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ABSTRACT 

 
Visible, Near and Short Wave Infrared (VNSWIR) diffuse reflectance spectroscopy (350 nm to 2500 

nm) has been proven to be an efficient tool to determine the Soil Organic Carbon (SOC) content. 

SOC assessment (SOCa) is usually done by using calibration samples and multivariate models. 

However one of the major constraints of this technique, when used in field conditions is the spatial 

variation in surface soil properties (soil water content, roughness, vegetation residue)  which 

induces a spectral variability not directly related to SOC and hence reduces the SOCa accuracy. This 

study focuses on the impact of soil roughness on SOCa by outdoor VIS-NIR-SWIR spectroscopy and 

is based on the assumption that soil roughness effect can be approximated by its related shadowing 

effect. 

 

A new method for identifying and correcting the effect of soil shadow on reflectance spectra 

measured with an Analytical Spectral Devices (ASD) spectroradiometer and an Airborne 

Hyperspectral Sensor (AHS-160) on freshly tilled fields in the Grand Duchy of Luxembourg was 

elaborated and tested. This method is based on the shooting of soil vertical photographs in the visible 

spectrum and the derivation of a shadow correction factor resulting from the comparison of 

“reflectance” of shadowed and illuminated soil areas. 

 

Moreover, the study of laboratory ASD reflectance of shadowed soil samples showed that the 

influence of shadow on reflectance varies according to wavelength. Consequently a correction factor 

in the entire [350 -2500 nm] spectral range was computed to translate this differential influence. 

 

Our results showed that SOCa was improved by 27% for field spectral data and by 25% for airborne 

spectral data by correcting the effect of soil relative shadow. However, compared to simple 

mathematical treatment of the spectra (first derivative, etc) able to remove variation in soil albedo due 

to roughness, the proposed method, leads only to slightly more accurate SOCa.
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1. INTRODUCTION 

 

The monitoring of soil attributes and their evolution over time as well as the development of 

pedological models rely on the availability of accurate and extensive soil data. The high spatial 

variability of soils arising from both local and global factors of soil formation requires generally 

collecting soil information from a very dense network of sites. Diffuse reflectance spectroscopic 

techniques, and in particular Visible, Near and Short Wave Infra Red (VNSWIR) spectroscopy (350 

nm to 2500 nm), allows rapid sampling and instantaneous determination of many soil properties, at 

field and regional levels (in remote sensing mode). This technique can provide in a cost effective way 

the large quantity of spatial data required in soil monitoring or modelling studies like the monitoring 

of decline of soil organic matter in the topsoil. 

 

Spectral libraries and multivariate modelling are often used to predict soil attributes of unknown 

samples. In the laboratory, such approach has proven to provide accurate determinations of SOC 

(Viscarra Rossel et al., 2006). When using the same approach, field spectroscopy and hyperspectral 

remote sensing, however, may fail to produce reliable and robust determinations due to uncontrolled 

measuring conditions and spatial variation in surface soil properties. According to Atzberger (2000), 

the main factors affecting the soil reflectance are soil water content, vegetation residues and surface 

roughness.  

 

For the purpose of this study, field spectroscopic measurements were taken over bare and dry soils. 

Hence soil roughness remained the main disturbing factor and other influences have not been taken 

into consideration. 

 

The effect of roughness on soil reflectance has been addressed in several studies. Arnfield (1975) 

showed that, for a relatively rough soil surface, soil albedo is generally lower than for a corresponding 

smooth surface due to self shadows. Atzberger (2000) simulated the influence of soil roughness on 

reflectance by using the SOILSPEC model. He found that, when the soil becomes smoother, due to 

decreasing micro-shadow effects, soil reflectance increases throughout the visible range. 

 

Geometrical models have been developed to simulate bidirectional reflectance of light from rough soil 

surface based on the assumption that reflection is strongly correlated with the area of shadowed soil as 

well as on illumination and viewing geometry. Even though these models have been validated 

(Cierniewski, 1987; Cierniewski and Verbrugghe, 1997) their application in field conditions is not 

trivial, since many input parameters have to be considered which are quite difficult to assess in 

practical cases. 

 

Several geometrical models (Cierniewski and Verbrugghe, 1994; Cooper and Smith, 1985; Irons et al., 

1992; Norman et al., 1985) predict soil reflectance based on the assumption that shadowing of soil 

aggregates or clods has a greater influence than the scattering properties of a soil (Cierniewski and 

Verbrugghe, 1997). This study is also based on this principle and therefore the influence of 

roughness on soil reflectance is estimated by assessing its shadowing effects. This approach has 

been recently validated by (García Moreno et al., 2008).  

 

The purpose of this study is to propose a new method to identify and reduce the effect of soil 

Relative Shadow (RS, the percentage of shadowed soil of the studied surface) on the assessment of 

SOC content from VNSWIR hyperspectral (350-2500 nm) field and airborne spectroscopic data. 

 

First a method to measure RS and to correct its impact on field reflectance, measured with an 

Analytical Spectral Devices (ASD) spectroradiometer and the Airborne Hyperspectral Sensor (AHS), 

is proposed.  Secondly the impact of RS on reflectance and SOCa accuracy is studied under laboratory 

conditions. Then SOC content is predicted by using uncorrected and corrected field reflectance values 

to evaluate the improvement in SOCa accuracy achieved with this method. The proposed method is 

finally compared with well-known mathematical pre-processings that intend to enhance SOCa 

accuracy. 



 
2. DATA COLLECTION 

 

2.1. Field data collection 

 

2.1.1. Study area 

 
The study area consisted of a north-south transect of ~7 km width and ~60 km length (NW corner: 

50°03'N 6°03'E; SE corner: 49°33'N 6°12'E), crossing 4 of the 5 agro-geological regions of the Grand-

Duchy of Luxembourg.  
 

The Grand-Duchy of Luxembourg is characterised by a large variability of soils on a relatively small 

area (2586 km
2
).  The 4 agro-geological regions in the study area are: 

 The North, called Ardennes or Oesling, is a relatively homogeneous area consisting of plateaus 

and dissected valley lying on a Devonian slate substrate. The Oesling presents soils that tend to 

accumulate organic matter with an average SOC content of 26 g C kg
-1

 (Lioy et al., 2007). The 

predominant soil types are Leptosols or dystric Cambisols according to the World Reference Base 

classification (FAO, 1998) with a sandy or sandy-loam texture. 

 The South of Luxembourg, called Gutland, is characterised by a very diverse pedological 

context with several types of soils and a large SOC variability. The average SOC content in 

Gutland is 17 g C kg
-1

 (Lioy et al., 2007). This region can be further subdivided into 3 agro-

geological zones:  

 Minette, in the south-western part presents relatively homogeneous soil conditions. Soils in 

this region are heavy with high clay content (clay or loam-clay texture) and with a 

predominance of Gleyic Luvisols and Vertisols.    

 The predominant geologic substrate of the Middle of land is Luxembourg sandstone. The 

texture of the soils in this area is nevertheless not only sandy, but also sometimes clay rich. 

The most common soils in this area are Arenosols and Cambisols.   

 Redange region, lying between the central part of Luxembourg and the Oesling, is 

characterised by a very heterogeneous geology. Within this area, red sandstone, limestone, 

loess, gypsum-keuper and others substrates are found. Texture is also variable but loam soils 

are predominant. Major soil types limited to the investigated area are Luvisols.  

 

2.1.2. Field campaign 
 
The field campaign took place on the 5

th
-6

th
 October 2007. This time period was selected to ensure a 

high proportion of bare soils after harvest and ploughing of mainly maize fields. The weather 

conditions were lightly cloudy sky on the 5
th
 October 2007 and perfect clear sky on the 6

th
 of October 

2007. 

 

A total of 165 sampling plots were delimited in 22 bare fields (6 to 23 plots per field) evenly 

distributed in the 4 aforementioned agro-geological regions (5-6 fields by agro-geological region). 

Each sampling plot consisted of a 7.5 m wide square centred on a geographical position recorded by a 

GPS receiver in differential mode (localisation accuracy < 0.5 m). 

 

For each plot, vertical digital photographs of the soil were taken for soil shadow analysis and several 

soil samples were collected for analysis of SOC content, soil moisture and soil surface spectral 

characteristics. Bulk soil samples (200g) were collected from the soil surface of each plot for further 

spectral analysis in the laboratory (Cf. section 2.2). 

 

2.1.3. Soil Organic Carbon (SOC) 
Each soil samples used for SOC analyses was composed of 10 sub-samples collected to a depth from 0 

to 5 cm with an auger at random locations within the sampling plot. Soil organic carbon of air-dried 

and sieved (2 mm) samples was analysed by dry-combustion with a LECO CN analyser. Samples with 



carbonates (detected using effervescence to 1 M HCl) were removed from the dataset. SOC contents 

varied from 7 to 40 g C kg
-1

 and differed markedly between soil types and agrogeological regions. 

 

2.1.4. Soil moisture 
The total amount of rainfall during the previous 7 day period before the over flight was 23.2 mm at an 

average air temperature of 10.3°C (Luxembourg City). Last rainfall events occurred 3 days before the 

field campaign. Gravimetric soil surface moisture was determined for 159 arbitrarily-selected soil 

samples taken the day of the over flight within the sampling plots in the very first millimetres of the 

soil surface (up to 1 cm) as presented in Stevens et al. (2010). Soil moisture content was relatively low 

and varied greatly according to soil type (median: 5.9%, range: 0.9–19.1%). This enabled to consider 

the soil surface as dry during the field campaign and, consequently, soil moisture was not considered 

as a factor affecting the soil reflectance in this study. 

 

2.1.5. Soil shadow 
Soil Relative Shadow (RS, the percentage of shadowed soil of the studied surface) was measured for 

each sampling plot from digital photographs of the soil surface taken vertically at nadir position and at 

1.50 m high, during the day before the flight (05/10/2007) and the day of the flight, mainly with a 

Canon Power Shot A620 ® digital camera but also with a Canon DIGITAL IXUS 500 ® and a 

NIKON D50 ®. Each photograph was recorded as a composition of the 3 Red, Green and Blue (RGB) 

spectral bands. 3 photographs were taken within each sampling plot, with the sun in front of the 

operator and before other measurements (SOC, water content) in order to capture a non disturbed soil 

surface (neither operator’s shadow nor footprint). Around 500 vertical soil photographs were taken on 

the 5
th
 and 6

th
 October (250/250). Photographs were taken simultaneously (in a time interval of 

maximum 10 min) with field ASD spectroradiometer measurements in order to have same 

illumination and consequently the same shadow conditions for both measures. 

 
Photographs of soil were then analysed with the image analysis software DEFINIENS 

DEVELOPER 7.0 (DEFINIENS Inc., Munchen, Germany) through classical segmentation-

classification process (Figure 1 a-b) in order to extract different variables. The segmentation was 

realised with the “Multiresolution-segmentation” algorithm that segments an image in spectral objects 

by locally minimizing their average spectral heterogeneity (DEFINIENS, 2007). Tests have been 

realised to find the parameters of this algorithm that are best for discriminating shadowed from 

illuminated soil surface. The following parameters were found appropriate for the segmentation of the 

digital photographs: weight = 1 for all 3 RGB spectral bands, “scale” = 75, “shape” = 0.1 and 

“compactness” = 0.9. The resulting spectral objects were classified in 2 classes only: “Illuminated 

Soil” and “Shadowed Soil”. No distinction was made for objects with different light or shadow 

intensities. Membership functions used for the definition of these 2 classes were defined with the 

single object feature “Brightness”. Brightness, computed for an image object, is defined as the sum of 

the mean values of the 3 RGB spectral bands, divided by their quantity (area) (DEFINIENS, 2007). 

The brightness threshold values defining the 2 classes did not overlap and were adapted depending on 

the photograph by visualising the mean brightness value of some soil objects at the spectral border of 

the 2 classes and by using the “Image Layer Histogram” tool as shown in Figure 1 c. RGB values of 

the 2 classes were clearly separable except for very few photographs where shadowed white stones 

were misclassified in the “Illuminated” class. Most of the time, the same brightness threshold value 

could be kept for all photographs of a field. For some fields, the impact of ploughed furrow direction 

on soil shadow can be seen on the photographs. Strong soil colour contrast was noticed inside some 

fields. 

 
Then, classification statistics (Class, Area and Mean object value for the 3 RGB layers values) were 

exported into Matlab (Matworks Inc., Natick, USA) to compute the 3 parameters described below. 

 



 
Figure 1 : (a) Greyscale vertical photograph of a ploughed bare crop field, (b) Classified photograph in 

“Illuminated” and “Shadowed” objects, (c) Histograms of pixel values [1 -256] of a soil photograph for the 

blue layer as given by the “Image Layer Histogram” tool of DEFINIENS software. 

 

Soil Relative Shadow (RS), defined as the percentage of shadowed soil area on a photograph, has 

been computed according to equation 1. 

P

P
P

A
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RS           ( 1 ) 

Where,  

o RSp, is the RS of the photograph P (%),  

o ASp, is the Area of Shadowed soil of the photograph P (in pixels) 

o Ap, is the total Area of the photograph P (in pixels) 

 

According to this procedure, the RS range encountered in the fields was [0.28 to 0.68] with a mean of 

0.53, but usually observed RS were comprised in the range [0.4, 0.6]. 

 

The mean value of Definiens features “Mean Layer Value” of each of the 3 RGB spectral bands 
have been computed for the “Illuminated” class and for the entire photograph scene, for each 

photograph, according to equation 2 (“Illuminated” class) and 3 (entire photograph scene). 
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Where,  

o MFI, is the Mean Feature value for the “Illuminated” class of a photograph 

o nI, is the number of objects belonging to the “Illuminated” class of a photograph 

o Ai, is the area of the “Illuminated” object i in a photograph (in pixels) 

o Fi, is the Feature value of the “Illuminated” object i in a photograph 

o AI, is the total Area of the “Illuminated” class of a photograph (in pixels) 
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Where, 

o MFSc, is the Mean Feature value for whole Scene of a photograph 

o nSc, is the number of objects of the whole Scene of a photograph 

o Ai, is the area of the object i of a photograph (in pixels) 

o Fi, is the Feature value of the object i of a photograph 

o ASc, is the total Area of a photograph (in pixels) 

 

 

 



2.1.6. Field spectral measurement 
 

2.1.6.1. Airborne Hyperspectral Sensor (AHS) measurement and pre-processings 
 
The hyperspectral data cube was acquired with the Airborne Hyperspectral Sensor 160 (AHS) on the 

6
th
 October 2007, under a cloudless sky, with a spatial resolution of 2.6m * 2.6m. 5 hyperspectral 

images of 60 km long were acquired with a swath of 1.96 km and approximately 30 % of across track 

overlapping. Flight true heading was 175° and 355° and solar azimuth angle comprised between 155° 

and 188°. The AHS is a whiskbroom scanner characterised by a Field of View (FOV) of 90° and 

providing 63 spectral bands in the Visible, Near Infrared and Short Wave Infrared region of the 

electromagnetic spectrum (430 nm – 2540 nm). The AHS is configured to provide 20 bands with a 

Full Width at Half Maximum (FWHM) of 30 nm between 430 and 1030 nm (Visible and Near 

Infrared; VNIR), 42 bands with a FWHM of 18 nm between 1994 and 2540 nm (Short Wavelength 

Infrared; SWIR 2), complemented by an isolated band centred at 1600 nm with a FHWM of 90 nm 

(SWIR 1). At-sensor radiance data with corresponding geographical positions have been processed by 

the Central Data Processing Center of the Vlaamse Instelling voor Technologische Onderzoek (CDPC-

VITO), which provided geometrically and atmospherically corrected at-surface reflectance values. The 

atmospheric and geometric corrections are described in Stevens et al. (2010). In short, the procedure 

consisted of (i) a geometric correction by means of direct georeferencing on a digital elevation model; 

(ii) an atmospheric correction with a modified version of the MODTRAN4 radiative transfer code 

using radiances and a grid containing positions and viewing geometry parameters; (iii) the re-sampling 

of atmospherically-corrected data. 

 

Hyperspectral images of the flight lines were manipulated by using IDL language and ENVI software 

(ITT VIS, Boulder, CO). Spectral data of the 165 sampling sites were extracted from their 

corresponding positions in each image. When a plot was measured twice due to overlapping of 

neighbouring images the spectrum with the lowest viewing zenith angle was kept.  

 

2.1.6.2. Analytical Spectral Devices (ASD) spectral measurements 
Reflectance in the spectral range 350-2500 nm was measured with a FieldSpec Pro spectroradiometer 

(ASDinc, Boulder, USA). The instrument is characterised by a Full Width at Half Maximum of 3 nm 

for the 350-1000 nm region (Ultraviolet, Visible and Near Infrared) and 10 nm for the 1000-2500 nm 

region (Near Infra Red and Short Wavelength Infrared). Measurements were realised at nadir with a 

bare ASD pistol with a FOV of 25° and at a height of approximately 1 m, resulting in a studied soil 

area of  approximately 15 dm² (circle of 44 cm in diameter). 

A total of 96 sampling plots were measured with the ASD the day before the flight (5th October 2007) 

under imperfect weather conditions (lightly cloudy sky) and the day of the overflight under perfect 

clear sky. Ten individual ASD spectra were taken randomly across each sampling plot and averaged to 

produce a plot representative spectrum. Reflectance was determined by reference to a Spectralon
® 

panel.  

2.2. Laboratory data collection: spectral measurement 
 
Reflectance of prepared soil samples, collected during the field survey, was measured in the laboratory 

for different levels of RS. Purposes of these measurements were to study the impact of RS on 

reflectance and SOCa accuracy and to compute correcting factor for RS by measuring reflectance in 

shadowed and reference (no shadow) conditions.  

 

2.2.1. Material and soil sample 
 
Reflectance measurements were realised in a darkroom. Air dried soil samples were illuminated with 

one “Lowel-pro light”
®
 lamp (P2-10CE Dedicated CE approved 230v Euro model) with bulb of type 

GLF P44, which provides a stable light. The lamp zenith angle was 30 °. Bare ASD pistol was fixed at 



the nadir of the soil sample, at a height of 22.6 cm, with FOV of 25 °, resulting in a studied soil area of 

79 cm². 

 
Soil samples collected during the field survey were used to prepare 96 soil samples belonging to 22 

fields with, most of the time, 5 replicates per field. As surface roughness and particle size affects the 

albedo (Bishop et al., 1994; Whiting et al., 2004) soil material smaller than 2 mm in size was separated 

by sieving the air-dried samples after a light grinding with mortar and pestle. Coarse gravels and small 

stones, greater than 5 mm in size, were removed in the field, along with recognizable crop residue (in 

compliance with (Whiting et al., 2004). Each soil sample was composed of 20 g of these fine air dried 

soil fraction uniformly placed in a big plastic Petri dish (1, 20 mm deep, 145 mm in diameter) in a thin 

layer of 3 mm of soil.  

 

2.2.2. Shadow modelling 
Shadow was applied on the soil sample with the help of a calibrated sliding matte, placed between the 

light source and the soil sample. Seven predefined RS levels were: 0% (full light), 10, 28, 39, 60, 88 

and 100% (full shadow) of the soil sample’s area. Level 0 was the reference. Levels 0.28, 0.39 and 

0.60 were selected to be close to the RS range met in field ([0.28 to 0.68]). Note that the intensity of 

the shadow was stronger in laboratory than in field because of the absence of the light diffuse 

component in the laboratory. 

 

2.2.3. ASD spectral measurements 
 
For each sample and shadow level, 3 spectral measurement replicates were taken by rotating the 

sample by 120° in order to take into account the reflectance variability due to surface geometry of soil 

sample. 

 

3 post processings were further applied to measured spectra.  

o Splice correction of the ViewSpecPro software ®, which corrects for the steps between the 

ASD sensors at 1000 nm and 1800 nm. 

o Smoothing by using the Savitzky-Golay filter with the following parameter: odd filter length: 

47; filter order: 3; no derivative of the filter coefficients (with R software; (R Development 

Core Team, 2009)). 

o Average of the 3 spectra replicates (with R software). 

 

Finally, in order to get laboratory spectra at exactly the same RS level as the one observed in the field 

for each soil sample, the series of seven laboratory ASD measurements of each soil sample were used 

to interpolate spectra at the field RS level, with a cubic spline function. 

 
3. METHOD 

 

The logic of the method aiming at enhancing SOCa by reducing RS effect is described below and 

consists of 4 steps: 

1. Computing shadow correction factors “K” for field reflectance from collected data 

2. Correcting field reflectance (ASD and AHS) with the “K” produced 

3. Estimating whether corrected reflectance improve SOCa 

4. Comparing the performance of the proposed correction method with existing methods 

The global workflow of this study is presented in the Figure 2 (steps 1-3). 

 

3.1. Computation of shadow correction factors in the visible range (KVIS) 
 
Soil photographs taken during the field campaign and derived parameters (Cf. section 2.1.5) were used 

to compute the RS correction factors in the visible range “KVIS” for each soil sample. 

 



KVIS expresses the percentage of “reflectance” – of a photograph, AHS or ASD spectrum - of a 

shadowed scene that has to be added to that shadowed reflectance to get the non-shadowed reflectance 

value.   

  

 
 

Figure 2: Global workflow of this study 
 

The RS correction factors for the aforementioned Definiens Features “Mean Layer Value” of the 3 

RGB layers have been computed according to the equation 4, resulting in the 3 “KRGB”: KRed, KGreen, 

KBlue. 
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MFScMFI
KRGB


       ( 4) 

Where, 

o KRGB, is the “RGB” shadow correction factor for a given Definiens Feature (%)  

o MFI, is the Mean Feature value for the Illuminated class of a photograph (Digital Number [1 

- 256]) 

o MFSc, is the Mean Feature value for the whole Scene of a photograph (Digital Number [1 - 

256]) 

 
The mean of the 3 correction factors KRed, KGreen and KBlue, corresponding to the mean K in the visible 

spectral range (KVIS) (equation 5), was computed for each photograph.  
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As KRed, KGreen, KBlue and KVIS were highly correlated (e.g. R² of KRed and KGreen is higher than 0.95), 

only KVIS values were further used in this study. Mean value of KVIS by sampling plot (3 photographs 

per plot) were then computed. 
 

The correction of a field reflectance disturbed by RS (photograph, ASD or AHS spectrum) was then 

realised as indicated in equation 6 below.   

 

)1(* VISffcor KRR        ( 6 ) 

Where,  

o Rfcor, is the field reflectance (photograph, AHS or ASD) corrected for RS effect 

o Rf, is the observed field reflectance (photograph, AHS or ASD) 

 

The main hypothesis is that KVIS can be applied on ASD and AHS reflectance in the purpose of RS 

effect correction and consequently that the 2 following equations are verified: 

 

)1(*__ VISRSASDrefASD KRR   

)1(*__ VISRSAHSrefAHS KRR   

Where, 

o RASD_ref and RAHS_ref, are ASD or AHS reflectance for a non-shadowed soil 

o RASD_RS and RAHS_RS, are ASD or AHS reflectance for a shadowed soil 

 

In particular the AHS sensor viewing angle has not been taken into consideration in this study. Note 

also that the Field Of View (FOV) of the RGB cameras (50°) is twice wider than the one of the ASD 

spectrometer (25°) and nearly twice narrower than the one of the AHS (90°). This difference has not 

been taken into account for the computation of the correction factors and their application on the field 

ASD and AHS reflectances. 

 

3.1.1. KVIS time trend correction 
 

3.1.1.1. RS and KVIS time trend 
 
The analysis of RS and KVIS as a function of time during the data collection in the fields revealed that a 

strong time trend affects RS as illustrated in Figure 3 but also to a smaller extent KVIS. RS and KVIS 

were smaller at midday and higher in the morning and afternoon periods. This time trend is caused by  

Solar Zenith Angle (SZA) variations during the day, as suggested by the fact that R² between all 165 

observed RS and SZA is 0.64 with a 2
nd

 degree polynomial, and 0.98 between RS trend and SZA. 

 

These observations lead to the conclusion that the time of the photo acquisition has a strong influence 

on RS values. This effect is probably even more important that the RS variation due to difference in 

roughness between plots or fields. 

 

3.1.1.2. KVIS time trend correction 
 
Considering this strong time trend and the fact that most of the photographs were not taken 

simultaneously with the AHS flight, it appeared necessary to correct KVIS for the time trend before 

applying it to AHS spectra. 

 
This time trend correction was realised, in a first step, by assigning to each plot the time of the mid-

flight lines (a flight line lasted 13 min) of the AHS image from which its AHS spectrum was extracted. 

Maximum time error is thus 6.5 min for each plot. Secondly, the time scale was transformed into a 

SZA scale in order to get a physical basis to the trend and KVIS was expressed as a function of SZA. 



The Trend of KVIS according to SZA is called KVIS SZAT. Then the values of the KVIS SZAT at the 

time of the AHS flight over each plot and at the time when photograph was taken in each plot were 

extracted and used to compute the detrended KVIS according to the equation 7. 

 

 SZATVISSZATAHSVIS KKK ___CSZAT VISK       ( 7 ) 

Where, 

o KVIS-CSZAT, is the KVIS Corrected from the SZA Trend as if KVIS was measured at the AHS flight 

time over the plot (%) 

o KVIS, is the KVIS value observed in the plot (%) 

o KAHS-SZAT, is the KVIS value extracted from the KVIS SZA Trend at the time of AHS flight over 

the plot (%) 

o KVIS-SZAT, is the KVIS value extracted from the KVIS SZA Trend at the time of the KVIS 

observation in the plot (%) 

 

No trend corrections were applied to the KVIS to be applied on ASD field reflectance, since ASD 

reflectances were taken simultaneously with the digital photo. 
 

 
Figure 3 : RS temporal evolution for all 165 soil sampling plots, RS time trend and solar zenith angle 

evolution on the 6th October 2007, on the study site (49.80° latitude – 6.13° Longitude). 

 

3.2. Computation of shadow correction factors in the range [350-2500 nm] (KVNSWIR)  
 
Each KVIS is composed of a single value computed in the visible, and consequently the correction of an 

ASD reflectance spectrum (covering the spectral range 350-2500 nm) with such a KVIS consists of a 

simple multiplication of each spectral bands by a single KVIS value (equation 5). As laboratory 

experiments showed that the influence of soil RS on reflectance is not wavelength-independent 

(Figure 4), correction factors covering the full VIS-NIR-SWIR spectral range were needed and were  

computed from laboratory ASD spectra measured in full light and at the RS level met in the field. The 

computation of these correction factors consisted of the 3 following steps. 



 
Figure 4 : Soil shadow correction spectrum: a)

 
typical shape of a KASD (KASD/10); b) the reference (non-

shadowed) ASD spectrum & the shadowed spectrum corrected with the KASD ; c)  the ASD spectrum of a 

shadowed soil sample 

 

3.2.1. Computation of the ASD correction spectra (KASD) 
 
First, for each laboratory soil sample, a KASD is computed based on the laboratory ASD spectrum 

measured in full light and at the RS level met in the field for the considered soil sample as indicated in 

equation 8. 
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Where, 

o KASD, is a correction factor spectrum in the spectral range [350-2500 nm] 

o RASD_0, is the laboratory ASD reflectance spectrum measured under full light (no shadow) 

o RASD_f, is the laboratory ASD reflectance spectrum measured at the RS level met in the field 

 

Figure 4 presents a typical correction factor spectrum (dotted black (a)) computed from ASD 

laboratory reflectance. This figure shows clearly that the influence of RS varies with wavelength. The 

KASD correction is applied to an observed spectrum similarly to the KVIS correction (equation 5). 

 

3.2.2. Computation of the arithmetic mean of all KASD (KASD-MEAN) and scaling (KASD-

MEAN-SCA) 
 

In order to get a single reference correction spectrum shape, the arithmetic mean of the KASD of all soil 

samples was computed (KASD-MEAN). Then this KASD_MEAN was scaled in order for the “visible” (at 585 

nm) part of the resulting spectrum (KASD MEAN SCA) to be equal to 1 (equation 9). The wavelength of 

585nm was chosen as reference for the visible range since it was the part of the visible spectra that 

presented the least variation. 

nmMEANASD

MEANASD

K

K
K

585_

_

SCA  MEAN  ASD       ( 9 ) 

Where,  

o KASD MEAN SCA, is the scaled KASD_MEAN 

o KASD_MEAN, is the arithmetic mean of all KASD  

o KASD_MEAN585nm, is the KASD_MEAN value at 585 nm 

 

 

 

 

 



3.2.3. Extending KVIS in the range [350-2500 nm] (KVNSWIR) 
 

Finally KASD MEAN SCA is used to extend the KVIS values in the [350-2500 nm] spectral domain by 

simple multiplication (equation 10). The resulting correction factors are subsequently referred to as 

KVNSWIR (K in the Visible, Near and Short-Wave Infrared). 

 

SCAMEANASDVISVNSWIR KKK __*       ( 10 ) 

Where,  

o KVNSWIR, are the extended KVIS in the range [350-2500 nm] (Visible, Near and Short-Wave 

Infrared) 

o KVIS, are the KVIS single value 

o KASD MEAN SCA, is the scaled mean hyperspectral KASD 

 

As a result, KVNSWIR keeps the original KVIS value at 585 nm while the rest of the correction factor 

results from the multiplication of the original KVIS by the KASD MEAN SCA. 

 

Note that it is supposed here that the effect of shadow on reflectance is the same or similar in the field 

and in laboratory what allows the construction of correction spectra in laboratory and their application 

on field reflectance. This hypothesis could not be checked since any reference reflectance (non-

shadowed) could be measured in the fields. Moreover, shadow modelling in laboratory is probably not 

perfect and lightning conditions in and outdoor differ (sun versus lamp).  

 
3.3. Field reflectance correction 
 
Field reflectances were corrected by applying the previously created correction factors as indicated in 

the equation 11, with K representing the different correction factors according to sensors and 

wavelength ranges (KVIS or KVNSWIR), and “Reflectance” referring to field ASD or AHS reflectance. 

 

K)(1ectance * Field refle ReflectancCorrected      ( 11 ) 

 

Field ASD reflectances were corrected with the non detrended correction factor since photographs and 

ASD measures were recorded simultaneously. KVIS and KVNSWIR were applied on 96 field ASD 

reflectances. AHS reflectances were corrected with detrended KVIS for 165 soil samples. The KVNSWIR 

were not tested on AHS reflectance. 

 

 

3.4. SOCa method description 
 

SOCa was performed by means of Partial Least Square Regression (PLSR) under leave-one-out cross-

validation. The performance of the assessment model was measured by the Root Mean Square Error of 

Assessment in Cross Validation (RMSECV) and by the Ratio of Performance to Deviation (RPD, the 

ratio between standard deviation and RMSECV). Statistical manipulations were carried out with the R 

software (R Development Core Team, 2009) and, in particular, with the PLS package of Wehrens and 

Mevik (2007). The details of the calibration procedure can be found in Stevens et al.(2010). 

 

3.5. Estimation of SOCa accuracy enhancement 
 

In order to estimate whether field reflectance (ASD and AHS) correction improves SOCa accuracy, 

SOCa was realised with both uncorrected and corrected field reflectance. RPD and RMSECV were 

compared. 

 

The ability to enhance the SOCa accuracy of the “K-correction method” described above was finally 

compared to the one of well-known mathematical pre-processings that intend to decrease the noise of 



the spectral signal, enhance possible spectral features linked to the property studied and correct for 

light scattering effects. These pre-processings are (i) conversion to absorbance (-logR), (ii) 1st and 2nd 

derivatives, (iii) 1st and 2nd gap derivatives (Norris and Williams, 1984), (iv) Savitzky-Golay 

smoothing and derivatives (Savitzky and Golay, 1964), (v) Whittaker smoothing (Eilers, 2003), (vi) 

detrending (Barnes et al., 1989), (vii) Multiplicative Scatter Correction (Geladi et al., 1985), (viii) a 

combination of the previous. All pre-processings were systematically tested on field reflectance and 

only the best one in terms of RPD value of the SOCa was retained for comparison with the K-

correction method. 
 

4. RESULTS 

 

4.1. Impact of soil Relative Shadow (RS) on reflectance and Soil Organic Carbon 

assessment (SOCa) accuracy based on laboratory data 
 

Figure 5 shows the reflectance decrease with increasing RS on one soil sample studied under 

laboratory conditions. Table 1 presents the impact of RS on SOCa accuracy. Generally increasing soil 

RS decreases SOCa accuracy. In particular the range of RS measured during the field campaign, as 

modelled in laboratory, decreases SOCa accuracy significantly. An increase of 20 % of RMSECV is 

observed for the SOCa realised under the field RS range (RMSECV of 3.75) compared to the one 

realised under full light condition (no shadow) (RMSECV of 3.12). No pre-processing, except those 

mentioned in section 2.2.3, was tested on laboratory ASD reflectance for improving SOCa. These 

results justify the need for a correction of shadowing effect on field soil reflectance. 

 
Figure 5 : Reflectance spectra of a sandy loam soil sample for 13 Relative Shadow levels measured under 

laboratory condition at a soil moisture level of 0.05. 

 

Table 1 : SOCa accuracy for 52 soil samples analysed in laboratory for different RS conditions.  

Relative Shadow RMSECV a  RPD b N c 

0 3.12 3.07 52 

0.20 3.26 2.94 52 

0.50 3.53 2.72 52 

0.88 4.19 2.28 52 

1 5.35 1.79 52 

Field value d [0.28, 0.68] 3.75 2.56 52 
a RMSECV, the Root Mean Square Error in Cross-Validation expressed in gC/kg dry soil 
b RPD, the Ratio of Performance to Deviation 

c N, the number of soil samples 
d Field value, the range of values measured during the field campaign. In this case the RS level applied on each laboratory soil sample is the 

RS level measured during the field campaign on the corresponding soil sample 



 

4.2. SOCa accuracy enhancement for corrected field reflectance 
 
For each type of spectral field measurement (ASD, AHS), SOCa is presented first for non-pre-

processed uncorrected and K-corrected reflectance and secondly for pre-processed (cf. section 3.5) 

uncorrected and K-corrected reflectance.  Only the pre-processing giving the best SOCa results in 

terms of RPD is presented. 

 

4.2.1. SOCa accuracy enhancement for corrected ASD field reflectance 
 

Results presented in Table 2-T1 show that both KVIS and KVNSWIR correction methods improve 

significantly both RPD and RMSECV values of SOCa. In particular, SOCa enhancement is 10 % 

RMSECV with KVIS and 27 % RMSECV with KVNSWIR.  

 

Table 2-T2 presents the SOCa results obtained with the pre-processed ASD reflectance. Compared to 

non-pre-processed uncorrected reflectance, pre-processings alone enables a SOCa accuracy 

enhancement of 25 % RMSECV and the total enhancement reaches 27% and 29 % RMSECV for the 

correction combining pre-processings and KVIS and KVNSWIR respectively. The best SOCa is obtained 

with the pre-processed reflectance (conversion into absorbance) corrected with KVNSWIR. 

 

The SOCa accuracy enhancement is 3 and 5 % RMSECV with KVIS and KVNSWIR respectively applied 

on pre-processed reflectance compared to the SOCa result obtained with the pre-processed uncorrected 

reflectance. The fact that the SOCa enhancement is significantly smaller when the K-correction 

method is combined with pre-processings suggests that an important part of the shadow disturbing 

effect is corrected by both methods.  

 

The KVNSWIR correction factor seems to be the most useful since it gives the best SOCa with or without 

pre-processings. In particular, when using non pre-processed reflectance, the SOCa enhancement 

obtained by KVNSWIR is much larger than the one obtained by KVIS (18 % RMSECV). 

 

The fact that the best K-correction (KVNSWIR) on non-pre-processed reflectance gives better SOCa than 

the best pre-processing on uncorrected reflectance suggests that the proposed K-correction method is 

relevant for correcting field ASD reflectance and is better than present pre-processings. 

 

4.2.2. SOCa accuracy enhancement for corrected AHS field reflectance 
 
A set of 91 AHS spectra were corrected by using KVIS CTSZA computed from photographs taken the day 

of the flight (06/10/2007) only. Results presented in Table 2-T3 show that KVIS CTSZA correction 

method improves significantly both RPD and RMSECV values of SOCa (enhancement of 25 % 

RMSECV) for AHS spectra.  

 
Table 2-T4 presents the SOCa results obtained with the pre-processed AHS reflectance. Compared to 

non-pre-processed uncorrected reflectance, pre-processings alone enables a SOCa accuracy 

enhancement of 20% RMSECV and the total enhancement reaches 25% RMSECV for the correction 

combining pre-processings and KVIS CTSZA. The best SOCa is achieved using KVIS CTSZA-corrected and 

pre-processed reflectance. 

 

The SOCa accuracy enhancement is 6 % RMSECV with KVIS CTSZA applied on pre-processed 

reflectance compared to the SOCa result obtained with the pre-processed uncorrected reflectance. Here 

also it can be concluded that an important part of the shadow disturbing effect is corrected by both 

methods.  

 

The fact that the KVIS CTSZA correction method on non-pre-processed reflectance (RPD of 3.13) gives 

better SOCa than the best pre-processing on uncorrected reflectance (RPD of 3.07) suggests that the  



 
Table 2 : SOCa accuracy in outdoor conditions for the different sensors, pre-processings and K-correction 

factors  
Ref. 

Text a 
Sensor b Preprocessing c K-correction d RPD e RMSECV f R² g N h SD i 

SOCa  

Enh./pp j 
SOCa  

Enh./non-pp k  

T1 ASD No 

No 2.51 4.42 0.77 96 11.08 / / 

KVIS 2.81 3.96 0.83 96 11.13 / 10 

KVNSWIR 3.4 3.24 0.89 96 11.04 / 27 

T2 ASD 

Absorbance No 3.33 3.31 0.89 96 11.04 / 25 

SG.R.0.4.5 KVIS 3.45 3.21 0.9 96 11.08 3 27 

SG.R.0.3.21 KVNSWIR 3.53 3.13 0.91 96 11.04 5 29 

T3 AHS No 
No 2.4 4.9 0.93 90 11.75 / / 

K VIS CTSZA 
l 3.13 3.68 0.96 91 11.52 / 25 

T4 AHS 
SG.R.2.4.11 No 3.07 3.92 0.96 88 12.05 / 20 

Reflectance K VIS CTSZA
l 3.13 3.68 0.96 91 11.52 6 25 

 

a Ref. text, the reference notation to the text 
b Sensor, the type of sensor used: ASD: Analytical Spectral Devices or AHS: Airborne Hyperspectral Sensor.  
c Pre-processing, the pre-processing giving the best SOCa. SGR stands for a Savitzky–Golay smoothing filter applied on reflectance. The 3 

subscript numbers are the 3 SG parameters: differentiation order, polynomial order and frame size 
d K-correction, the K-correction factor used 
e RPD, the Ratio of Performance to Deviation 
f RMSECV, the Root Mean Square Error in Cross-Validation expressed in gC/kg dry soil. 
g R², the coefficient of determination 
h N, the number of soil samples 
i SD, the Standard Deviation 
j SOCa enhancement compared to pre-processed  uncorrected reflectance expressed as percentage of RMSECV 

k SOCa enhancement compared to non-pre-processed  uncorrected reflectance expressed as percentage of RMSECV 
l KVIS CTSZA is computed from photographs taken the day of the flight only (6th October 2007) 

 
proposed method is relevant also for correcting field AHS reflectance and is slightly better than the 

existing pre-processings.  

 

The correction of a dataset of 165 AHS spectra with KVIS computed from photographs taken the day of 

the flight and the day before the flight leads to the same general conclusions than above. In view of 

these results, applying a KVNSWIR to AHS reflectance should give good results but this could not be 

done in this study due to lack of time. 

 

4.2.3. Comparison of SOCa accuracy for corrected ASD and AHS field reflectance 
 

In terms of RPD absolute value, as expected, SOCa from pre-processed ASD corrected with KVIS 

(RPD of 3.45) presents a better accuracy than the SOCa from AHS with the same treatment (RPD of 

3.13). This is in line with the results of Stevens et al. (2008) who also found that SOCa from field 

ASD is more accurate than the one with AHS. This can be explained by the fact that the ASD has a 

higher radiometric resolution with 2151 spectral bands versus 63 only for AHS, that the AHS signal is 

highly disturbed by the atmosphere and that the AHS viewing angle varies for each soil sample 

whereas it is always the same for ASD. Consequently better SOC predictors may be found with ASD. 

 

In terms of SOCa accuracy enhancement measured in % of RMSECV, the SOCa enhancement is 

double or more for AHS compared to ASD data. Indeed, for non-pre-processed reflectance corrected 

with KVIS SOCa enhancement is 10 % RMSECV for ASD and 25 % for AHS. For pre-processed 

reflectance corrected with KVIS, supplementary SOCa enhancement enabled by the K-correction 

method is 3 % RMSECV for ASD and 6 % for AHS. 

 



5. DISCUSSION AND CONCLUSION 

 

This study is based on the idea that the soil shadow, which is due to soil roughness in field conditions, 

decreases the accuracy of the SOCa from soil reflectance. This has been confirmed by laboratory 

experiments that showed that the accuracy of SOCa from prepared soil samples decreases when 

the RS level applied on these soil samples increases. As a result the purpose of this study was to find 

a method that reduces the RS effect on soil reflectance in order to enhance SOCa.  

 

A new method for identifying and correcting the effect of soil RS on field reflectance spectra 

measured with an ASD and AHS during field campaign was elaborated and tested. This method is 

based on the acquisition of digital photographs of the soil surface in the visible range and the 

derivation of a shadow correction factor (KVIS) resulting from the comparison of the “reflectance” of 

shadowed and illuminated soil areas. Moreover, the study of laboratory ASD reflectance of shadowed 

soil samples showed that the influence of shadow on reflectance vary with wavelength and RS 

intensity. Consequently a correction factor in the entire [350 -2500 nm] spectral range was computed 

to take into account this differential influence (KVNSWIR).   

 

Results showed that the proposed method enables to improve significantly SOCa by correcting the 

effect of soil relative shadow on both studied spectral data types (portable field and airborne 

spectrometry).   

 

This method enabled to achieve SOCa accuracy improvement of 27 % RMSECV for ASD 

reflectance (with KVNSWIR) and 25 % RMSECV for AHS reflectance (with KVIS), where traditional 

methods (aforementioned as “pre-processings”) enabled an enhancement of 25 % (ASD) and 20 % 

(AHS) RMSECV only.  
Moreover the fact that this method enhances SOCa even on pre-processed (Cf. the “pre-processings”, 

section 3.5) reflectance, suggests that the proposed method enables to correct part of the shadow 

disturbing effect that existing pre-processing techniques can not take into account.  

Nevertheless the best SOCa are always achieved when combining pre-processings with the K-

correction method proposed here.   

 

The fact that the pre-processings technique gives nearly the same SOCa enhancement than the K-

method, which is a method specially dedicated to the correction of the soil relative shadow, suggests 

that what is corrected by the pre-processings, beside the spectra noise, is predominantly the soil 

shadow effect. 

 

The fact that the impact of RS does not affect all wavelengths in the same way suggests that it would 

be possible to find spectral features correlated with RS level. This would open the possibility to 

identify the RS levels from the fields hyperspectral measurement itself and consequently to apply a 

correction through a simple mathematical treatment. This is in line with the conclusions of Wu et al. 

(2009) who suggests that NIR could be used to estimate the soil roughness.  

 

Beside the fact that the KVNSWIR enhance significantly the SOCa seems to confirm that the shadow 

disturbing effect for SOCa assessment is wavelength dependent. 

 

The proposed method has the advantage that the correction applied is directly related and proportional 

to the shadow level observed and take into account the wavelength dependence on RS, contrariwise to 

traditional pre-processings that are not related to a measured shadow level and use spectra 

transformation that are based on the idea that shadow effect is constant on the whole [350-2500 nm] 

range. Conversely this method presents the big disadvantage that precise information on the soil 

shadow level is needed in all points of the studied area and that the collection of this information is 

labour intensive and time consuming. An ideal solution would be to derive information on the relative 

shadow level from the reflectance spectra itself. 

 



To the present knowledge  and considering the easiness of application (mathematical transformation) 

and good efficiency of existing pre-processings to handle soil shadow disturbing effect (20 to 25 % 

RMSECV enhancement), the small supplementary SOCa enhancement that the K-correction enables 

compared to pre-processings (3 to 6 % RMSECV supplementary enhancement) and the considerable 

amount of work this method requires, it is advised to put more research effort in the finding of spectral 

mathematical treatments able to mitigate the effect of soil shadow and roughness on reflectance. 
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