β-farnésène sur cartouches d'adsorbant

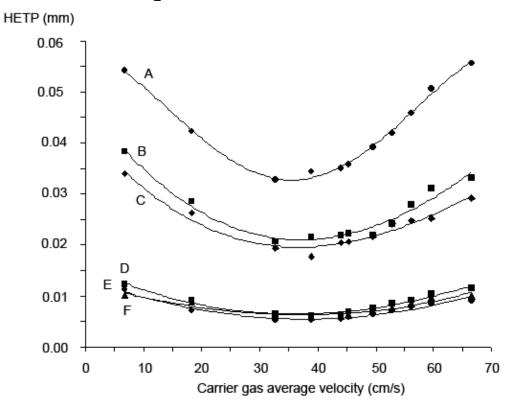
- 3 quantités testées (1;5 et 14μg) : 10 μl de solution déposés sur une cartouche ; 5 répétitions par quantité
- Elution des cartouches au *n*-hexane (500; 700 et 900µl)
- Ajout de SI longifolène à l'éluat
- Analyse et quantification de la quantité récupérée dans l'éluat grâce à la droite d'étalonnage
- Détermination du recovery (%):


$$R(\%) = (Q_f / Q_i) * 100$$



Les performances analytiques de l'appareil

Performances analytiques


A : E-β-farnésène, B : β-caryophyllène, C : Longifolène,

D : n-butyl-benzène, E : Limonène, F : α-pinène

Performances analytiques

Courbes de Golay: évolution de la hauteur d'un plateau théorique en fonction de la vélocité du gaz vecteur

La hauteur optimale d'un plateau théorique correspond à la valeur minimale de H sur la courbe : H_{min} .

H_{min} pour les mono- et les sesquiterpènes est obtenue à une vélocité du gaz vecteur de 35.86 cm/s.

A : α-pinène, B : Limonène, C : n-butyl-benzène, D : longifolène,

E : β-caryophyllène, F : E-β-farnésène

Questions?