A new multifractal formalism based on wavelet leaders: detection of non concave and non increasing spectra (Part I)

Céline ESSER Celine.Esser@ulg.ac.be

University of Liège

Fractal Geometry and Stochastics V Tabarz – March 25, 2014

Joint work with F. BASTIN, S. JAFFARD, T. KLEYNTSSENS, S. NICOLAY

Introduction

Let f be a locally bounded function.

- The Hölder exponent of f at x is $h_f(x) = \sup \{ \alpha : f \in C^{\alpha}(x) \}.$
- The iso-Hölder sets of f are $E_h = \{x : h_f(x) = h\}$.

Definition

The spectrum of singularities d_f of f is defined by

$$d_f(h) = \dim_{\mathcal{H}} E_h \quad \forall h \ge 0.$$

A multifractal formalism is a formula which is expected to yield the spectrum of singularities of a function, from "global" quantities which are numerically computable.

Several multifractal formalisms based on a decomposition of $f \in L^2([0,1])$ in a wavelet basis

$$f = \sum_{j \in \mathbb{N}_0} \sum_{k=0}^{2^j - 1} c_{j,k} \psi_{j,k}$$

have been proposed to estimate d_f .

A function f is uniformly Hölder if there is $\varepsilon > 0$ and C > 0 such that $|c_{j,k}| \le C2^{-\varepsilon j}$ for every j, k.

Hölder regularity and wavelet coefficients

If f is uniformly Hölder and if ψ is "smooth enough", the Hölder exponent of f at x is

$$h_f(x) = \liminf_{j \to +\infty} \inf_k \frac{\log(|c_{j,k}|)}{\log(2^{-j} + |k2^{-j} - x|)}.$$

Advantage: easy to compute and relatively stable from a numerical point of view.

- The Frisch-Parisi formalism (1985) and the classical use of Besov spaces leads to a loss of information (only concave hull and increasing part of spectra can be recovered).
- Wavelet Leader Method (S. Jaffard, 2004): Modification of the Frisch-Parisi formalism using the wavelet leaders of the function and Oscillation spaces.

 \rightarrow Detection of decreasing part of concave spectra.

- Introduction of spaces of type \mathcal{S}^{ν} (J.M. Aubry, S. Jaffard, 2005)

ightarrow Detection of non concave increasing part of spectra.

• More recently, introduction of spaces of the same type but based on the wavelet leaders of the signal.

—> Detection of non concave and non increasing part of spectra.

(日)、<同)、<三)</p>

- The Frisch-Parisi formalism (1985) and the classical use of Besov spaces leads to a loss of information (only concave hull and increasing part of spectra can be recovered).
- Wavelet Leader Method (S. Jaffard, 2004): Modification of the Frisch-Parisi formalism using the wavelet leaders of the function and Oscillation spaces.

\longrightarrow Detection of decreasing part of concave spectra.

- Introduction of spaces of type S^{ν} (J.M. Aubry, S. Jaffard, 2005)
- More recently, introduction of spaces of the same type but based on the wavelet leaders of the signal.

—> Detection of non concave and non increasing part of spectra.

- The Frisch-Parisi formalism (1985) and the classical use of Besov spaces leads to a loss of information (only concave hull and increasing part of spectra can be recovered).
- Wavelet Leader Method (S. Jaffard, 2004): Modification of the Frisch-Parisi formalism using the wavelet leaders of the function and Oscillation spaces.

 \longrightarrow Detection of decreasing part of concave spectra.

- Introduction of spaces of type $\mathcal{S}^{
u}$ (J.M. Aubry, S. Jaffard, 2005)

 \longrightarrow Detection of non concave increasing part of spectra.

• More recently, introduction of spaces of the same type but based on the wavelet leaders of the signal.

—> Detection of non concave and non increasing part of spectra.

- The Frisch-Parisi formalism (1985) and the classical use of Besov spaces leads to a loss of information (only concave hull and increasing part of spectra can be recovered).
- Wavelet Leader Method (S. Jaffard, 2004): Modification of the Frisch-Parisi formalism using the wavelet leaders of the function and Oscillation spaces.

 \longrightarrow Detection of decreasing part of concave spectra.

- Introduction of spaces of type $\mathcal{S}^{
u}$ (J.M. Aubry, S. Jaffard, 2005)

 \longrightarrow Detection of non concave increasing part of spectra.

• More recently, introduction of spaces of the same type but based on the wavelet leaders of the signal.

 \longrightarrow Detection of non concave and non increasing part of spectra.

Wavelet leaders

Standard notation: For $j \in \mathbb{N}_0, k \in \{0, \dots, 2^j - 1\}$,

$$\lambda(j,k) := \left\{ x \in \mathbb{R} : 2^{j}x - k \in [0,1[\right\} = \left[\frac{k}{2^{j}}, \frac{k+1}{2^{j}}\right],\right\}$$

and for all $j \in \mathbb{N}_0$, Λ_j denotes the set of all dyadic intervals (of [0, 1]) of length 2^{-j} . If $\lambda = \lambda(j, k)$, we use both notations $c_{j,k}$ or c_{λ} to denote the wavelet coefficients.

Definition

The wavelet leaders of a signal $f \in L^2([0,1])$ are defined by

$$d_{\lambda} := \sup_{\lambda' \subset 3\lambda} |c_{\lambda'}|, \quad \lambda \in \Lambda_j, \ j \in \mathbb{N}_0.$$

If $x \in [0,1]$, let $\lambda_j(x)$ denote the dyadic interval of length 2^{-j} which contains x. Then, we set

$$d_j(x) := d_{\lambda_j(x)} = \sup_{\lambda' \subset 3\lambda_j(x)} |c_{\lambda'}|.$$

• • • • • • • • • • • •

				×			k		
	(0, 0)								
	(0,1)		(1,1)		(2,1)		(3,1)		
j	(0,2)	(1,2)	(2,2)	$\lambda_j(x)$	(4,2)	(5,2)	(6,2)	(7,2)	-

If f is uniformly Hölder, the Hölder exponent of f at x is given by

$$h_f(x) = \liminf_{j \to +\infty} \frac{\log d_j(x)}{\log 2^{-j}}.$$

Interpretation:

$$d_j(x) \sim 2^{-h_f(x)j}$$

・ロト ・ 日本・ ・ ヨト

				x			k		
8	(0, 0)								
	(0,1)		(1,1)		(2	2,1)	(3,1)		
j			$3\lambda_j(x)$;)	(5,2)	(6,2)	(7,2)	-
							1		J

If f is uniformly Hölder, the Hölder exponent of f at x is given by

$$h_f(x) = \liminf_{j \to +\infty} \frac{\log d_j(x)}{\log 2^{-j}}.$$

Interpretation:

$$d_j(x) \sim 2^{-h_f(x)j}$$

・ロト ・ 同ト ・ ヨト

			×			k		
1		(0	,0)					
	(0,1)		(1,1)	(2,1)		(3,1)		
j			3	x)	(5,2)	(6,2)	(7,2)	,2)
]

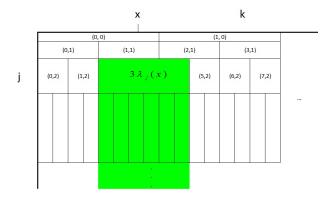
If f is uniformly Hölder, the Hölder exponent of f at x is given by

$$h_f(x) = \liminf_{j \to +\infty} \frac{\log d_j(x)}{\log 2^{-j}}.$$

Interpretation:

$$d_j(x) \sim 2^{-h_f(x)j}$$

・ロト ・ 同ト ・ ヨト



If f is uniformly Hölder, the Hölder exponent of f at x is given by

$$h_f(x) = \liminf_{j \to +\infty} \frac{\log d_j(x)}{\log 2^{-j}}.$$

Interpretation:

$$d_j(x) \sim 2^{-h_f(x)j}$$

(日)、<同)、<三)</p>

Wavelet Leader Method

The leader scaling function of a locally bounded function f is defined for every $p \in \mathbb{R}$ by

$$\tau_f(p) = \liminf_{j \to +\infty} \frac{\log 2^{-j} \sum_{\lambda \in \Lambda_j}^* d_{\lambda}^p}{\log 2^{-j}},$$

where $\sum_{\lambda \in \Lambda_j}^*$ means that the sum is taken over the $\lambda \in \Lambda_j$ such that $d_\lambda \neq 0$. The wavelet leader spectrum is then given by

$$L_f(h) = \inf_{p \in \mathbb{R}} \left\{ hp - \tau_f(p) \right\} + 1.$$

Properties:

- L_f is independent of the chosen wavelet basis.
- If f is uniformly Hölder, $d_f(h) \leq L_f(h)$ for all $h \geq 0$.
- L_f is a concave function.

Wavelet Leader Method

The leader scaling function of a locally bounded function f is defined for every $p \in \mathbb{R}$ by

$$\tau_f(p) = \liminf_{j \to +\infty} \frac{\log 2^{-j} \sum_{\lambda \in \Lambda_j}^* d_{\lambda}^p}{\log 2^{-j}},$$

where $\sum_{\lambda \in \Lambda_j}^*$ means that the sum is taken over the $\lambda \in \Lambda_j$ such that $d_\lambda \neq 0$. The wavelet leader spectrum is then given by

$$L_f(h) = \inf_{p \in \mathbb{R}} \left\{ hp - \tau_f(p) \right\} + 1.$$

Properties:

- L_f is independent of the chosen wavelet basis.
- If f is uniformly Hölder, $d_f(h) \leq L_f(h)$ for all $h \geq 0$.
- L_f is a concave function.

\mathcal{S}^{ν} spaces method

The wavelet profile ν_f of a locally bounded function f is defined by

$$\nu_f(h) = \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \{\lambda \in \Lambda_j : |c_\lambda| \ge 2^{-(h+\varepsilon)j}\}}{\log 2^j}, \ h \in \mathbb{R}.$$

Interpretation:

- There are approximatively $2^{\nu_f(h)j}$ coefficients greater in modulus than 2^{-hj} . roperties:
 - ν_f is a right-continuous increasing function.
 - ν_f is independent of the chosen wavelet basis.
- If *f* is uniformly Hölder,

$$d_f(h) \le d^{\nu_f}(h) := \min\left\{h \sup_{h' \in [0;h]} \frac{\nu_f(h')}{h'}, 1\right\} \quad \forall h \ge 0.$$

\mathcal{S}^{ν} spaces method

The wavelet profile ν_f of a locally bounded function f is defined by

$$\nu_f(h) = \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \{\lambda \in \Lambda_j : |c_\lambda| \ge 2^{-(h+\varepsilon)j}\}}{\log 2^j}, \ h \in \mathbb{R}.$$

Interpretation:

• There are approximatively $2^{\nu_f(h)j}$ coefficients greater in modulus than 2^{-hj} .

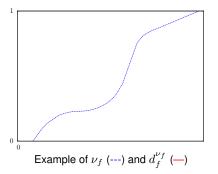
Properties:

- ν_f is a right-continuous increasing function.
- ν_f is independent of the chosen wavelet basis.
- If *f* is uniformly Hölder,

$$d_f(h) \le d^{\nu_f}(h) := \min\left\{h \sup_{h' \in [0;h]} \frac{\nu_f(h')}{h'}, 1\right\} \quad \forall h \ge 0.$$

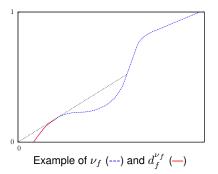
Take $0 \le a < b \le +\infty$. A function $g : [a, b] \mapsto \mathbb{R}^+$ is with increasing-visibility if g is continuous at a and $\sup_{y \in [a,x]} \frac{g(y)}{y} \le \frac{g(x)}{x}$ for all $x \in [a,b]$.

In other words, a function g is with increasing-visibility if for all $x \in]a, b]$, the segment [(0, 0), (x, g(x))] lies above the graph of g on]a, x].



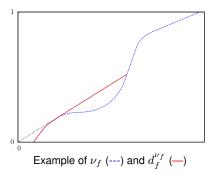
Take $0 \le a < b \le +\infty$. A function $g : [a, b] \mapsto \mathbb{R}^+$ is with increasing-visibility if g is continuous at a and $\sup_{y \in [a,x]} \frac{g(y)}{y} \le \frac{g(x)}{x}$ for all $x \in [a,b]$.

In other words, a function g is with increasing-visibility if for all $x \in]a, b]$, the segment [(0, 0), (x, g(x))] lies above the graph of g on]a, x].



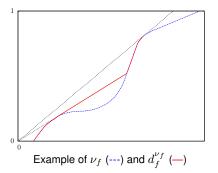
Take $0 \le a < b \le +\infty$. A function $g : [a, b] \mapsto \mathbb{R}^+$ is with increasing-visibility if g is continuous at a and $\sup_{y \in [a,x]} \frac{g(y)}{y} \le \frac{g(x)}{x}$ for all $x \in [a,b]$.

In other words, a function g is with increasing-visibility if for all $x \in]a, b]$, the segment [(0, 0), (x, g(x))] lies above the graph of g on]a, x].



Take $0 \le a < b \le +\infty$. A function $g : [a, b] \mapsto \mathbb{R}^+$ is with increasing-visibility if g is continuous at a and $\sup_{y \in [a,x]} \frac{g(y)}{y} \le \frac{g(x)}{x}$ for all $x \in [a,b]$.

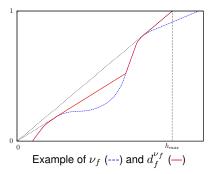
In other words, a function g is with increasing-visibility if for all $x \in]a, b]$, the segment [(0, 0), (x, g(x))] lies above the graph of g on]a, x].



The passage from ν_f to d^{ν_f} transforms the function ν_f into a function with increasing-visibility.

Take $0 \le a < b \le +\infty$. A function $g : [a, b] \mapsto \mathbb{R}^+$ is with increasing-visibility if g is continuous at a and $\sup_{y \in [a,x]} \frac{g(y)}{y} \le \frac{g(x)}{x}$ for all $x \in [a,b]$.

In other words, a function g is with increasing-visibility if for all $x \in]a, b]$, the segment [(0, 0), (x, g(x))] lies above the graph of g on]a, x].



Particular case

Assumption: f is a function whose wavelet coefficients are given by $c_{\lambda} = \mu(\lambda)$ where μ is a finite Borel measure on [0, 1].

Notation: Let f_{β} denotes the function whose wavelet coefficients are given by $c_{\lambda}^{\beta} = 2^{-\beta j} c_{\lambda}$.

In this case, one has

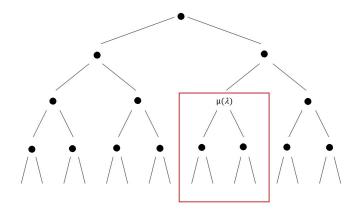
•
$$d_{f_{\beta}}(h) = d_f(h - \beta)$$
 for all $h \ge 0$.

•
$$\nu_{f_{\beta}}(h) = \nu_f(h - \beta)$$
 for all $h \ge 0$.

Moreover, if

$$\inf \left\{ \frac{\nu_f(x) - \nu_f(y)}{x - y} : x, y \in [h_{\min}, h'_{\max}], \ x < y \right\} > 0,$$

where $h_{\min} = \inf\{\alpha : \nu_f(\alpha) \ge 0\}, h'_{\max} = \inf\{\alpha : \nu_f(\alpha) = 1\}$, then there exists $\beta > 0$ such that the function ν_{f_β} is with increasing-visibility on $[h_{\min}, h'_{\max}]$. In this case, $d^{\nu_{f_\beta}} = \nu_{f_\beta}$ approximates d_{f_β} . Therefore the increasing part of d_f can be approximated by ν_f .



There is a tree-structure in the repartition of the wavelet coefficients

Large deviation-type argument

The wavelet leader density of f is defined for every $\alpha \in \mathbb{R}$ by

$$\widetilde{\rho}_f(h) = \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_j : 2^{-(h+\varepsilon)j} \le d_\lambda < 2^{-(h-\varepsilon)j} \right\}}{\log 2^j}.$$

Interpretation: There are approximatively $2^{\tilde{\rho}_f(h)j}$ coefficients of size 2^{-hj} .

Heuristic argument: We consider the points x such that $h_f(x) = h$.

- $d_j(x) \sim 2^{-hj}$ and there are about $2^{\widetilde{\rho}_f(h)j}$ such dyadic intervals.
- If we cover each singularity x by dyadic intervals of size 2^{-j} , from the definition of the Hausdorff dimension, there are about $2^{d_f(h)j}$ such intervals.

$$\Longrightarrow \widetilde{\rho}_f(h) = d_f(h)$$

Problem: $\tilde{\rho}_f$ may depend on the chosen wavelet basis!

Large deviation-type argument

The wavelet leader density of f is defined for every $\alpha \in \mathbb{R}$ by

$$\widetilde{\rho}_f(h) = \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \{\lambda \in \Lambda_j : 2^{-(h+\varepsilon)j} \le d_\lambda < 2^{-(h-\varepsilon)j}\}}{\log 2^j}.$$

Interpretation: There are approximatively $2^{\tilde{\rho}_f(h)j}$ coefficients of size 2^{-hj} .

Heuristic argument: We consider the points x such that $h_f(x) = h$.

- $d_j(x) \sim 2^{-hj}$ and there are about $2^{\widetilde{\rho}_f(h)j}$ such dyadic intervals.
- If we cover each singularity x by dyadic intervals of size 2^{-j} , from the definition of the Hausdorff dimension, there are about $2^{d_f(h)j}$ such intervals.

$$\Longrightarrow \widetilde{\rho}_f(h) = d_f(h)$$

Problem: $\tilde{\rho}_f$ may depend on the chosen wavelet basis!

Large deviation-type argument

The wavelet leader density of f is defined for every $\alpha \in \mathbb{R}$ by

$$\widetilde{\rho}_f(h) = \lim_{\varepsilon \to 0^+} \limsup_{j \to +\infty} \frac{\log \# \{\lambda \in \Lambda_j : 2^{-(h+\varepsilon)j} \le d_\lambda < 2^{-(h-\varepsilon)j}\}}{\log 2^j}.$$

Interpretation: There are approximatively $2^{\tilde{\rho}_f(h)j}$ coefficients of size 2^{-hj} .

Heuristic argument: We consider the points x such that $h_f(x) = h$.

- $d_j(x) \sim 2^{-hj}$ and there are about $2^{\widetilde{\rho}_f(h)j}$ such dyadic intervals.
- If we cover each singularity x by dyadic intervals of size 2^{-j} , from the definition of the Hausdorff dimension, there are about $2^{d_f(h)j}$ such intervals.

$$\Longrightarrow \widetilde{\rho}_f(h) \ge d_f(h)$$

Problem: $\tilde{\rho}_f$ may depend on the chosen wavelet basis!

\mathcal{L}^{ν} spaces Method

The wavelet leader profile of f is defined by

$$\widetilde{\nu}_{f}(h) = \begin{cases} \lim_{\varepsilon \to 0^{+}} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_{j} \ : \ d_{\lambda} \ge 2^{-(h+\varepsilon)j} \right\}}{\log 2^{j}} & \text{ if } h < h_{s}, \\ \lim_{\varepsilon \to 0^{+}} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_{j} \ : \ d_{\lambda} < 2^{-(h-\varepsilon)j} \right\}}{\log 2^{j}} & \text{ if } h \ge h_{s}, \end{cases}$$

where h_s is the smallest positive real such that $\tilde{\nu}_f(h) = 1$.

Properties:

- $\widetilde{\nu}_f$ is independent of the chosen wavelet basis.
- If f is uniformly Hölder, $d_f(h) \leq \widetilde{\nu}_f(h)$ for all $h \geq 0$.

\mathcal{L}^{ν} spaces Method

The wavelet leader profile of f is defined by

$$\widetilde{\nu}_{f}(h) = \begin{cases} \lim_{\varepsilon \to 0^{+}} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_{j} \ : \ d_{\lambda} \ge 2^{-(h+\varepsilon)j} \right\}}{\log 2^{j}} & \text{ if } h < h_{s}, \\ \lim_{\varepsilon \to 0^{+}} \limsup_{j \to +\infty} \frac{\log \# \left\{ \lambda \in \Lambda_{j} \ : \ d_{\lambda} < 2^{-(h-\varepsilon)j} \right\}}{\log 2^{j}} & \text{ if } h \ge h_{s}, \end{cases}$$

where h_s is the smallest positive real such that $\tilde{\nu}_f(h) = 1$.

Properties:

- $\tilde{\nu}_f$ is independent of the chosen wavelet basis.
- If f is uniformly Hölder, $d_f(h) \leq \tilde{\nu}_f(h)$ for all $h \geq 0$.

Comparison of the formalisms

With the Wavelet Leader Method

If f is uniformly Hölder and if $\widetilde{\nu}_f$ is compactly supported, then

 $d_f(h) \le \widetilde{\nu}_f(h) \le L_f(h)$

for every $h \in \mathbb{R}$ and L_f is the concave hull of $\tilde{\nu}_f$.

With the $\mathcal{S}^{ u}$ Spaces Method

If f is uniformly Hölder, we have

 $d_f(h) \le \widetilde{\nu}_f(h) \le d^{\nu_f}(h)$

for every $h \ge 0$. Moreover, the two methods coincide on $[h_{\min}, h_s]$ if and only if $\tilde{\nu}_f$ is with increasing-visibility on $[h_{\min}, h_s]$.

(日)

Comparison of the formalisms

With the Wavelet Leader Method

If f is uniformly Hölder and if $\widetilde{\nu}_f$ is compactly supported, then

 $d_f(h) \le \widetilde{\nu}_f(h) \le L_f(h)$

for every $h \in \mathbb{R}$ and L_f is the concave hull of $\tilde{\nu}_f$.

With the \mathcal{S}^{ν} Spaces Method

If f is uniformly Hölder, we have

$$d_f(h) \le \widetilde{\nu}_f(h) \le d^{\nu_f}(h)$$

for every $h \ge 0$. Moreover, the two methods coincide on $[h_{\min}, h_s]$ if and only if $\tilde{\nu}_f$ is with increasing-visibility on $[h_{\min}, h_s]$.

• • • • • • • • • • • •

In "A new multifractal formalism based on wavelet leaders: detection of non concave and non increasing spectra (Part II)", T. Kleyntssens will present an **implementation** of the formalism based on \mathcal{L}^{ν} spaces.

References

- - J.M. Aubry, F. Bastin and S. Dispa, *Prevalence of multifractal functions in* S^{ν} *spaces*, J. Fourier Anal. Appl., **13**, 2, 2007, 175–185.
 - J.M. Aubry and S. Jaffard, *Random Wavelet Series*, Comm. Math. Phys, **227**, 2002, 483–514.
- F. Bastin, C. Esser and S. Jaffard, Beyond S^{ν} spaces with wavelet leaders, preprint.
- C. Esser, T. Kleyntssens, S. Jaffard and S. Nicolay, A multifractal formalism for non concave and non increasing spectra: the L^{ν} spaces approach, preprint.
- S. Jaffard, On the Frisch-Parisi conjecture, J. Math. Pures Appl., **79**, 6, 2000,525-?552.
- S. Jaffard, *Wavelet techniques in multifractal analysis*, Fractal Geometry and Applications : A Jubilee of Benoit Mandelbrot, Proc. Symp. Pure Maths., **72**, 2004, 91–151.