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Introduction

Let f be a locally bounded function.

• The Hölder exponent of f at x is hf (x) = sup
{
α : f ∈ Cα(x)

}
.

• The iso-Hölder sets of f are Eh = {x : hf (x) = h}.

Definition
The spectrum of singularities df of f is defined by

df (h) = dimHEh ∀h ≥ 0.

A multifractal formalism is a formula which is expected to yield the spectrum of
singularities of a function, from “global” quantities which are numerically computable.
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Several multifractal formalisms based on a decomposition of f ∈ L2([0, 1]) in a
wavelet basis

f =
∑
j∈N0

2j−1∑
k=0

cj,kψj,k

have been proposed to estimate df .

A function f is uniformly Hölder if there is ε > 0 and C > 0 such that |cj,k| ≤ C2−εj

for every j, k.

Hölder regularity and wavelet coefficients
If f is uniformly Hölder and if ψ is “smooth enough”, the Hölder exponent of f at x is

hf (x) = lim inf
j→+∞

inf
k

log(|cj,k|)
log(2−j + |k2−j − x|)

.

Advantage: easy to compute and relatively stable from a numerical point of view.
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• The Frisch-Parisi formalism (1985) and the classical use of Besov spaces leads
to a loss of information (only concave hull and increasing part of spectra can be
recovered).

• Wavelet Leader Method (S. Jaffard, 2004): Modification of the Frisch-Parisi
formalism using the wavelet leaders of the function and Oscillation spaces.
−→ Detection of decreasing part of concave spectra.

• Introduction of spaces of type Sν (J.M. Aubry, S. Jaffard, 2005)
−→ Detection of non concave increasing part of spectra.

• More recently, introduction of spaces of the same type but based on the wavelet
leaders of the signal.
−→ Detection of non concave and non increasing part of spectra.
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Wavelet leaders

Standard notation: For j ∈ N0, k ∈
{

0, . . . , 2j − 1
}

,

λ(j, k) :=
{
x ∈ R : 2jx− k ∈ [0, 1[

}
=

[
k

2j
,
k + 1

2j

[
,

and for all j ∈ N0, Λj denotes the set of all dyadic intervals (of [0, 1[) of length 2−j .
If λ = λ(j, k), we use both notations cj,k or cλ to denote the wavelet coefficients.

Definition
The wavelet leaders of a signal f ∈ L2([0, 1]) are defined by

dλ := sup
λ′⊂3λ

|cλ′ |, λ ∈ Λj , j ∈ N0 .

If x ∈ [0, 1], let λj(x) denote the dyadic interval of length 2−j which contains x. Then,
we set

dj(x) := dλj(x) = sup
λ′⊂3λj(x)

|cλ′ |.
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Hölder regularity and wavelet leaders
If f is uniformly Hölder, the Hölder exponent of f at x is given by

hf (x) = lim inf
j→+∞

log dj(x)

log 2−j
.

Interpretation:
dj(x) ∼ 2−hf (x)j
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Wavelet Leader Method

The leader scaling function of a locally bounded function f is defined for every p ∈ R
by

τf (p) = lim inf
j→+∞

log 2−j
∑∗
λ∈Λj

dpλ

log 2−j
,

where
∑∗
λ∈Λj

means that the sum is taken over the λ ∈ Λj such that dλ 6= 0. The
wavelet leader spectrum is then given by

Lf (h) = inf
p∈R

{
hp− τf (p)

}
+ 1.

Properties:

• Lf is independent of the chosen wavelet basis.

• If f is uniformly Hölder, df (h) ≤ Lf (h) for all h ≥ 0.

• Lf is a concave function.
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Sν spaces method

The wavelet profile νf of a locally bounded function f is defined by

νf (h) = lim
ε→0+

lim sup
j→+∞

log #
{
λ ∈ Λj : |cλ| ≥ 2−(h+ε)j

}
log 2j

, h ∈ R .

Interpretation:

• There are approximatively 2νf (h)j coefficients greater in modulus than 2−hj .

Properties:

• νf is a right-continuous increasing function.

• νf is independent of the chosen wavelet basis.

• If f is uniformly Hölder,

df (h) ≤ dνf (h) := min

{
h sup
h′∈]0;h]

νf (h′)

h′
, 1

}
∀h ≥ 0.
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Definition

Take 0 ≤ a < b ≤ +∞. A function g : [a, b] 7→ R+ is with increasing-visibility if g is
continuous at a and supy∈]a,x]

g(y)
y ≤

g(x)
x for all x ∈ ]a, b].

In other words, a function g is with increasing-visibility if for all x ∈ ]a, b], the segment
[(0, 0), (x, g(x))] lies above the graph of g on ]a, x].

1

0

1

0

Example of νf (---) and d
νf
f (—)

The passage from νf to dνf transforms the function νf into a function with
increasing-visibility.
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Particular case

Assumption: f is a function whose wavelet coefficients are given by cλ = µ(λ)
where µ is a finite Borel measure on [0, 1] .

Notation: Let fβ denotes the function whose wavelet coefficients are given by
cβλ = 2−βjcλ.

In this case, one has

• dfβ (h) = df (h− β) for all h ≥ 0.

• νfβ (h) = νf (h− β) for all h ≥ 0.

Moreover, if

inf

{
νf (x)− νf (y)

x− y
: x, y ∈ [hmin, h

′
max], x < y

}
> 0,

where hmin = inf{α : νf (α) ≥ 0}, h′max = inf{α : νf (α) = 1}, then there exists
β > 0 such that the function νfβ is with increasing-visibility on [hmin, h

′
max]. In this

case, dνfβ = νfβ approximates dfβ . Therefore the increasing part of df can be
approximated by νf .
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There is a tree-structure in the repartition of the wavelet coefficients
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Large deviation-type argument

The wavelet leader density of f is defined for every α ∈ R by

ρ̃f (h) = lim
ε→0+

lim sup
j→+∞

log #
{
λ ∈ Λj : 2−(h+ε)j ≤ dλ < 2−(h−ε)j}

log 2j
.

Interpretation: There are approximatively 2ρ̃f (h)j coefficients of size 2−hj .

Heuristic argument: We consider the points x such that hf (x) = h.

• dj(x) ∼ 2−hj and there are about 2ρ̃f (h)j such dyadic intervals.

• If we cover each singularity x by dyadic intervals of size 2−j , from the definition of
the Hausdorff dimension, there are about 2df (h)j such intervals.

=⇒ ρ̃f (h) = df (h)

Problem: ρ̃f may depend on the chosen wavelet basis!
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Lν spaces Method

The wavelet leader profile of f is defined by

ν̃f (h) =


lim
ε→0+

lim sup
j→+∞

log #
{
λ ∈ Λj : dλ ≥ 2−(h+ε)j

}
log 2j

if h < hs,

lim
ε→0+

lim sup
j→+∞

log #
{
λ ∈ Λj : dλ < 2−(h−ε)j}

log 2j
if h ≥ hs,

where hs is the smallest positive real such that ν̃f (h) = 1.

Properties:

• ν̃f is independent of the chosen wavelet basis.

• If f is uniformly Hölder, df (h) ≤ ν̃f (h) for all h ≥ 0.
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Comparison of the formalisms

With the Wavelet Leader Method
If f is uniformly Hölder and if ν̃f is compactly supported, then

df (h) ≤ ν̃f (h) ≤ Lf (h)

for every h ∈ R and Lf is the concave hull of ν̃f .

With the Sν Spaces Method
If f is uniformly Hölder, we have

df (h) ≤ ν̃f (h) ≤ dνf (h)

for every h ≥ 0. Moreover, the two methods coincide on [hmin, hs] if and only if ν̃f is
with increasing-visibility on [hmin, hs].
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To be continued...

In “A new multifractal formalism based on wavelet leaders: detection of non concave
and non increasing spectra (Part II)”, T. Kleyntssens will present an implementation
of the formalism based on Lν spaces.
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