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THE DISPLACEMENT METHOD
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SUMMARY

A mathematical description of the numerical approximation to incompressibility with nearly incompres-
sible displacement finite elements is presented. By the way of functional analysis, it leads to a condition of
convergence to the incompressible problem when » is increased up to 0-5, which can be identified with
Fried’s K, criterion.

INTRODUCTION

The displacement finite clcment method does not allow the study of incompressible structures
because the stiffness matrix is no longer definite. From an engineering point of view it seems
reasonable to expect that the nearly compressible solution will not be very different from the
exact incompressible one. However, some numerical expenments with this approach have led to
somewhat dxscouragmg results,
A first solution was given by Herrmann ef a which derived a mixed dlbplacement—

pressure variational principle. Herrmann's solution, however, is not satisfactory in all cases,'°
so that other solutions were investigated.*>® But the question of what is the fundamental
problem was not solved until Fried’s major contribution.” Fried’s proof was of a purely algebraic

nature. The purpose of this paper is to present the problem by the way of functional analysis, It
leads to a criterion of convergence when p-»0-5, which is equivalent to Fried’s one but it
appears in the most natural way and leads to a very simple interpretation.

17,9
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ANALYSIS OF THE INCOMPRESSIBILITY PROBLEM

The strain energy can be written in the general form
padtt o )

v
W(£)=G{Eu€u+1__2y Eneu} o o (1)

where g =%(D.~u,-+D,-u‘), v is Poisson’s ratio and G Coulomb’s modulus. When v-»0-5, the
term »/(1—2») tends to infinity, and the energy density is no longer definite. It is now well
known that in some particular cases the method consisting of setting v =0-5—¢, ¢ being an
arbitrary small position constant, may lead to very bad results. This problem has already been
studied by Fried® us sing an algebraic method Our purpose is to study it by the way of functxona_
analysis. ‘ S N

For the sake of simplicity we shall restrict ourselves to the case where no displacement is fixed
to any other value than zero. It is in faét no real restriction, since in the general case, the
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inhomogeneous kinematical boundary conditions can be reinterpreted in terms of applied
loads.
For isostatic problems at least the bilinear: functlonal et

\ L N

(, v)“J‘ 2Ge,,(u)e,,(v) v 2)
defines a scalar product on the space H of kinematically admissible displacements. Consider
now the subspace I < H ‘of displacement modes which verify the incompressibility equation

diya=0 ‘ (3)

Introduccing the bilinear functlonal _ )

b<(u.v)=J‘ 2G divudivvdV @)
v .

it appears clearly that an element u of H belongs to [ if and only if

b(a,u)=0" ‘ (5)

Let us next consider a closed lmear subspace ScH (which will be the finite element
subspacc) The quantity - : TR <
j 2G(diva) dV

Lo e(S) W AV nf b, u) e (e)
: u+s ] uts L
u#0 flull=1 '

Lot o [

has the followmg fundamcnnl f)ropcrty
e(S)>0 xf and only 1fSnI —{0}}
e(S) = OlfSrW#{O}

: Recall that the set of linear functlonals f(a) which are dcﬁned ona Hx!bert space T and venfy
the inequality

S

. '
' e L . . \

l/( I
I All 7 = sup === A (8)
| i
u»l) A
is called dual of T|5|. It will be denoted T". The quantity |||+~ is the norm of fin T". As it appears
immediately, if R and T are two linear subspaces of H such that R = T < H, the following

inequality is verified for all f belonging to H o

. (Am=i < o

Consnder now the elastic problem The exact mcompressnble solunon uis such that

e M p=ine o, T o)

Thxs solunon can also be charactenzed by the fact that the first variation of the functlonal must
‘b.e_zero‘ ‘ R o R
L ' (u ) = f forallv{l S L (11)

(R

S0 that n is Rlesz s representator of the functlonal f in 1. As a consequence one has

(uv

o { W =lel= ‘ T

“f“r Co e (12)

VH
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The finite element method consists to’select a finite dimensional subspace S« H and to
minimize the functlonal

s

%ﬁ ||2

u)-— f(u) - :' s e (13)
on thls subspace Let S, be the set of mcompressxble elements of S: B T
‘ . S LSy =SAl o (14)
The orthogonal complement of S; will be denoted S.. Any element of S is thus of the form
' u=us+u, u {8, u £S5, (15)
“This decomposition leads to the followiné expression of the functional (13):
V/2' ' o
%l|ul|l2+%”u€”2+1__zy b(.“_q}‘.lf)i—f(ul)”:f(uc,) B S (16)

so that the original mipimum problem can‘éplit into the following ones:

ot T T R TS S S S RS LI T

() Minimize}[u/~f@yons; =~ |

w2

1-2y b(“c; uc)'—f(uc) on Sc

(i) Minimize } Ju.||+
Problem (i) is the discretization of the exact problem (10). Following tﬁé same ffrgumérft $0 as
to obtain (12}, one has

|| =11l (17)

By a similar method problem (u) leadsto ..

SR Y b(un uc) flae) o0 (18)
But the definitions (6) and (8) imply |
U e < s
1b(uic, ue)| = [luc|* e(Sc) ' : -
s0 that B ' s
el (1475 e(50)) < Wl el
and finally, B oo L o o ,(
| | ||ac|i<+4[fl54—;~ TR

1

When v - 0-5, one has »/(1 —2v)-»0, and this implies |u |- 0. The greater e(S.), the faster
the convergence to zero. A priori, this result is somewhat strengthenin g, since it means that when
v~ 0-5, the solution tends to be incompressible, But it is also the cause of possible failures. In
fact, if the subspace S is such that S; = 8, I ={0}, and this happens when e(S)#0, the finite
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element solution being necessarily contained in S, As a result, it can only converge to zero when
v-0-5.

Our crxtenon based on the definition of ¢(S), is in fact equivalent to saying that Fried's K
matrix? is not singular, but our way of obtaining it is quite different.

. The only way to remedy this situation is to replace the subspace §; by a larger one, namely S,
obtained by setting . ~ :

S = {u{S|6(u, u)=0} (20)

b(a, w) being a suitable approximation of 4(u, u). The quantity e(S) has then to be reinterpreted
as

o s l;(u,u)
“S"l’gg Jul?

(21)

and a correct choice of I;(u, u) can hopefully lead to the result
» é8y=0
The approximate problem is then to minimize the following functional:

#/2

3 luf? T Vl;(u, w)=flu) | (22

in place of the functional (13).

In particular, Fried's method, consisting of underintegrating the comprcssxbllzty condition,
leads to

b, u)y=Y ; W, [(div u)?],, (23)
elts .

P;and W, being, respectively, the Gauss points and Gauss weights of a relatively simple formula.
Another method, proposed by Nagtegaal er al.” is essentially to set

=2 (],

oit

1

divud v) ) (24)

As pointed out in Reference 4 and in the very interesting papers by Hughés and Malkus, *'*>™"°

these methods are equivalent to certain mixed elements.
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