# Supplementary Material for "THE THRESHOLD PHOTOELECTRON SPECTRUM OF THE GEMINAL CHLORO-FLUORO-ETHENE (1,1- $\left.\mathbf{C}_{2} \mathbf{H}_{2} \mathrm{FCl}\right)$ ISOMER. EXPERIMENT AND THEORY." 

R. Locht ${ }^{1}$, D. Dehareng ${ }^{2}$, B. Leyh ${ }^{1}$,<br>${ }^{1}$ University of Liège, Department of Chemistry, Molecular Dynamics Laboratory, Institute of Chemistry, Bldg B6c, Sart-Tilman, B-4000 Liège 1, Belgium.<br>${ }^{2}$ University of Liège, Department of Life Sciences, Centre for Protein Engineering, Institute of Chemistry, BldgB6a, Sart-Tilman, B-4000 Liège 1, Belgium.

## Description of the "subtraction procedure".

The subtraction procedure referred to in section 2.2 consists of two steps:
(i) The "smoothing" step: the first decision to take is the number of points at a time to be considered in the smoothing routine applied to the experimental curve. The smoothing itself is obtained by removing Fourier components with "frequencies" higher than $1 / \mathrm{n} . \Delta \mathrm{t}$ where n is the number of data points considered at a time and $\Delta \mathrm{t}$ is the abscissa spacing


between two adjacent data points. As shown in Fig.1, several trials on an experimental curve are presented. Up from "100 pts FFT" the fine structure disappears and is chosen for the next step.

(ii) The "subtraction" step: The result of this smoothing is subtracted numerically point by point from the original data. The result is represented in Fig. 2 for different smoothing as focused on a particular energy region.

That no "spurious peaks" appear during this processing can be checked by summing the results of "step (i)" and "step (ii)" and by verifying that it overlaps point by point with the original experimental data (see Fig.3a and 3b). No point is lost during the process as shown in Fig.3. If any "spurious peak had appeared during this

FIG. 3.
processing in any energy range, the "sum" and the "original" could not overlap in this energy range.

TABLE S1: Optimized geometries of the neutral and of the ionic ground states and the first two cationic excited states in the Cs symmetry group at different calculation levels. Internuclear distances in $\AA$ and angles in degrees [1].

| Neutral Ground State - $\tilde{X}^{1} \mathbf{A}^{\prime}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Level | C1-C2 | C2-H3 | C2-H4 | C1-F5 | C1-Cl6 |
| CCSD (FC) | 1.3374 | 1.0917 | 1.0894 | 1.3498 | 1.7324 |
| M06-2X | 1.3231 | 1.0865 | 1.084 | 1.333 | 1.7251 |
|  | H3-C2-C1 | H4-C2-C1 | F5-C1-C2 | C16-C1-C |  |
| CCSD(FC) | 119.398 | 120.192 | 122.255 | 126.035 |  |
| M06-2X | 119.163 | 120.133 | 122.876 | 125.739 |  |
| Cation Ground State - $\widetilde{X}^{2} \mathbf{A}^{\prime \prime}$ |  |  |  |  |  |
| Level | C1-C2 | C2-H3 | C2-H4 | C1-F5 | $\mathrm{C} 1-\mathrm{Cl} 6$ |
| CCSD (FC) | 1.4214 | 1.0956 | 1.0938 | 1.293 | 1.6558 |
| M06-2X | 1.4098 | 1.0912 | 1.0893 | 1.2816 | 1.6497 |
|  | H3-C2-C1 | H4-C2-C1 | F5-C1-C2 | C16-C1-C |  |
| CCSD(FC) | 118.776 | 119.619 | 118.636 | 124.15 |  |
| M06-2X | 118.726 | 119.667 | 119.085 | 123.962 |  |
| Cation First Excited State - $\tilde{A}^{2} \mathrm{~A}^{\prime}$ |  |  |  |  |  |
| Level | C1-C2 | C2-H3 | C2-H4 | C1-F5 | C1-Cl6 |
| CCSD(FC) | 1.3211 | 1.0965 | 1.0926 | 1.308 | 1.8741 |
| M06-2X | 1.3056 | 1.0942 | 1.0896 | 1.2891 | 1.879 |
|  | H3-C2-C1 | H4-C2-C1 | F5-C1-C2 | C16-C1-C |  |
| CCSD(FC) | 117.496 | 122.278 | 135.404 | 120.092 |  |
| M06-2X | 117.366 | 122.706 | 136.75 | 118.469 |  |
| Cation Second Excited State - $\widetilde{B}^{2} \mathrm{~A}^{\prime \prime}$ |  |  |  |  |  |
| Level | C1-C2 | C2-H3 | C2-H4 | C1-F5 | C1-Cl6 |
| TD-DFT | 1.3244 | 1.0959 | 1.0891 | 1.2617 | 2.0725 |
|  | H3-C2-Cl | H4-C2-C1 | F5-C1-C2 | C16-C1-C |  |
| TD-DFT | 116.99 | 121.78 | 135.46 | 120.36 |  |



TABLE S2: Wavenumbers $\left(\mathrm{cm}^{-1}\right)$ related to the vibrational normal modes of 1,1$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{FCl}$ in its ground state and of $1,1-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{FCl}^{+}$in its ground $\tilde{X}^{2} \mathrm{~A}^{\prime \prime}$ and two first excited $\tilde{A}^{2} \mathrm{~A}^{\prime}$ and $\widetilde{B}^{2} \mathrm{~A}^{\prime \prime}$ states as calculated at the M06-2X level ( $\tilde{X}$ and $\tilde{A}$ states) and TDDFT ( $\tilde{B}$ state). The values are corrected by a scaling factor of 0.96 [1].

| State | $\tilde{X}^{1} \mathrm{~A}^{\prime}$ | $\tilde{X}^{2} \mathrm{~A}^{\prime \prime}$ | $\tilde{A}^{2} \mathrm{~A}^{\prime}$ | $\tilde{B}^{2} \mathrm{~A}^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: |
| Vibr.N..M. ${ }^{\mathrm{a}}$ |  |  |  |  |
| a' Symm |  |  |  |  |
| $\nu_{1}$ | 3195 | 3193 | 3123 | 3178 |
| $\nu_{2}$ | 3082 | 3062 | 3001 | 3080 |
| $\nu_{3}$ | 1684 | 1479 | 1766 | 2959 |
| $\nu_{4}$ | 1335 | 1372 | 1316 | 1338 |
| $\nu_{5}$ | 1161 | 1298 | 1061 | 1254 |
| $\nu_{6}$ | 924 | 953 | 881 | 951 |
| $\nu_{7}$ | 676 | 746 | 472 | 520 |
| $\nu_{8}$ | 416 | 443 | 335 | 272 |
| $\nu_{9}$ | 355 | 350 | 220 | 178 |
| a" Symm |  |  |  |  |
| $\nu_{10}$ | 865 | 920 | 876 | 892 |
| $\nu_{11}$ | 698 | 543 | 660 | 409 |
| $\nu_{12}$ | 509 | 351 | 438 | 402 |
|  |  |  |  |  |

a The respective vibrational motions of the neutral ground state and of the three ionic states are drawn in Fig. 2 in ref. [1] and in Figs. S1-S3 in the present work respectively.

$v_{1}$

$v_{4}$

$\nu_{7}$

$\nu_{10}$

$v_{2}$

$v_{5}$

$\nu_{8}$

$\nu_{11}$

$v_{3}$

$v_{6}$

$v_{9}$

$\nu_{12}$

FIG.S1: Schematic representation of the twelve vibrational normal modes of 1,1$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{FCl}^{+}$as calculated in the present work for the $\tilde{X}^{2} \mathrm{~A}^{\prime \prime}$ state.

$\nu_{4}$

$\nu_{8}$

$v_{5}$


V9

$v_{6}$

$\nu_{11}$

$\nu_{12}$

FIG.S2: Schematic representation of the seven vibrational normal modes of 1,1$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{FCl}^{+} \tilde{A}^{2} \mathrm{~A}^{\prime}$ differing from those of the $\tilde{X}^{2} \mathrm{~A}^{\prime \prime}$ state.


FIG.S3: Schematic representation of the seven vibrational normal modes of 1,1-
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{FCl}^{+} \widetilde{B}^{2} \mathrm{~A}^{\prime \prime}$ differing from those of the $\tilde{X}^{2} \mathrm{~A}^{\prime \prime}$ state.

