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Dynamical study of the pentaquark antidecuplet

Fl. Stancua ∗
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Dynamical calculations are performed for all isomultiplets of the flavour antidecuplet to
which the pentaquark Θ+ belongs. The framework is a constituent quark model where the
short-range interaction has a flavour-spin structure. In this model the lowest pentaquarks
have positive parity. Each antidecuplet member is described by a variational solution with
the Pauli principle properly taken into account. By fitting the mass of Θ+ of minimal
content uudds, the mass of Ξ−−, of minimal content ddssu, is predicted at approximately
1960 MeV. The influence of the octet-antidecuplet mixing on the masses of the Y = 1
and 0 pentaquarks is considered within the same model and the role of the kinetic energy
plus the hyperfine interaction in this mixing is pointed out.

1. Introduction

The existence of exotic baryons containing four quarks and an antiquark in their lowest
Fock component has now a solid experimental support. The observation of a narrow peak
at 1.54 ± 0.01 GeV/c2, called Θ+, as an S = 1 baryon resonance in the photo-production
from neutron γn→ K+K−n [1], has been confirmed by several groups in various photo-
nuclear reactions [2]. This has been followed by the observation in pp collisions [3] of
other narrow resonances Ξ−− and Ξ0 at about 1862 MeV, from which Ξ−− is interpreted
as another pure exotic member of an SU(3) flavour antidecuplet. The work of Diakonov,
Petrov and Polyakov [4] has played a particularly important role in these discoveries. In
the context of a chiral soliton model they predicted a narrow pentaquark, with a width
of less than 15 MeV, located at the about experimentally observed mass of Θ.

At the end of the ’70’s, following the observation of several signals, light pentaquarks
were studied theoretically [5,6], but these signals were not confirmed. Charmed pen-
taquarks with strangeness, uudsc̄ and uddsc̄ were also predicted [7,8], but experimental
searches carried at Fermilab have remained inconclusive [9]. These pentaquarks were in-
troduced in the context of the one-gluon exchange model (colour-spin interaction) and
the heavy ones carried negative parity. On the other hand positive parity pentaquarks
containing heavy flavours were proposed in the context of a pseudoscalar exchange model
(flavour-spin interaction) [11] about ten years later [12]. In this model, the lowest ones,
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uuddc̄ and uuddb̄, do not carry strangeness. Recently the H1 Collaboration at DESY [10]
reported a narrow resonance of mass 3099 MeV, interpreted as a uuddc̄ pentaquark.

The spins and parities of Θ+ and Ξ−− are not yet known experimentally. In this new
wave of pentaquark research, most theoretical papers take the spin equal to 1/2. The
parity is more controversial. In chiral soliton or Skyrme models the parity is positive
[4]. In constituent quark models it is usually positive. In the present approach, the
parity of the pentaquark is given by P = (−)` + 1, where ` is the angular momentum
associated with the relative coordinates of the q4 subsystem. We analyze the case where
the subsystem of four light quarks is in a state of orbital symmetry [31]O and carries an
angular momentum ` = 1. Although the kinetic energy of such a state is higher than that
of the totally symmetric [4]O state, the [31]O symmetry is the most favourable both for
the flavour-spin interaction [12] and the colour-spin interaction [13]. In the first case the
statement is confirmed by the comparison between the realistic calculations for positive
parity [12] and negative parity [14], based on the same quark model [15]. In Ref. [12]
the antiquark was heavy, c or b, and accordingly the interaction between light quarks and
the heavy antiquark was neglected, consistent with the heavy quark limit. In Ref. [16]
an attractive spin-spin interaction between s and the light quarks was incorporated and
shown that a stable or narrow positive parity uudds pentaquark can be accommodated
within such a model. This interaction has a form that corresponds to η meson exchange
[17] and its role is to lower the energy of the whole system.

The purpose of this letter is to perform dynamical calculations of all the members of the
antidecuplet to which Θ+ and Ξ−− are supposed to belong. To our knowledge this is the
first attempt in this direction. The present study is a natural extension of Ref. [12] where
the heavy antiquark c or b is now replaced by a light quark u, d or s. To describe the short
range interaction we rely on the same model [15] as that used in [12]. That means that
the quark-quark interaction has a flavour-spin structure [11] and that the parameters are
fitted to the light non-strange and strange baryon spectra. Moreover we assume that the
quark-antiquark interaction is proportional to a spin-dependent operator, but it is flavour
independent, as in Ref. [16]. Its role is to introduce the same flavour independent shift
for each member of the pentaquark antidecuplet of equal spin. We shall fix this shift by
adjusting the mass of Θ+ to the experimental value. There is no other free parameter in
the Hamiltonian model used in this study. For the pure exotic Ξ−−, we predict a mass of
1960 MeV. For the antidecuplet members with Y = 1 and 0 we investigate the role of the
octet-antidecuplet mixing. To some extent this study will be a comparative one.

We search for a variational solution of a five-body Hamiltonian, containing a kinetic en-
ergy term, a confinement term and a short range (hyperfine) interaction having a flavour-
spin structure. The SUF (3) breaking is taken into account by the strange quark mass
which appears in the mass term, in the kinetic part and in the hyperfine part. The lat-
ter also breaks SUF (3) through the masses of the pseudoscalar mesons exchanged among
quarks.



3

2. The Hamiltonian

The Hamiltonian has the form [15]

H =
∑
i

mi +
∑
i

~p2
i

2mi

− (
∑
i ~pi)

2

2
∑
imi

+
∑
i<j

Vc(rij) +
∑
i<j

Vχ(rij) , (1)

with the linear confining interaction

Vc(rij) = −3

8
λci · λcj C rij , (2)

and the flavour–spin interaction

Vχ(rij) =

{
3∑

F=1

Vπ(rij) λ
F
i λ

F
j

+
7∑

F=4

VK(rij) λ
F
i λ

F
j + Vη(rij) λ

8
iλ

8
j + Vη′(rij) λ

0
iλ

0
j

}
~σi · ~σj . (3)

The analytic form of Vγ(r) (γ = π,K, η or η′) is

Vγ(r) =
g2
γ

4π

1

12mimj

{θ(r − r0)µ2
γ

e−µγr

r
− 4√

π
α3 exp(−α2(r − r0)2)} , (4)

with the parameters:

g2πq
4π

=
g2ηq
4π

=
g2Kq
4π

= 0.67,
g2
η′q
4π

= 1.206,

r0 = 0.43 fm, α = 2.91 fm−1, C = 0.474 fm−2, mu,d = 340 MeV, ms = 440 MeV, (5)

µπ = 139 MeV, µη = 547 MeV. µη′ = 958 MeV, µK = 495 MeV.

which lead to a good description of low-energy non-strange and strange baryon spectra.
Fixing the nucleon mass at mN = 939 MeV, this parametrization gives for example m∆

= 1232 MeV and N(1440) = 1493 MeV. The lowest negative parity states appear at
N(1535)−N(1520) = 1539 MeV, i. e. above the Roper resonance, in agreement with the
experiment.

3. The wave function Ansatz

We start with the q4 subsystem and treat the quarks as identical particles in all cases.
Then following Ref. [12] the orbital (O) part of the lowest totally antisymmetric state
must carry the symmetry [31]O. In the flavour-spin (FS) coupling scheme this state has
the form

|1〉 = |[31]O[211]C [1111]OC ; [22]F [22]S[4]FS〉 (6)

which means that the wave function is totally symmetric in the flavour-spin space and
totally antisymmetric in the orbital-colour (OC) space and that the q4 subsystem carries
non-zero angular momentum and has zero spin. Then the q4q state is obtained by coupling
the antiquark to the state |1〉 of Eq.(6) which leads to either 10F or to 8F and to a total
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spin 1/2. To derive the orbital part we denote the quarks by 1, 2, 3 and 4 and the
antiquark by 5 and introduce the internal Jacobi coordinates

~x = ~r1 − ~r2 , ~y = (~r1 + ~r2 − 2~r3) /
√

3

~z = (~r1 + ~r2 + ~r3 − 3~r4) /
√

6 , ~t = (~r1 + ~r2 + ~r3 + ~r4 − 4~r5) /
√

10 .
(7)

The key issue is to construct a wave function with correct permutation symmetry in
terms of the above Jacobi coordinates. Assuming an s3p structure for [31]O, the three
independent [31]O states denoted by ψi are [12]

ψ1 =
1 2 3
4

= 〈~x |000〉 〈~y |000〉 〈~z |010〉 , (8)

ψ2 =
1 2 4
3

= 〈~x |000〉 〈~y |010〉 〈~z |000〉 , (9)

ψ3 =
1 3 4
2

= 〈~x |010〉 〈~y |000〉 〈~z |000〉 , (10)

where |n ` m〉 are shell model wave functions and we took the quantum number m = 0
everywhere, for convenience. Thus each function carries an angular momentum ` = 1 in
one of the relative coordinate, which leads to a total parity P = + 1 and a total angular
momentum J = 1/2 or 3/2. The degeneracy of these two states can be lifted by the
introduction of a spin-orbit coupling.

The functions (8)-(10) are used to construct a totally antisymmetric orbital-colour
state for the q4 subsystem, in agreement with (6). The coefficients of the resulting linear
combination are fixed by group theory, namely by the Clebsch-Gordan coefficients of the
permutation group S4. In this case, the absolute value of all three coefficients is equal to
1/
√

3, which means that each of the states (8)-(10) contribute with equal probability.

The pentaquark orbital wave functions are obtained by multiplying each ψi by
〈
~t |000

〉
which describes the motion of the q4 subsystem relative to q. The wave function associated
to each relative coordinate is chosen to be a Gaussian. This gives

ψ1 = ψ0 z Y10 (ẑ) (11)

ψ2 = ψ0 y Y10 (ŷ) (12)

ψ3 = ψ0 x Y10 (x̂) (13)

where

ψ0 = [
1

48π5αβ3
]
1/2

exp

[
− 1

4α2

(
x2 + y2 + z2

)
− 1

4β2
t2
]
. (14)

The two variational parameters are α, the same for all internal coordinates of the q4

subsystem, ~x, ~y or ~z, and β, for ~t, the relative coordinate of q4 to q.
The algebraic structure of the state (6) is identical to that of Ref. [18]. The small

overlap of the resulting q4q̄ state with the kinematically allowed final states could partly
explain the narrowness of Θ+.
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Table 1
The hyperfine interaction Vχ, Eq. (3), integrated in the flavour-spin space, for four

quark subsystems. The upper index indicates the flavour of every interacting qq pair.

q4 I, I3 Vχ
uudd 0, 0 30 Vπ − 2 V uu

η − 4 V uu
η′

uuds 1/2, 1/2 15 Vπ − V uu
η − 2 V uu

η′ + 12 VK + 2 V us
η − 2 V us

η′

ddss 1, -1 Vπ + 1
3
V uu
η + 2

3
V uu
η′ + 4

3
V ss
η + 2

3
V ss
η′ + 20VK + 16

3
V us
η − 16

3
V us
η′

4. Matrix elements

The expectation values of the hyperfine interaction Vχ, Eq. (3), in the flavour-spin
space, are presented in Table 1 for the three q4 subsystems necessary to construct the
antidecuplet. They are expressed in terms of the two-body radial form (4) now denoted
as V qaqb

γ where qaqb specifies the flavour content of the interacting pair. The SU(3)F
is explicitly broken by the quark masses and by the meson masses. By taking V uu

η =
V us
η = V ss

η and V uu
η′ = V us

η′ = 0, one recovers the simpler model described in Ref. [19]
where one does not distinguish between the uu, us or ss pairs in the η-meson exchange.
Moreover, in Ref. [19] one takes as parameters the already integrated two-body matrix
elements of some radial part of the hyperfine interaction, as in Ref. [11]. Here we specify
a radial form, which allows the explicit introduction of radial excitations at the quark
level, whenever necessary. Then, from Table 1 one can easily reproduce Table 3 of [19]
containing the coefficients x1, x2 and x3, i. e. the multiplicities, or the fraction of the two
body matrix elements associated to π,K and η exchange respectively, which appear in
the expression for the mass. The first and last row of xi, corresponding to Θ and Ξ−−

are straightforward, inasmuch as their contents are uudds and ddssu respectively. To get
the xi associated with N5 and Σ5, which we call here N10 and Σ10 respectively, one must
construct the linear combinations

Vχ(N10) =
1

3
Vχ(uudd) +

2

3
Vχ(uuds),

Vχ(Σ10) =
1

3
Vχ(uuss) +

2

3
Vχ(uuds), (15)

in agreement with the flavour wave functions given in the Appendix and the relation
Vχ(uuss) = Vχ(ddss). Moreover, in Ref. [19], for each exchanged meson, one assumed
that the radial two-body matrix elements are equal irrespective of the angular momentum
of the state, ` = 0 or ` = 1, which we won’t do.

5. Results and discussion

In Table 2 we present the variational energy E of the model Hamiltonian (1) resulting
from the trial wave function described by Eqs. (11)-(14) for various q4q systems related to
the antidecuplet or the octet. One can see that, except for the confinement contribution
〈Vc〉, all the other terms break SU(3)F , as expected: the mass term

∑5
n=1mi increases,

the kinetic energy 〈T 〉 decreases and the short range attraction 〈Vχ〉 decreases with the
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Table 2
Expectation values (MeV) and total energy E =

∑5
n=1 mi + 〈T 〉+ 〈Vc〉+ 〈Vχ〉 obtained

from the Hamiltonian (1) for various q4q systems. The mass M is obtained from E by
subtraction of 510 MeV in order to fit the mass of Θ+. The values of the variational
parameters α and β are indicated in the last two columns.

q4q
∑5
n=1mi 〈T 〉 〈Vc〉 〈Vχ〉 E M α(fm) β(fm)

uuddd 1700 1864 442 -2044 1962 1452 0.42 0.92
uudds 1800 1848 461 -2059 2050 1540 0.42 1.01
uudsd 1800 1535 461 -1563 2233 1732 0.45 0.92
uudss 1900 1634 440 -1663 2310 1800 0.44 0.87
ddssu 1900 1418 464 -1310 2472 1962 0.46 0.92
uusss 2000 1410 452 -1310 2552 2042 0.46 0.87

Table 3
The antidecuplet mass spectrum in MeV.

Pentaquark Y, I, I3 Present result Carlson et al. [19] Exp + GMO formula
Θ+ 2, 0, 0 1540 1540 1540
N10 1, 1/2, 1/2 1684 1665 1647
Σ10 0, 1, 1 1829 1786 1755
Ξ−− -1, 3/2, -3/2 1962 1906 1862

quark masses. For reasons explained in the introduction, we subtract 510 MeV from the
total energy E in order to reproduce the experimental Θ+ mass.

For completeness, in the last two columns of Table 2 we also indicate the values of the
variational parameters α and β appearing in the radial wave function (14) which minimize
the energy of the systems displayed in the first column. The parameter α takes values
around α0 = 0.44 fm. In the same quark model this is precisely the value which minimizes
the ground state nucleon mass [14] when the trial wave function is φ ∝ exp[−(x2+y2)/4α2

0]
where ~x and ~y are the first two of the Jacobi coordinates (7) defined above. The quantity
α0 gives a measure of the quark core size of the nucleon because it is its root-mean-square
radius. The parameter β is related to the relative coordinate ~t between the center of mass
of the q4 subsystem and the antiquark. It takes values about twice larger than α, which
is an indication that the four quarks cluster together, whereas q̄ remains slightly separate
in contrast to certain Ansaetze recently promulgated in the literature.

Table 3 reproduces the calculated antidecuplet mass spectrum obtained from the mass
M of Table 2. The masses of Θ+ and Ξ−− can be read off Table 2 directly. The other
masses are obtained from the linear combinations

M(N10) =
1

3
M(uuddd̄) +

2

3
M(uudss̄),

M(Σ10) =
2

3
M(uudsd̄) +

1

3
M(uusss̄) . (16)
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In comparison with Carlson et al. [19], where the mass of Θ+ is also adjusted to the
experimental value, we obtain somewhat higher masses for N10, Σ10 and Ξ−−, the latter
being about 100 MeV above the experimentally found mass of 1862 MeV [3]. This is in
contrast to the strongly correlated diquark model of Jaffe and Wilczek [20], where Ξ−−

lies about 100 MeV below the experimental value. Note that the mass of Θ+ is also
fixed in that model. In the lowest order of SU(3)F breaking, one can parametrize the
result by the Gell-Mann-Okubo (GMO) mass formula, M = M10 + cY . In the present
case one obtains M ' 1829 − 145 Y . The fit to the measured masses of Θ+ and Ξ−−

gives M ' 1755 − 107 Y . Accordingly, the masses assigned to N10 and Σ10 are 1647
MeV and 1755 MeV. They are indicated in the last column of Table 3. Starting from
this fit, Diakonov and Petrov [21] analyzed the masses of the non-exotic members of the
antidecuplet as a consequence of the octet-antidecuplet mixing due to SU(3)F breaking. 2

A new nucleon state at 1650-1690 MeV and a new Σ at 1760-1810 MeV have been proposed
as mainly antidecuplet baryons with Y = 1 and Y = 0 respectively. Shortly after, Pakvasa
and Suzuki [23] also considered the octet-antidecuplet mixing in a phenomenological way
starting from the Gell-Mann-Okubo mass formulae. There, the resonance N∗(1710) was
taken as the Y = 1 partner of Θ+, as in the original work of Ref. [4]. That analysis
showed that the range of values for the mixing angle required by the mass spectrum of
the Y = 1 baryons is not consistent with the range needed to fit strong decays. 3

However the recent modified PWA analysis [24] reconsiders the antidecuplet nature of
N∗(1710) used to determine the mass of Θ+ in Ref. [4]. As a result, instead of N∗(1710),
it proposes two narrow resonances 1680 MeV and/or 1730 MeV, as appropriate Y = 1
partners of Θ+. This interpretation of the data clearly requires octet-antidecuplet mixing.

In the present model, which contains SU(3)F breaking, the mixing appears naturally
and it can be derived dynamically starting from the Hamiltonian (1). Recall that Table 3,
column 3 gives the pure antidecuplet masses. The pure octet masses are easily calculable
using Table 2 and the octet wave functions (see Appendix). We obtain

M(N8) =
2

3
M(uuddd̄) +

1

3
M(uudss̄) = 1568 MeV,

M(Σ8) =
1

3
M(uudsd̄) +

2

3
M(uusss̄) = 1936 MeV. (17)

The octet-antidecuplet off-diagonal matrix element, denoted by V , has only two non-
vanishing contributions, one coming from the mass (first) term of (1) and associated with
the overlap of Φ(N10) and Φ(N8), or of Φ(Σ10) and Φ(Σ8), and the other coming from the
hyperfine interaction. Using the Appendix one can obtain the analytic form of V as

V =


2
√

2
3

(ms −mu) +
√

2
3

[S(uudss̄)− S(uuddd̄)] = 166 MeV for N

2
√

2
3

(ms −mu) +
√

2
3

[S(uusss̄)− S(uudsd̄)] = 155 MeV for Σ

(18)

2A similar analysis, but restricted to the ideal mixing postulated by Jaffe and Wilczek [20], has been
made in Ref. [22].
3A more extended representation mixing including the 8, 10, 10, 27, 35 and 35 were considered in Ref.
[25] in the context of the chiral soliton model. The masses of N10 and Σ10 were predicted to be the same
as those in the last column of Table 3. The estimated range for the pure exotic pentaquarks turn out to
be 1430 MeV < M(Θ+) < 1660 MeV and 1790 MeV < M(Σ−−) < 1970 MeV.
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where S = 〈T 〉 + 〈Vχ〉. The numerical values on the right hand side of Eq. (18) result
from the quark masses given in Eqs. (5) and from the values of 〈T 〉 and 〈Vχ〉 exhibited in
Table 2. One can see that the mass-induced breaking term is identical for N and Σ, as
expected from simple SU(3) considerations. Its numerical value, 94.28 MeV, represents
more than 1/2 of the total off-diagonal matrix element.

The masses of the physical states, the “mainly octet” N∗ and the “mainly antidecuplet”
N5, result from the diagonalization of a 2 × 2 matrix in each case. Accordingly the nucleon
solutions are

N∗ = N8 cos θN −N10 sin θN ,

N5 = N8 sin θN +N10 cos θN , (19)

with the mixing angle defined by

tan 2θN =
2V

M(N10)−M(N8)
. (20)

The masses obtained from this mixing are 1451 MeV and 1801 MeV respectively and the
mixing angle is θN = 35.340, which means that the “mainly antidecuplet” state N5 is
67 % N10 and 33 % N8, and the “mainly octet” N∗ the other way round. The latter is
located in the Roper resonance mass region 1430 - 1470 MeV. However this is a q4q̄ state,
i. e. it is different from the q3 radially excited state obtained in Ref. [15] at 1493 MeV
with the parameters (5) and assigned to the Roper resonance. A mixing of the q3 and the
q4q̄ states could possibly be a better description of reality. There is some experimental
evidence that two resonances, instead of one, separated by about 100 MeV, and located
around 1440 MeV, could consistently describe the π−N and α−p scattering in this region
[26], however. Thus the issue of the existence of more than one resonance with JP = 1/2+

in the 1430- 1500 MeV mass range remains unsettled. The “mainly antidecuplet” solution
at 1801 MeV is far from the higher option of Ref. [24], at 1730 MeV, interpreted as the
Y = 1 narrow resonance partner of Θ+.

In a similar way we obtain two Σ resonances, the “mainly octet” one being at 1719 MeV
and the “mainly antidecuplet” one at 2046 MeV. The octet-antidecuplet mixing angle is
θΣ = −35.480. The lower state is somewhat above the experimental mass range 1630 -
1690 MeV of the the Σ(1660) resonance. As the higher mass region of Σ is less known
experimentally, it would be difficult to make an assignement for the higher state.

The mixing angle θN and θΣ are nearly equal in absolute value, but they have opposite
signs. The reason is that M(N10) > M(N8) while M(Σ10) < M(Σ8). Interestingly, each
is close to the value of the ideal mixing angle θN = 35.260 and θΣ = −35.260. Only the
relative strengths of decays and selection rules can discriminate between mixing schemes
as well as between models [23,27]. This is a task for a future work.

6. Conclusions

In conclusion we have used a variational method, which provides upper bounds on the
masses of all isomultiplets of the pentaquark antidecuplet. We calculated dynamically the
masses of the pure exotic pentaquarks Θ+ and Ξ−− and the masses of the other members
of the antidecuplet. The model on which these calculations are based reproduces well



9

the baryon spectrum, when baryons are described as q3 systems. It assumes a flavour-
spin structure for the hyperfine quark-quark interaction and its radial shape contains
parameters which have been fitted not only to the ground state baryons, but also to a large
number of excited states [15]. In particular this interaction places the Roper resonance,
modeled as a q3 system, below the lowest negative parity baryons, in agreement with the
experiment. However the description of strong decays in this model is not satisfactory
(see e. g. Ref. [28]). Besides the qq interaction a qq̄ interaction is necessary to describe
pentaquarks. Here we did not introduce it explicitly but relied on the conclusion of Ref.
[16] that an attractive spin-spin interaction that operates only in the qq̄ channel can lower
the q4q̄ energy to accommodate the Θ+. In this way we can explain the mass shift of -510
MeV necessary to reproduce the mass of Θ+. It follows that this flavour-independent
interaction equally lowers all the other members of the antidecuplet and of the octet.

But in the new light shed by the pentaquark studies, the usual practice of hadron
spectroscopy is expected to change. There are hints that the wave functions of some ex-
cited states might contain q4q components. These components, if obtained quantitatively,
would perhaps better explain the widths and mass shifts in the baryon resonances [29].
In particular the mass of the Roper resonance may be further shifted up or down. In that
case the model parametrization should be revised and more precise four- and five-body
calculations should be performed. On the other hand a full experimental confirmation of
the Θ+ and of the Ξ−− resonances and more appropriate partial wave analysis of existing
data would be of great help in understanding the structure of pentaquarks and of ordinary
baryons.

Appendix

Here we give the form of one of the two independent flavour wave functions for each
isomultiplet belonging to 10F . It is the function where both pairs of quarks, 12 and 34, are
in an antisymmetric state φ[11](qaqb) = (qaqb − qbqa)/

√
2. By analogy with the q3 system,

we shall use the label ρ for all states which are antisymmetric under the permutation (12).
For Θ this wave function is straightforward

Φρ(Θ) = φ[11](ud)φ[11](ud)s . (21)

The N10 flavour wave function is obtained from that of Θ by applying the U -spin ladder
operator U− of SU(3). Its normalized form becomes

Φρ(N10) =
1√
3
{[φ[11](us)φ[11](ud) + φ[11](ud)φ[11](us)]s+ φ[11](ud)φ[11](ud)d} . (22)

Applying U− again one obtains the wave function of Σ10 which is

Φρ(Σ10) =
1√
3
{φ[11](us)φ[11](us)s+ [φ[11](us)φ[11](ud) + φ[11](ud)φ[11](us)]d} . (23)

The wave function of Ξ−− is as simple as that of Θ but with another quark content of
course

Φρ(Ξ−−) = φ[11](ds)φ[11](ds)u . (24)
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In these functions the normal order of particles 1234 is understood. In each case one can
get the other linear independent function in the flavour space, Φλ, with the quark pairs 12
and 34 in a symmetric state, φ[2](qaqb) = (qaqb + qbqa)/

√
2 ( qa 6= qb) or φ[2](qaqa) = qaqa,

by applying the permutation (23) to the above corresponding function (see e. g. [30]).
For example we have

Φλ(Θ) =

√
1

3
[φ[2](uu)φ[2](dd) + φ[2](dd)φ[2](uu)− φ[2](ud)φ[2](ud)]s . (25)

Both the Φρ and Φλ functions are necessary in the calculation of the matrix elements of
the hyperfine interaction.

In the same notation, the N8 and Σ8 the flavour octet wave functions, antisymmetric
under the permutation (12) are

Φρ(N8) =
1√
6

[φ[11](us)φ[11](ud) + φ[11](ud)φ[11](us)]s−
√

2

3
φ[11](ud)φ[11](ud)d . (26)

Φρ(Σ8) =

√
2

3
φ[11](us)φ[11](us)s−

1√
6

[φ[11](us)φ[11](ud) + φ[11](ud)φ[11](us)]d . (27)

Acknowledgment

I am indebted to Dan Riska and for useful comments on the manuscript and to Veljko
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