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On the use of Fourier averages to compute the global isochrons
of (quasi)periodic dynamics
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The concept of isochrons is crucial for the analysis of asymptotically periodic systems. Roughly,

isochrons are sets of points that partition the basin of attraction of a limit cycle according to the

asymptotic behavior of the trajectories. The computation of global isochrons (in the whole basin of

attraction) is however difficult, and the existing methods are inefficient in high-dimensional spaces.

In this context, we present a novel (forward integration) algorithm for computing the global

isochrons of high-dimensional dynamics, which is based on the notion of Fourier time averages

evaluated along the trajectories. Such Fourier averages in fact produce eigenfunctions of the

Koopman semigroup associated with the system, and isochrons are obtained as level sets of those

eigenfunctions. The method is supported by theoretical results and validated by several examples

of increasing complexity, including the 4-dimensional Hodgkin-Huxley model. In addition, the

framework is naturally extended to the study of quasiperiodic systems and motivates the definition

of generalized isochrons of the torus. This situation is illustrated in the case of two coupled Van

der Pol oscillators. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736859]

An efficient way to study asymptotically periodic systems

is to consider phase differences between the trajectories, a

framework that leads to a powerful dimensional reduction

of the system to a one-dimensional model. However, the

price to pay for such a reduction is the computation of

particular sets of the state space, i.e., the so-called iso-
chrons. The computation of isochrons is particularly intri-

cate in high-dimensional spaces—where the isochrons can

exhibit a complex geometry—and the existing methods are

typically limited to 2-dimensional systems. In contrast, this

paper proposes a novel algorithm that is well-suited to the

computation of isochrons in high-dimensional spaces.

More precisely, we show that the isochrons can be

obtained through the computation of Fourier averages

evaluated along the trajectories. As a consequence, we

obtain a relationship between isochrons and level sets of a

class of eigenfunctions of the Koopman semigroup associ-

ated with the system. We apply the method to various

examples and also extend the framework to quasiperiodic

systems.

I. INTRODUCTION

According to the seminal works,8,23 a dynamical system

with a stable limit cycle can be reduced to a phase model. In

other words, a limit-cycle oscillator (evolving in a high-

dimensional space) is equivalent to a phase oscillator (evolv-

ing on the one-dimensional circle), a reduced model that is

more amenable to mathematical analysis (see Ref. 5 for a

review). Phase reduction thereby appears as a useful frame-

work to analyze the sensitivity and the robustness of limit

cycles,20 to compare and design models of oscillators,14 and

to study the collective behaviors of interacting oscillators

(see, e.g., the Kuramoto model17).

A phase model is obtained by assigning a phase variable

to each point in the basin of attraction of the limit cycle.

First, the phase is defined on the limit cycle (up to a given

reference) as the quantity proportional to the time spent on

the cycle. Then, the notion of phase is extended to the whole

basin of attraction through the isochrons (the term was orig-

inally coined in Ref. 24), a concept that corresponds to the

invariant fibration of the stable manifold of the limit cycle.

In other words, the isochrons partition the basin of attraction

in such a way that trajectories starting from the same iso-

chron asymptotically converge to the same orbit on the limit

cycle.

The computation of isochrons is desirable not only to

obtain a phase reduction of the system but also to provide a

global picture of the system dynamics as well as an insight

into the sensitivity to external perturbations. Local iso-

chrons—in the vicinity of the limit cycle—are obtained using

either linearization techniques (and higher order approxima-

tions18,19) or standard backward integration methods (see Ref.

6 for a detailed example of the algorithm). In contrast, the

computation of global isochrons—in the entire basin of attrac-

tion—is much more involved and has only been investigated

in a few studies, most of which propose numerical schemes

based on the extension of local isochrons through backward

integration.2,16 In addition, the computation of global iso-

chrons is particularly difficult for dynamics with multiple

time scales (slow-fast dynamics) and for high-dimensional

dynamics, two situations where backward integration is ineffi-

cient owing to numerical sensitivity issues. While an elegant

method is provided in Ref. 12 to compute the global isochrons

a)Electronic mail: alex.mauroy@engr.ucsb.edu.
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of systems with multiple time scales, there is so far no effi-

cient method in the case of high-dimensional dynamics.

In this paper, we present a novel method for computing

the global isochrons of high-dimensional dynamics. The

method is a forward integration method that relies on the

time-averaging of observables along the trajectories of the

system. Originally, the use of time averages was devoted to

the visualization of invariant ergodic partitions.11 However,

the levels sets of “generalized” time averages—the Fourier
averages—identify subsets of the state space that are mapped

to themselves with a given frequency,9,10 subsets that corre-

spond to isochrons in the case of asymptotically periodic sys-

tems. When combined with suitable interpolation techniques,

the computation of time averages is a well-developed frame-

work which is not restricted to low-dimensional systems,

thereby yielding a convenient and flexible method to obtain

global isochrons in high-dimensional spaces.

The proposed method is derived from a general theoreti-

cal background—the isochrons being related to the eigenfunc-

tions of the Koopman semigroup associated with the system

(Ref. 13)—so that it can be applied to systems that are not per-

iodic. For a (normally hyperbolic) attractor that is not a limit

cycle, an invariant fibration of the stable manifold always

exists,3,22 but the existence of a phase parametrization (of the

attractor and its basin of attraction) is not guaranteed. In the

particular case of quasiperiodic systems, phase coordinates are

introduced in the whole basin of attraction through the gener-
alized isochrons, a new concept that appears as a natural

extension of the framework developed in the present paper.

The intersections of these generalized isochrons correspond to

the invariant fibration of the stable manifold.

The paper is organized as follows. In Sec. II, we pres-

ent the theoretical results that support our method based on

the computation of Fourier averages. Both relevance and

validity of the method are emphasized in Sec. III, where the

isochrons are computed for several models of increasing

complexity, including the (high-dimensional) Hodgkin-

Huxley model. In Sec. IV, we consider the case of quasi-

periodic dynamics and show that the method can be used to

compute the generalized isochrons of the 2-dimensional

torus. Finally, the paper closes with some concluding

remarks in Sec. V.

II. ISOCHRONS AND FOURIER AVERAGES

A. Preliminaries

We consider a dynamical system

_x ¼ FðxÞ x 2 Rn; (1)

which admits a (exponentially) stable limit cycle C of period

T0, with a basin of attraction BðCÞ � Rn. In addition, we let

/ : Rþ �Rn 7!Rn denote the flow induced by Eq. (1), i.e.,

/ðx0; tÞ is the solution of Eq. (1) with the initial condition x0.

According to Ref. 8, a phase h 2 S1ð0; 2pÞ can be

assigned to each point of the limit cycle. Namely, a point

xc 2 C has a phase h ¼ 2p t=T0, where t < T0 is such that

/ðt; xc
0Þ ¼ xc (xc

0 2 C is an arbitrarily chosen point of the

limit cycle that corresponds to phase h ¼ 0). It follows from

this definition that an orbit on the limit cycle in Rn obeys the

phase dynamics _h ¼ x0 on S1, with x0 ¼ 2p=T0.

Next, the above framework is extended to the whole ba-

sin of attraction through the introduction of isochrons. An

isochron is defined as follows:

Definition 1. An isochron—associated with the phase

h 2 S1—of the limit cycle C is the (n� 1)-dimensional

manifold I h defined as

I h ¼ fx 2 BðCÞj lim
t!1
k/ðt; xÞ � /ðtþ h=ð2pÞT0; x

c
0Þk ¼ 0g:

Roughly speaking, a trajectory with the initial condition

x 2 I h asymptotically approaches a (periodic) trajectory on

the limit cycle characterized by an initial condition associ-

ated with the phase h. Since the two trajectories have the

same asymptotic behavior, whether the initial condition is on

the limit cycle or not, the phase h can also be assigned to the

initial condition x 62 C.

It also follows from Definition 1 that the isochrons cor-

respond to subsets of BðCÞ that are invariant under the time-

T0 map /ðT0; �Þ.

B. Fourier averages

In this section, we show the strong connection between

the isochrons of the limit cycle and the Fourier averages
evaluated along the trajectories. The Fourier averages of an

observable f : Rn 7!R (assumed to be continuously differen-

tiable) are given by

f �xðxÞ ¼ lim
T!1

1

T

ðT

0

ðf � /tÞðxÞ e�ixt dt; (2)

with the notation /tðxÞ ¼ /ðt; xÞ. For a fixed x, Eq. (2) is

equivalent to a Fourier transform of the (time-varying)

observable computed along a trajectory. Hence, for a dynam-

ics with a stable limit cycle (of frequency x0), it is clear that

the Fourier average can be nonzero only for the frequencies

x ¼ kx0, k 2 Z.

It is remarkable that the isochrons are the level sets

of the Fourier averages f �kx0
. Indeed, the Fourier averages

are the eigenfunctions of the Koopman semigroup of

operators Ut defined by Utf ðxÞ ¼ f � /tðxÞ: they satisfy

Utf �kx0
ðxÞ¼ expðikx0tÞf �kx0

ðxÞ (Refs. 9, 10, and 13) (note that

the modulus of the eigenfunctions is constant, thus restricting

the values to a circle in the complex plane). Then, each level

set of a Fourier average is invariant under the time-T0 map

/ðT0; �Þ, a property that is also satisfied by the isochrons. The

exact relation between the Fourier averages and the isochrons

is summarized in the following proposition.

Proposition 1. Consider an observable f 2 C1 such that
the first Fourier coefficient of the T0-periodic function
f CðtÞ¢ðf � /tÞðxc

0Þ (with xc
0 2 C \ I 0) is nonzero, i.e.,

f̂
C
¢

1

T0

ðT0

0

f CðtÞe�ix0tdt 6¼ 0:

Then, a unique level set of the Fourier average f �x0
cor-

responds to a unique isochron. That is, f �x0
ðxÞ ¼ f �x0

ðx0Þ, with
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x 2 Ih and x0 2 I h0 , if and only if h ¼ h0. In addition, h� h0

¼ /f �x0
ðxÞ �/f �x0

ðx0Þ (where / denotes the argument of a
complex number).

Proof. Given the definition of the isochron and the conti-

nuity of f, we have

lim
t!1
jðf � /tÞðxÞ � f Cðtþ h=x0Þj ¼ 0 (3)

for x 2 Ih. Then, it follows from Eqs. (2) and (3) that

����f �x0
ðxÞ � 1

T0

ðT0

0

f Cðtþ h=x0Þe�ix0tdt

����
¼
���� lim

T!1

1

T

ðT

0

�
ðf � /tÞðxÞ � f Cðtþ h=x0Þ

�
e�ix0t dt

����
� lim

T!1

1

T

ðT

0

����ðf � /tÞðxÞ � f Cðtþ h=x0Þ
���� dt ¼ 0;

where the last equality holds since the integrand is bounded.

Then, one has

f �x0
ðxÞ ¼ 1

T0

ðT0

0

f Cðtþ h=x0Þ e�ix0t dt (4)

or equivalently

f �x0
ðxÞ ¼ f̂

C
eih and f �x0

ðx0Þ ¼ f̂
C

eih0 :

Since f̂
C 6¼ 0, it follows that f �x0

ðxÞ ¼ f �x0
ðx0Þ if and only

if h ¼ h0 and that /f �x0
ðxÞ �/f �x0

ðx0Þ ¼ h� h0, which com-

pletes the proof. h

Remark 1. Proposition 1 requires that the first Fourier

coefficient f̂
C

of f C be nonzero. However, an observable that

satisfies f̂
C ¼ 0 is not a generic function, so that Proposition

1 applies to almost all observables within the set of all possi-

ble functions.

Remark 2. Note that the complex Koopman eigenfunc-

tion zðxÞ ¼ f �kx0
ðxÞ satisfies jf �kx0

j ¼ c (with c constant) and

also _z ¼ ikx0z. This represents a rotation on a circle in a

complex plane with angular speed x0. Thus, z is a factor

map10,21 z : BðCÞ ! C, where C is a circle of radius c that

can be made S1 by rescaling z.

C. A new method for computing isochrons

Given the results of the previous section, we propose a

new algorithm for computing the global isochrons of limit

cycles, which relies on the evaluation of the Fourier aver-

ages. First, the Fourier averages (Eq. (2)) are (approxi-

mately) computed over a finite time horizon for a set of

sample points in the state space. Then, the levels sets of the

(finite time) Fourier averages are obtained through interpola-

tion techniques and correspond to the isochrons.

We notice that (1) the method is particularly well-suited

to the computation of isochrons in high-dimensional spaces

and (2) the approximate Fourier averages are characterized

by a good rate of convergence.

1. High-dimensional spaces

Standard methods cannot efficiently compute (global)

isochrons in high-dimensional spaces. For instance, the use

of standard backward integration methods is prohibited by

numerical instability and sensitivity issues. In contrast, the

computation of the Fourier averages only requires a forward

integration and is therefore not limited by numerical issues,

even for high dimensions. Moreover, the computation in

high dimensional spaces is compatible with the use of Monte

Carlo techniques (randomly distributed points) or adaptive

grids. In particular, the points can be distributed only in

selected regions (or subspaces) of interest or with a higher

probability in regions characterized by more complex dy-

namics (see, e.g., the Hodgkin-Huxley model in Sec. III C).

2. Rate of convergence of the Fourier averages

The computation of the Fourier averages (Eq. (2)) is not

numerically expensive. Provided that the limit cycle is expo-

nentially stable, approximate Fourier averages obtained over

finite time horizons T <1 are characterized by a good rate

of convergence. The approximation error is given by����f �x0
ðxÞ � 1

T

ðT

0

ðf � /tÞðxÞ e�ix0t dt

����
�
����f �x0
ðxÞ � 1

T

ðT

0

f Cðtþ h=x0Þ e�ix0t dt

����
þ
���� 1

T

ðT

0

�
f Cðtþ h=x0Þ � ðf � /tÞðxÞ

�
e�ix0t dt

����: (5)

Next, we introduce the values n 2N and T0 2 ½0; T0Þ so

that T ¼ nT0 þ T0. Then, it follows from Eq. (4) that the first

term in the right hand of Eq. (5) yields

����f �x0
ðxÞ � 1

T

ðT

0

f Cðtþ h=x0Þ e�ix0t dt

����
�
�����f �x0
ðxÞ� 1

T
nT0 f �x0

ðxÞþ
ðnT0þT0

nT0

f Cðtþh=x0Þe�ix0t dt

 !�����
� T � nT0

T
jf �x0
ðxÞj þ T0

T
max

t
jf CðtÞj

� T0

T

�
jf �x0
ðxÞj þmax

xc2C
jf ðxcÞj

�
:

Since the limit cycle is exponentially stable, one has

j/ðt; xÞ � /ðtþ h=x0; x
c
0Þj � C1e�C2t C1;C2 > 0

and the mean value theorem implies

jf � /tðxÞ � f Cðtþ h=x0Þj
� max

x2BðCÞ
jf 0ðxÞj j/ðt; xÞ � /ðtþ h=x0; x

c
0Þj

� max
x2BðCÞ

jf 0ðxÞjC1e�C2t:

Then, the second term in the right hand of Eq. (5) becomes
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���� 1

T

ðT

0

�
f Cðtþ h=x0Þ � ðf � /tÞðxÞ

�
e�ix0t dt

����
� 1

T

ðT

0

jf Cðtþ h=x0Þ � ðf � /tÞðxÞj dt

�
C1 maxx2BðCÞjf 0ðxÞj

T

ðT

0

e�C2tdt

�
C1 maxx2BðCÞjf 0ðxÞj

C2 T
ð1� e�C2TÞ �

C1 maxx2BðCÞjf 0ðxÞj
C2 T

:

Finally, the estimation error for the Fourier average is

bounded by

����f �x0
ðxÞ � 1

T

ðT

0

ðf � /tÞðxÞ e�ix0t dt

����

�
T0

�
jf �x0
ðxÞj þmaxxc2Cjf ðxcÞj

�
þ C1

C2

maxx2BðCÞjf 0ðxÞj

T
:

Since the Fourier averages converge with the rate T�1, the

isochrons are obtained over reasonably short time horizons.

III. APPLICATIONS

In this section, we present several examples of increas-

ing complexity, which show that the new method is efficient

to compute the isochrons of limit cycles. For each example,

the results are compared with other methods or known

results.

A. A trivial example

We first consider a model for which the (trivial) analyti-

cal expression of the isochrons is known. Namely, we con-

sider the first order system with periodic forcing

_x ¼ �kxþ sinðxtþ h0Þ x 2 R; (6)

which can be rewritten as a nonlinear autonomous system

_x ¼ �kxþ sinðhÞ; _h ¼ x (7)

with ðx; hÞ 2 R� S1 and hð0Þ ¼ h0. It is well-known that,

for any initial condition, the solution of Eq. (6) asymptoti-

cally converges to xðtÞ ¼ Asinðxtþ h0 þ uÞ, where A and

u depend only on the frequency x. Since the solution of

Eq. (7) satisfies hðtÞ ¼ xtþ h0, the system has a globally

attractive limit cycle x ¼ Asinðhþ uÞ, with a frequency

x0 ¼ x. In addition, the isochrons are simply given by

Ih0
¼ fðx; hÞjh ¼ h0g, so that they do not depend on x.

Figure 1 shows that the Fourier averages computed for

the system Eq. (7) are independent of the variable x. The

level sets of the Fourier averages therefore correspond to the

isochrons of the limit cycle. It is noticeable that the chosen

observable f ðx; hÞ ¼ x, which depends only on x, is sufficient

to compute the isochrons, which are themselves independent

of x. This is due to the fact that the dynamics of x is affected

by the dynamics of h.

B. The Van der Pol model

Now, we consider the classical Van der Pol oscillator

model

_x1 ¼ x2; _x2 ¼ lð1� x2
1Þx2 � x1;

with the parameter l ¼ 0:3 (the frequency is x0 	 0:995). In

Figure 2, the isochrons are computed with a standard back-

ward integration technique and with the Fourier averages.

The results are in good agreement and emphasize the validity

of the new method.

FIG. 1. Argument /f �x of the Fourier average of the observable f ðx; hÞ ¼ x
(computed on a grid 40� 60, x0 ¼ 1). The black curve is the limit cycle in

R� S1.

(a)

(b)

FIG. 2. (a) The isochrons of the Van der Pol oscillator are computed with a

standard backward integration technique. (b) The isochrons are the level sets

(solid curves) of the Fourier average of the observable f ðx1; x2Þ ¼ x1 þ x2.

The color represents the argument /f �x0
(computed on a grid 80� 80) (the

dashed orbit is the limit cycle).
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C. The (high-dimensional) Hodgkin-Huxley model

The 4-dimensional Hodgkin-Huxley model,4 which is

probably the most popular model in neuroscience, can admit

a limit cycle (see the appendix for the equations and parame-

ters). However, since this limit cycle is characterized by a

non-planar slow-fast dynamics, it is difficult to compute the

global isochrons through standard methods. In contrast, the

Fourier averages of an observable are easily obtained, in

spite of the slow-fast multidimensional dynamics, and pro-

vide a straightforward framework to compute the isochrons

of the Hodgkin-Huxley model.

Figure 3 shows the intersections of the isochrons with

the 3-dimensional subspace hþ n ¼ 0:8 (the limit cycle

lies—in good approximation—in the subspace hþ n ¼ 0:8).

It is noticeable that the accuracy has been increased—with a

higher distribution probability of the sample points—in

regions of high concentration of isochrons.

The results are consistent with the isochrons of the 2-

dimensional reduction of the Hodgkin-Huxley model.7 In

particular, the isochrons are independent of the variables V
and m, when far from the limit cycle, an observation

explained by the two time scales of the system (the variables

V and m are fast with respect to n and h). In addition, the va-

lidity of the results is also emphasized by Fig. 4, which

shows that two trajectories with an initial condition on the

same isochron eventually converge toward the same orbit on

the limit cycle.

IV. GENERALIZED ISOCHRONS OF THE
TWO-DIMENSIONAL TORUS

In contrast to periodic motions on a limit cycle, quasi-

periodic oscillations on a torus involve two (or more) basic

frequencies. Computing the Fourier averages for several fre-

quencies therefore appears as a natural extension of the

above framework to quasiperiodic oscillations and motivates

the introduction of generalized isochrons that lead to a phase

parametrization of the basin of attraction. Provided that the

generalized isochrons exist (i.e., that phase coordinates are

well-defined), their intersections correspond to the fibers of

the stable manifold of the torus.

A. Generalized isochrons

Let us consider a dynamical system

_x ¼ FðxÞ x 2 Rn (8)

which admits a stable quasiperiodic attractor C, with a

basin of attraction BðCÞ � Rn. In addition, we let / :
Rþ �Rn 7!Rn denote the flow induced by Eq. (8).

For the sake of simplicity, we assume that the attractor

C is a two-dimensional torus: the quasiperiodic oscillations

of a trajectory on C depend on the two incommensurable fre-

quencies x1 and x2 (i.e., the rotation number x1=x2 is irra-

tional). Typically, such a dynamical system can be obtained

with two interacting systems of independent natural frequen-

cies (e.g., two coupled Van der Pol oscillators, see Sec.

IV C). It is noticeable that there is no loss of generality with

the above assumption, since the developments presented in

the sequel are easily extended to quasiperiodic motions

involving more than two frequencies.

For a periodic system (of period T0), the subsets of the

attractor that are invariant under the time-T0 map /ðT0; �Þ
correspond to single points. In contrast, for a quasiperiodic

system, the subsets of the attractor that are invariant under

the maps /ðT1; �Þ and /ðT2; �Þ (with T1 ¼ 2p=x1 and

T2 ¼ 2p=x2) are not single points. These sets are defined as

follows:

Definition 2. For j ¼ f1; 2g, the set chj
associated with

the phase hj 2 S1 is defined by

chj
¼
[
k2Z

/ððk þ hj=ð2pÞÞTj; x
c
0Þ;

where “ ” represents the closure of the set and where xc
0 2 C

is an arbitrarily chosen point of the attractor which corre-

sponds to the phases ðh1; h2Þ ¼ ð0; 0Þ.
When the above definition leads to continuous curves,

the curves ch1
and ch2

parametrize the (two-dimensional)

torus C with phase coordinates: a point of C corresponds to

the intersection ch1
\ ch2

and is thereby associated with the

FIG. 3. The isochrons of the Hodgkin-Huxley model are obtained by com-

puting the level sets of the Fourier averages of f(V,m,h,n)¼m. The figure

shows the intersection of several isochrons with the subspace hþ n ¼ 0:8.

The black orbit is the projection of the limit cycle in the subspace (the Fou-

rier averages are computed over a finite time horizon T¼ 300 for 30 000

points distributed in the subspace, with a higher probability in regions char-

acterized by a high concentration of isochrons).

FIG. 4. The two trajectories (dashed red and solid black curves) have an

initial condition that belongs to the same isochron Ih, with h ¼ �p=6.

They eventually approach the same orbit on the limit cycle (the initial con-

dition is (6.018, 0.3077, 0.4974, 0.3026) for the dashed red trajectory and

(73.33, 0.641, 0.6235, 0.1765) for the solid black trajectory. After a time

t¼ 50, the dashed red trajectory reaches the point (�6.238, 0.024, 0.334,

0.503) and the solid black trajectory reaches the point (�6.255, 0.024,

0.333, 0.503) (black dot)).
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unique pair ðh1; h2Þ. In addition, the dynamics Eq. (8) on C
is turned into the phase dynamics

_h1 ¼ x1; _h2 ¼ x2 (9)

on the standard torus T2 ¼ S1 � S1.

Remark 3. The sets chj
of Definition 2 may fail to be

continuous curves and a phase parametrization of the torus

may not exist. More precisely, the existence of factor maps

that map C to the standard torus T2 is not always guaranteed

(this corresponds to the existence of a solution for the so-

called invariant equation15). However, results from KAM

theory ensure the existence of phase coordinates provided

that the rotation number x1=x2 is Diophantine (see, e.g.,

Sec. III in Ref. 1). In this case, the flow on C is diffeomor-

phic to the parallel flow Eq. (9) on T2, and it is clear that a

trajectory of the map /ðTj; �Þ densely fills a (closed) curve cj

on C. In the sequel, we therefore restrict the discussion to

this situation, which is generic since the set of Diophantine

numbers is of measure one (the results are similar in higher

dimensions: Definition 2 is still valid provided that the rota-

tion vector ðx1;…;xnÞ satisfies the so-called Diophantine
condition1).

Next, we define two families of (n� 1)-dimensional

generalized isochrons that extend the phase characterization

to the whole basin of attraction BðCÞ.
Definition 3. For j ¼ f1; 2g, the generalized isochron

Ihj
—associated with the phase hj 2 ½0; 2pÞ—of the attractor

C is the (n� 1)-dimensional manifold defined as

Ihj
¼ fx 2 BðCÞj9xc 2 chj

s:t: lim
t!1
k/ðt; xÞ � /ðt; xcÞk ¼ 0g:

Remark 4. When phase coordinates are well-defined on

the torus (see Remark 3), the existence of the generalized

isochrons as (n� 1)-dimensional manifolds is ensured pro-

vided that the attractor is a normally hyperbolic manifold.

Indeed, a curve chj
is a normally hyperbolic invariant mani-

fold for the time-Tj map /ðTj; �Þ and it follows from Defini-

tion 3 that the generalized isochron Ihj
is the invariant stable

set of chj
. Then, invariant manifold theory implies that the

generalized isochron is a manifold.3,22

The generalized isochrons characterize the asymptotic

behavior of the quasiperiodic trajectories. Two trajectories

with an initial condition on the same isochron Ihj
eventu-

ally converge to the same curve chjþxj t on C. Furthermore,

two trajectories with an initial condition on the same inter-

section of the two isochrons I h1
and I h2

eventually con-

verge to the same intersection of ch1þx1t and ch2þx2t on C,

that is, to the same trajectory. This motivates the following

definition.

Definition 4. The (n� 2)-dimensional manifold Iðh1;h2Þ
associated with the phases ðh1; h2Þ is defined by

Iðh1;h2Þ¢I h1
\ I h2

¼ fx 2 BðCÞj lim
t!1
k/ðt; xÞ � /ðt; xcÞk ¼ 0g;

with xc ¼ ch1
\ ch2

.

The intersections Iðh1;h2Þ are conceptually related to the

isochrons I h of a limit cycle: both are fibers of the stable

manifold of the attractor (limit cycle or torus). Since they are

associated with a unique point of the attractor, they play a

key role in studies of synchronization of trajectories.

Remark 5. It is important to note that the definition of

isochrons (Definition 3 and Definition 4) comes along with

the introduction of phase coordinates on the attractor. While

invariant manifold theory implies that stable manifolds of

hyperbolic invariant manifolds can always be invariantly

fibered,3,22 the existence of phase coordinates (and thus the

existence of isochrons of Definition 3 and Definition 4) is

not always guaranteed (see Remark 3).

B. Fourier averages

As in the periodic case, the Fourier averages (Eq. (2))

provide a simple and straightforward framework to obtain

the generalized isochrons of the (two-dimensional) torus.

Namely, the level sets of the Fourier averages f �x1
and f �x2

are

invariant under the time-T1 map /ðT1; �Þ and the time-T2

map /ðT2; �Þ, respectively. They therefore correspond to the

generalized isochrons of Definition 3.

Proposition 2. Let j ¼ f1; 2g and consider an observ-
able f 2 C1 such that

f̂
C
xj

¢ lim
T!1

1

T

ðT

0

f CðtÞe�ixj tdt 6¼ 0;

where f CðtÞ¢ðf � /tÞðx
c
0Þ (with xc

0 ¼ Ið0;0Þ \ C). Then, a
unique level set of the Fourier average f �xj

corresponds to a
unique generalized isochron I hj

. That is, f �xj
ðxÞ ¼ f �xj

ðx0Þ,
with x 2 I hj

and x0 2 Ihj
0 , if and only if hj ¼ hj

0. In addition,
hj � hj

0 ¼ /f �xj
ðxÞ �/f �xj

ðx0Þ.
Proof. Given Definition 2 and Definition 3, if x belongs

to the generalized isochron I hj
, then for all � > 0, there exits

k 2 Z such that

lim
t!1
k/ðt; xÞ � /ðtþ k 2p=xj þ hj=xj; x

c
0Þk < �

or, since f 2 C1, there exits k 2 Z such that

lim
t!1
jðf � /tÞðxÞ � f Cðtþ k 2p=xj þ hj=xjÞj < �: (10)

Then, it follows from Eqs. (2) and (10) that����f �xj
ðxÞ � lim

T!1

1

T

ðT

0

f Cðtþ hj=xjÞe�ixjtdt

����
¼
���� lim

T!1

1

T

ðT

0

ðf � /tÞðxÞe�ixjtdt

� lim
T!1

1

T

ðT

0

f Cðtþ k 2p=xj þ hj=xjÞe�ixjtdt

����
� lim

T!1

1

T

ðT

0

����ðf � /tÞðxÞ� f Cðtþ k 2p=xj þ hj=xjÞ
���� dt < �;

(11)

where the last inequality holds since the integrand is

bounded. Since the constant � (which depends on k) can be
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arbitrarily small, the left hand side of Eq. (11) (which does

not depend on k) is equal to zero. Then, one has

f �xj
ðxÞ ¼ lim

T!1

1

T

ðT

0

f Cðtþ hj=xjÞe�ixjtdt

or equivalently

f �xj
ðxÞ ¼ f̂

C
xj

eihj and f �xj
ðx0Þ ¼ f̂

C
xj

eihj
0
:

Since f̂
C
xj
6¼ 0, it follows that f �xj

ðxÞ ¼ f �xj
ðx0Þ if and only

if hj ¼ hj
0 and that /f �xj

ðxÞ �/f �xj
ðx0Þ ¼ hj � hj

0, which

completes the proof. h

Proposition 2 implies that the method described in Sec.

II C can be used to compute not only the isochrons of the

limit cycle but also the generalized isochrons of the torus.

For the computation of generalized isochrons, the method is

particularly well-suited given the high dimension of the sys-

tem (n 
 3). It contrasts with standard backward integration

techniques that are difficult to use since the trajectories start-

ing from a generalized isochron converge to a one-

dimensional set of the attractor (and not to a single point). In

addition, the computation of the Fourier averages is charac-

terized by a rate of convergence that is as good as in the peri-

odic case (Sec. II C).

C. Example: Two coupled Van der Pol oscillators

We use the method of the Fourier averages to compute

the generalized isochrons of two coupled Van der Pol

oscillators

_x1 ¼ x2 ; _x2 ¼ lð1� x2
1Þx2 � kx x1 þ kcðy1 � x1Þ;

_y1 ¼ y2 ; _y2 ¼ lð1� y2
1Þy2 � ky y1 þ kcðx1 � y1Þ:

(12)

With the parameters l ¼ 0:3, kx ¼ 1, ky ¼ 3, and

kc ¼ 0:5, the two coupled oscillators are in quasiperiodic re-

gime (the basic frequencies of the quasiperiodic oscillations

are x1 	 1:1741 and x2 	 1:8944). We adopt these parame-

ters in the sequel.

The frequency x1 (resp. x2) is associated with the first

oscillator (resp. the second oscillator). It follows that the

generalized isochrons, say Ih1
, depend strongly on the varia-

bles x1 and x2, while their dependence on the two other vari-

ables is only induced by the coupling. In particular, with no

coupling, the generalized isochrons Ih1
are independent of

y1 and y2.

1. On the attractor

First, the Fourier averages f �x1
and f �x2

—of the observ-

able f ðx1; x2; y1; y2Þ ¼ x1 þ y1—are computed on the attrac-

tor C of Eq. (12) (Fig. 5). Their level sets correspond to the

curves ch1
and ch2

, respectively.

2. Generalized isochrons Ih1

The level sets of the Fourier averages f �x1
are now com-

puted in the entire 4-dimensional state space. They corre-

spond to the generalized isochrons I h1
(similar results,

which are obtained for the Fourier averages f �x2
and the gen-

eralized isochrons I h2
, are not shown).

Figures 6 and 7 show the (2-dimensional) surfaces

which correspond to the intersections of the (3-dimensional)

generalized isochrons Ih1
with the 3-dimensional subspace

y2 ¼ 0. Figure 8 shows the intersections of the same general-

ized isochrons, but with the 3-dimensional subspace x2 ¼ 0.

(the intersections of the 2-dimensional surfaces with the

attractor do not correspond to the curves ch1
, since the attrac-

tor is projected in the subspace).

It is remarkable that the generalized isochrons I h1
are

(almost) independent of y2 (see Fig. 8). This observation can

(a)

(b)

FIG. 5. (a) The level sets of f �x1
on the attractor correspond to the curves

ch1
. The black dots represent the curve corresponding to the phase h1 ¼ 0.

(b) Idem with f �x2
for the curves ch2

(the Fourier averages are computed for

the observable f ðx1; x2; y1; y2Þ ¼ x1 þ y1 and the attractor is projected in

the 3-dimensional subspace y2 ¼ 0).

FIG. 6. Intersections of the generalized isochrons Ih1
(h1 ¼ kp=4, k 2 Z)

with the 3-dimensional subspace y2 ¼ 0. The black orbit is the attractor (the

Fourier averages of the observable f ðx1; x2; y1; y2Þ ¼ x1 þ y1 are computed

over a finite time horizon T¼ 200 for 20 000 points (randomly distributed)).
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be explained by the fact that the dynamics Eq. (12) of the

first oscillator depend on the variables x1, x2, and y1 (through

the coupling), but do not (directly) depend on y2.

3. Intersections of generalized isochrons Iðh1;h2 Þ

We can finally compute the intersection Iðh1;h2Þ of the

generalized isochrons Ih1
and I h2

. Figure 9 displays two

generalized isochrons I h1
and two generalized isochrons I h2

.

Their intersections correspond to four (connected) curves

which represent the intersection of Iðh1;h2Þ with the subspace

x2 ¼ 0. One verifies that two trajectories with an initial con-

dition on the same intersection Iðh1;h2Þ eventually converge

to the same orbit on the torus (see Fig. 10).

V. CONCLUSION

In this paper, we proposed a novel method for comput-

ing the global isochrons of high-dimensional systems: the

isochrons are computed as the level sets of (Fourier) time

averages evaluated along the trajectories. The method is sup-

ported by theoretical results and is related to spectral proper-

ties of the Koopman semigroup associated with the

underlying ordinary differential equations. In addition, the

evaluation of the Fourier averages is characterized by a good

rate of convergence. More importantly, while the usual

(backward integration) methods are restricted to computa-

tions in two-dimensional spaces, our new (forward integra-

tion) method is a convenient and flexible method to obtain

global isochrons in high-dimensional spaces.

Since the method relies on a general background, it is

not restricted to asymptotically periodic systems. In the

case of quasiperiodic systems, the computation of the Fou-

rier averages for several basic frequencies appears as a nat-

ural extension of the method and leads to the definition of

generalized isochrons of the torus. This framework extends

the notion of phase sensitivity to quasiperiodic dynamics,

potentially opening new research perspectives such as the

study of populations of interacting quasiperiodic systems.

Existence (and persistence under small perturbations) of

generalized isochrons could be shown by the contraction

mapping principle. An interesting technical difficulty is that

the KAM-type results would need to be used to prove the

Diophantine nature of the perturbed torus flow, and this is

typically possible only for a Cantor set of parametrized per-

turbations in the current case. However, it would be an inter-

esting coupling of KAM theory and normally hyperbolic

invariant manifold theory.

FIG. 7. Detailed view of the intersection of two generalized isochrons Ih1

(h1 ¼ 6p=2) with the subspace y2 ¼ 0 (the Fourier averages of the observ-

able f ðx1; x2; y1; y2Þ ¼ x1 þ y1 are computed over a finite time horizon

T¼ 200 on a grid 13� 13� 13� 13).

FIG. 8. Intersections of two generalized isochrons Ih1
(h1 ¼ 6p=2) with

the 3-dimensional subspace x2 ¼ 0 (the Fourier averages of the observable

f ðx1; x2; y1; y2Þ ¼ x1 þ y1 are computed over a finite time horizon T¼ 200

on a grid 13� 13� 13� 13).

FIG. 9. The intersection of the generalized isochrons Ih1
and Ih2

(h1 ¼ 6p=2, h2 ¼ 6p=2) corresponds to Iðh1 ;h2Þ (in the subspace x2 ¼ 0)

(the Fourier averages of the observable f ðx1; x2; y1; y2Þ ¼ x1 þ y1 are com-

puted over a finite time horizon T¼ 200 on a grid 13� 13� 13� 13).

FIG. 10. The two trajectories (dashed red and solid black curves) have an

initial condition that belongs to the same generalized isochrons Ih1
(blue)

and Ih2
(green), with h1 ¼ h2 ¼ �p=2. They eventually approach the same

orbit on the torus (the initial condition is (4.294, 0, 2.5, 6.5) for the dashed

red trajectory and (0.5, 0, 1.5, 9.153) for the solid black trajectory. After a

time t¼ 60, the dashed red trajectory reaches the point (1.506, �0.224,

1.690, 3.080) and the solid black trajectory reaches the point (1.511,

�0.315, 1.713, 3.028) (black dot)).
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APPENDIX A: HODGKIN-HUXLEY MODEL

The Hodgkin-Huxley model is characterized by the 4-

dimensional dynamics (voltage V and gating variables m, h,

n for the (in)activation of the ions channels Naþ and Kþ)

_V ¼ 1=C
�
� �gNaðV � VNaÞm3h� �gKðV � VKÞn4

� gLðV � VLÞ þ Ib

�
;

_m ¼ amðVÞð1� mÞ � bmðVÞm;
_h ¼ ahðVÞð1� hÞ � bhðVÞh;
_n ¼ anðVÞð1� nÞ � bnðVÞn;

with the functions

amðVÞ ¼ ð0:1V � 2:5Þ=½1� expð2:5� 0:1VÞ�;
bmðVÞ ¼ 4 expð�V=18Þ;
ahðVÞ ¼ 0:07 expð�V=20Þ;
bhðVÞ ¼ 1=½1þ expð3� 0:1VÞ�;
anðVÞ ¼ ð0:01V � 0:1Þ=½1� expð1� 0:1VÞ�;
bnðVÞ ¼ 0:125 expð�V=80Þ:

In the present paper, we adopt the usual parameters

VNa ¼ 115 mV; VK ¼ �12 mV; VL ¼ 10:6 mV;

�gNa ¼ 120 mS=cm2; �gK ¼ 36 mS=cm2;

�gL ¼ 0:3 mS=cm2; C ¼ 1 lF=cm2:

With the bias current Ib ¼ 10 mA, the system admits a

limit cycle characterized by a slow-fast dynamics (the fre-

quency of the limit cycle is x0 	 0:429).
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14P. Sacré and R. Sepulchre, in Proceedings of the 50th IEEE Conference on

Decision and Control, 12–15 December 2011.
15F. Schilder, H. Osinka, and W. Vogt, “Continuation of quasi-periodic

invariant tori,” SIAM J. Appl. Dyn. Syst. 4, 459 (2005).
16W. E. Sherwood and J. Guckenheimer, “Dissecting the phase response

of a model bursting neuron,” SIAM J. Appl. Dyn. Syst. 9, 659–703

(2010).
17S. H. Strogatz, “From Kuramoto to Crawford: Exploring the onset of syn-

chronization in populations of coupled oscillators,” Physica D 143, 1–20

(2000).
18O. Suvak and A. Demir, “Quadratic approximations for the isochrons of

oscillators: A general theory, advanced numerical methods, and accurate

phase computations,” IEEE Trans. Comput.-Aided Des. 29, 1215–1228

(2010).
19D. Takeshita and R. Feres, “Higher order approximation of isochrons,”

Nonlinearity 23, 1303–1323 (2010).
20S. R. Taylor, R. Gunawan, L. R. Petzold, and F. J. Doyle, “Sensitivity

measures for oscillating systems: Application to mammalian circadian

gene network,” IEEE Trans. Autom. Control 53, 177–188 (2008).
21T. Wichtrey, “Harmonic limits of dynamical systems,” Discrete Contin.

Dyn. Syst. Supplement 2011, 1432–1439 (2011).
22S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Sys-

tems (Springer, 1994), Vol. 105.
23A. Winfree, The Geometry of Biological Time, 2nd ed. (Springer-Verlag,

New York, 2001).
24A. T. Winfree, “Patterns of phase compromise in biological cycles,” J.

Math. Biol. 1, 73–95 (1974).

033112-9 A. Mauroy and I. Mezic Chaos 22, 033112 (2012)

http://dx.doi.org/10.1137/080737666
http://dx.doi.org/10.1007/BF02459568
http://dx.doi.org/10.1007/BF02459568
http://dx.doi.org/10.1007/s11071-005-2824-x
http://dx.doi.org/10.1016/j.physd.2004.06.015
http://dx.doi.org/10.1063/1.166399
http://dx.doi.org/10.1137/090777244
http://dx.doi.org/10.1137/040611240
http://dx.doi.org/10.1137/090773519
http://dx.doi.org/10.1016/S0167-2789(00)00094-4
http://dx.doi.org/10.1109/TCAD.2010.2049056
http://dx.doi.org/10.1088/0951-7715/23/6/004
http://dx.doi.org/10.1109/TAC.2007.911364
http://dx.doi.org/10.1007/BF02339491
http://dx.doi.org/10.1007/BF02339491

