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Abstract

This study presents the development and validation of a two-scale numerical method aimed at predicting

the mechanical behavior and the inter-granular fracture of nanocrystalline (NC) metals under deformation.

The material description is based on two constitutive elements, the grains (or bulk crystals) and the grain-

boundaries (GBs), both having their behavior determined atomistically using the quasicontinuum (QC)

method by simulating the plastic deformation of [110] tilt crystalline interfaces undergoing simple shear,

tension and nano-indentation. Unlike our previous work [V. Péron-Lührs et al., JMPS, 2013] however, the GB

thickness is here calibrated in the model, providing more accurate insight into the GB widths according to the

interface misorientation angle. In this contribution, the new two-scale model is also validated against fully-

atomistic NC simulations tests for two low-angle and high-angle textures and two grain sizes. A simplified

strategy aimed at predicting the mechanical behavior of more general textures without the need to run more

QC simulations is also proposed, demonstrating significant reduction in computational cost compared to full

atomistic simulations. Finally, by studying the response of dogbone samples made of NC copper, we show

in this paper that such a two-scale model is able to quantitatively capture the differences in mechanical

behavior of NC metals as a function of the texture and grain size, as well as to accurately predict the

processes of inter-granular fracture for different GB character distributions. This two-scale method is found

to be an effective alternative to other atomistic methods for the prediction of plasticity and fracture in

NC materials with a substantial number of 2-D grains such as columnar-grained thin films for micro-scale

electro-mechanical devices.
Keywords: Nanocrystalline metals, Finite element model, Quasicontinuum method, two-scale model,

Grain-boundary
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1. Introduction1

Nanocrystalline (NC) materials are known to possess remarkable physical and mechanical properties such2

as ultrahigh strength compared with their coarse-grained counterparts [1, 2, 3, 4, 5, 6, 7, 8]. At this length3

scale, the plastic deformation is considered to change from intragranular to intergranular by a mechanism in4

which the grain boundary (GB) character distribution (GBCD) is promoted and controls the NC mechanical5

behavior [9]. This transition from intragranular to intergranular or GB-mediated plasticity is assumed to6

control the ductility and fracture behavior of NC materials. However, understanding the evolution of fracture7

in NC materials is at its infancy experimentally, whereas a failure model at the atomic level is still unavailable.8

This work aims to develop an atomistically-informed multiscale model for the quantitative prediction of the9

fracture behavior in NC solids.10

Molecular dynamics (MD) simulations have already revealed unusual mechanisms at low temperatures,11

such as GB sliding and intragranular slip involving dislocation emissions and absorptions at GBs [3, 10, 11,12

12, 13, 14], but suffer from the requirement to consider the dynamics of all atoms, thus imposing drastic13

limitations on the size of the simulated sample. On the other hand, continuum models, which do not suffer14

from such limitation, have been mainly limited to the description of grain size dependency [15], strain15

localization [16, 17] and failure processes [15, 18]. It appears however that none of these models can predict16

the plastic deformation of relatively large NC structures while retaining sufficient precision to account for17

the mechanisms involved at the nanoscale.18

In a recent work [19], an original numerical multiscale approach was proposed to gain predictive unders-19

tanding of the mechanical behavior of NC metals as a function of their GBCD. This model assumes that GBs20

are embedded in a continuum matrix and incorporate full GB elasto-plastic constitutive laws determined21

by atomistic simulations, thereby paving the way to simulate and characterize intergranular fracture in NC22

materials without the need to fully model all GBs atomistically. In this two-scale framework, the material23

description was based on the mechanical behavior of two constitutive elements, namely, bulk crystals (or24

grains) and GBs. The constitutive laws for these two constitutive elements were calibrated atomistically25

using the quasicontinuum (QC) method [20, 21]. An explicit FCC crystal plasticity constitutive model [22]26

was used for the grains. This formulation improves the original implicit formulation of the forest dislocation27

hardening model proposed in Ref. [23] and enables large scale computations. The crystal plasticity model28

was previously characterized using nanoindentation QC simulations [19]. GBs were treated as surfaces of29
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discontinuities with a finite thickness embedded in the continuum. In Ref. [19], parameters of the GBs30

constitutive model, including plastic and damage responses, were calibrated using the QC method by means31

of tensile and shear tests, following Ref. [24, 25], so as to account for both GB sliding and GB opening32

modes. However, in that work, the thickness of the GBs was arbitrarily taken as 1 nm [19]. The model is33

improved here by calibrating the GB thickness parameter, validated against full atomistic results, and tested34

for intergranular fracture predictions.35

Indeed, the objective of the present work is to demonstrate the ability of this two-scale model in pre-36

dicting the fracture of NC metals for different textures and grain sizes. To this end, we first validate the37

purely continuum model by comparing it with fully-atomistic QC simulations for two NCs with two different38

textures, namely high-angle (HA) and low-angle (LA), and two different mean grain sizes. It is found that39

both models predict the same failure evolution in the GB networks for each texture and grain size. Once the40

validation step is over, an adequate fitting of the HABs calibration parameters according to their misorien-41

tation is proposed. This fitting step allows for the simulation of larger NC with a HA texture consisting of42

a substantial number of grains without having to run all HABs QC simulations. As an illustration, two NC43

dogbones, consisting of 103 grains and 251 GBs and presenting the same HA texture with two different mean44

grain sizes are subjected to tensile loading. These simulations highlight the ability of the two-scale model to45

predict the intergranular fracture of larger NCs than those conventionally encountered when dealing with46

pure atomistic simulations, while saving computational time.47

The paper is organized as follows. Section 2 presents the details of the two-scale model and the consti-48

tutive laws used for grains and GBs. Section 3 is devoted to the QC calibration; GBs QC simulations and49

nanoindentation tests are presented with a particular focus on the GB width effect. Section 3 also presents50

the QC results fitting process designed to facilitate HA-type texture simulations. In Section 4, the full cali-51

brated two-scale continuum model is compared to the fully-atomistic QC model for validation. Finally, this52

methodology is applied in Section 5 to HA-type NC dogbones simulations.53

2. The two-scale model54

2.1. Constitutive framework55

In this section, the continuum framework with embedded GBs is summarized, following the study in Ref.56

[9]. The main equations for the bulk material are also presented, based on Ref. [22, 23, 26]. The reader is57

invited to refer to Ref. [19] for more details.58
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Figure 1: a) Schematics of a GB element. Two tetrahedra belonging to two adjacent crystals separated by an interface element
at the GB: S+ and S− are respectively the facets corresponding to the tetrahedra on the positive and negative sides, as defined
by the positive surface normal N , and S is the midsurface. The displacement jump δ, its opening δn and sliding δs components,
as well as the GB thickness h are also indicated. b) Deformed midsurface S and its associated curvilinear coordinate system
as well as the representation of the mean deformation mapping ϕ̃. c) Standard element configuration and natural coordinate
system.

2.1.1. Grain-boundary constitutive model59

The kinematics of the deformation mapping of a GB was developed by considering the GB as a surface60

discontinuity embedded in the finite element discretization, and was based on the relative motion of the61

two surfaces S+ and S−, corresponding to the facets of the tetrahedra on the positive and negative sides,62

respectively, as shown in Figure 1a. To this end, the framework presented in Ref. [27] is used. The local stress63

state is described by the Cauchy stress tensor σ whereas local information about the material deformation64

is conveyed by the deformation gradient field ε. The material models required to evaluate σ in the bulk as65

well as the surface traction t at the GBs are defined below. The mean deformation mapping is defined as66

set in Ref. [27]67

ϕ̃ = 1
2(ϕ+ +ϕ−) (1)

In Equation (1), ϕ̃ is the deformation of the midsurface S, and ϕ+ and ϕ− are the deformation mappings of68

the surfaces S+ and S−, respectively. By using Equation (1) we recover the original deformation mapping69
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on both sides of the GB70

ϕ± = ϕ̃± 1
2(ϕ+ −ϕ−) = ϕ̃± 1

2δ (2)

where71

δ = ~ϕ� = ϕ+ −ϕ− (3)

In Equation (3), δ is the displacement jump at the GB which can be also defined as ~ϕ� the difference72

between the displacements of the surfaces S+ and S−, see Figure 1a. S ≡ ϕ̃(S0) thus defines the deformed73

GB and we can obtain directly the initial surface normalN from the parametrization ϕ̃ = ϕ̃(sα) of S, where74

α = 1 or 2 and where the coordinates (s1, s2) are the natural coordinates of each of the surface elements in75

a standard configuration, see Figures 1b and c. Indeed, using the covariant basis vectors (aα = ϕ̃
,sα

) one76

has77

N = a1 × a2
‖a1 × a2‖

(4)

The displacement jumps can be decomposed into a GB opening vector and a sliding vector as follows78

δn = (δ ·N)N = (N ⊗N) · δ (5)

79

δs = δ − δn = (I −N ⊗N) · δ (6)

It is assumed that this kinematics imposes a constant deformation gradient across the thickness h of the80

GB. This assumption is justified by the low number of atoms within the GB. This gradient of deformation81

can be expressed in the local orthonormal reference frame82

(N1,N2,N3) = ((a1/|a1|), (N×a1/|N×a1|),N) (7)

as83

ε = δn ·N3
h

N3 ⊗N3︸                     ︷︷                     ︸
εn

+ δs ·N1
h

1
2(N1 ⊗N3 +N3 ⊗N1) + δs ·N2

h

1
2(N2 ⊗N3 +N3 ⊗N2)︸                                                                                                     ︷︷                                                                                                     ︸

εs

(8)

From Equation (8), ε is the sum of two quantities; a normal opening part εn and a sliding part εs. In [19],84

h, naturally defining a characteristic length scale of GBs in the model, was set to 1 nm following past works85

[28, 29]. However, assigning a fixed value to h does not account for the different thicknesses between each86
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GB type (HAB or LAB) and their impacts on the NC mechanical behavior. Consequently, h is here treated87

as a parameter obtained from the calibration process. The traction is eventually expressed as88

t = hσ :
∂ε

∂δ
= σ ·N3 (9)

Here, only the sliding component undergoes plastic deformations. In fact, when running GB opening simu-89

lations with QC, only an elastic behavior, without plasticity, was observed until decohesion progressively90

occurs [19]. This most likely arises from the perfect nature of the GB simulated with QC. Thus using a91

damage law appears to be the best way to approximate the opening behavior of GBs. Therefore a damage92

parameter D is included in the GB opening mechanical behavior. The elasto-plastic model described in Ref.93

[9] is used to compute the sliding part σsl of the effective stress tensor and is characterized by the yield94

stress tensor σp with95

σp = σ0(1 + ε̄p
ε0

) (10)

where ε̄p is the equivalent plastic strain, σ0 is the initial yield stress, and ε0 is the reference plastic strain.96

The damage parameter D is evaluated from the normal opening δn ·N. While this opening remains relatively97

small, the opening stress σop remains smaller in norm than the critical stress σc and D = 0. Once σc is98

reached, D increases in an irreversible way, and eventually reaches 1 for a critical opening δc. Finally the99

stress tensor is directly computed from100

σ = (1−D)(σsl + σop) (11)

101

2.1.2. Grain constitutive model102

We adopt the explicit formulation described in Ref. [22] for FCC polycrystalline plasticity. This formula-103

tion somehow improves the original implicit formulation of the forest dislocation hardening model proposed104

in Ref. [23] by facilitating large scale computations. A summary of this formulation can be found elsewhere105

[26] and we provide here the main equations of the model in order to highlight the relevant parameters106

calibrated with the QC method by nanoindentation tests.107

In this framework the following power-law is used to describe the shear rate deformation of each slip108
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system α109

γ̇α =


γ̇0

[(
τα

gα

) 1
m − 1

]
, if τα ≥ 0

0, otherwise
(12)

where γ̇0 is the reference shear strain rate, m the strain-rate sensitivity exponent, and where gα and τα are110

the critical resolved shear stress (CRSS) and the resolved shear stress on slip system α, respectively. Based111

on statistical mechanics [30], the evolution of the flow stresses in the case of multiple slip systems is found112

to be governed by a diagonal hardening law113

ġα =
∑
β

hαβ γ̇β (13)

where hαβ are the diagonal hardening moduli.114

Table 1 provides the constitutive model parameters used in our simulations for pure copper [22]. The115

remaining parameter, g0, is the initial value for gα, and depends on the grain diameter d and on the texture116

type (HA or LA) considered. This key value is calibrated from nanoindentation QC simulations.117

Parameter Value Parameter Value
C11 168.4 GPa γ̇0 10 s−1

C44 75.4 GPa m 0.005
C12 121.4 GPa g0 f(d, texture)

Table 1: Constitutive model parameters for pure copper.

3. Calibration with the QC method118

In this section we summarize the method used to calibrate atomistically the two-scale model aimed at119

simulating the NCs for two different textures or GBCDs (HA and LA). To this end, both the remaining bulk120

parameter (g0) for different grain sizes and the GB parameters (σ0, G, σc, δc, h) have to be calibrated for121

different misorientations. We also provide the influence of the GB widths on the behavior of the representative122

volume element (RVE) studied. Ultimately, we expose the QC results fitting process for larger HA-type123

texture NC simulations.124

The QC method allows for the prediction of the equilibrium configuration of a system of atoms by125

energy minimization, given externally imposed forces or displacements. However, all atoms are not explicitly126

represented and regions of small deformation gradients are treated as continuum media by use of the finite127

element method. This method thus enables the modeling of large-scale atomistic systems without loss of128
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Figure 2: a) QC sliding/opening model of one HAB. b) QC nanoindentation model for one HAB with a pseudo grain size set
to hGB = 6.56 nm.

accuracy in the atomistic areas while being faster than classical molecular simulations. This method was129

used in Ref. [19] to calibrate GB and grain mechanical behaviors.130

At the nanoscale, the GB constitutive parameters were provided by simulating the GBs as done in Ref.131

[24, 25] where 2-D bicrystals were subjected to shear and tensile loading conditions in order to characterize the132

sliding and the opening/decohesion behavior, respectively, see Figure 2a. With the GB shearing simulations,133

the maximum shear strength σ0 and the shear modulus G were extracted from the evolution of the shear134

stress as a function of the applied shear strain. With regards to the GB decohesion behavior, the opening135

critical stress σc as well as the critical opening δc were calibrated from stress-strain curves.136

The model of nanoindentation exposed in Ref. [21, 31] was used to simulate the interaction of partial137

dislocation motions with GBs belonging to both HAB or LAB types. Misorientations lower than 9◦ were138

considered in this work as being LABs so as to correspond to all the available LABs definitions in the139

literature [32, 33, 34]. We emphasize that all GBs present the same [110] tilt axis. In order to take into140

account the grain sizes, we proposed in [19] to depart from the approach presented in Ref. [21, 31] by141

varying the distance hGB (pseudo grain size) separating the indented surface from the GB, see Figure 2b.142

For each simulation, the CRSS was extracted to enable the calibration of g0 which is the initial value for gα143

in the forest dislocation hardening model presented above. Using this calibration model enabled to capture144

the CRSS of slip systems α not only according to the GB nature (HAB or LAB) but also according to145

the grain size. Further information on the computational techniques used for grain and GBs calibrations is146

available in Ref. [19].147

8



Y

X

Z

Y

X

Z

~u ~u~u ~u

Tensile loadingRelaxationa) b) 
) RVE
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fully-atomistic model. c) RVE consisting of 16 grains.

3.1. Effect of the GB width148

The two-scale model was tested with different GB widths (h) for both textures (LA and HA), and two149

grain sizes (3.28 and 6.56 nm) on a RVE consisting of 16 grains and 34 GBs. The boundary conditions used150

for these tensile tests and the RVE are presented in Figure 3. It is found that the RVE mechanical behavior151

highly depends on the GBs widths. For example, Figure 4 shows the stress-strain curves resulting from GB152

widths h varying between 0.4 and 1 nm for all GBs. In the specific case of the LA texture and a mean grain153

size of 6.56 nm, h is found to affect the elastic behavior, the limit of elasticity, and the maximal stress that154

can be sustained before failure. Also, we assert here that, for all textures and grain sizes, decreasing the GB155

thickness increases the overall stiffness. Consequently, particular attention should be given to the calibration156

of the GB width in order to properly simulate the mechanical behavior of NC materials.157

Unlike the work presented in Ref. [19] where h was arbitrarily set to 1 nm, the models are here calibrated158

to include each GB width using the QC method. The centrosymmetry parameter p, see Ref. [35], is used to159

detect the crystallographic defects present in the GBs. We identify h when the GB relaxation step required160

to obtain the best GB energy configuration with QC is over. The threshold chosen for this study is set to161

p = 0.1 so that every atom with a p-value lower than this threshold is considered as having a perfect FCC162

crystal stacking. The determination of h was done by considering only 80% of the bicrystal interface as163

this was done for the calculation of the GB energy in Ref. [24], thus ensuring that atoms near free surfaces164

presenting higher p-values were not counted as part of the h calculation. h was taken as the distance, or the165

width of the strip of material between the furthest atom from the GB interface of the upper grain and the166

one of the lower grain. In the LAB cases, the interface is generally considered as an array of dislocations,167
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Figure 4: Two-scale model strain-stress curves from tensile tests on the RVE for different GB widths ranging from 0.4 to 1 nm
for the LA texture and grain size equal to 6.56 nm.

involving less atoms in the GB structuring than for HABs for which the reorganization is far more random.168

One can argue that a more accurate determination of the GB width may be based on the number of atoms169

involved in the reorganization, but this would not fit with the h dimension of the model. By using this170

method, HABs are found to be wider than LABs, see Figure 5. The obtained GB width is plotted in Figure171

6 as a function of the GB misorientation. It is found that HAB widths spread from 12.612 to 16.645 Å,172

while LAB widths never exceed 11.29 Å and always remain above 6.791 Å for the specific misorientations173

considered.174

With a view to facilitating the GB width calibration, we also wanted to assess whether assigning a unique175

value to h for all the GBs of a given texture would have consequences on the predictions of the mechanical176

behavior. To this end, tensile loads are applied to the same RVE, see Figure 3. The stress-strain curves are177

presented in Figure 7. In the HA case and for both grain sizes, no significant discrepancy is observed when178

h is set to 1.5 nm. Conversely, the LA texture behaves differently when h is set to 0.8 nm for all LABs.179

The elastic behavior and the limit of elasticity are the same for both grain sizes but the strain-to-failure is180

subjected to variations when the grain size is 6.56 nm. The deformed configurations are presented in Figure181

8. For the HA texture, full GB width calibration or setting h to 1.5 nm has no impact on the evolution of182

the crack propagation, and this results in similar strain-to-failures whatever the calibration method is. The183

discrepancies that were observed for the LA texture concerning the strain-to-failures echo the different paths184

being taken by the crack when considering both calibration methods. From this, it is clear that averaging185
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Figure 5: GB width of two representative GB
types where p is the centrosymmetry parameter.
The same scale for p is used to highlight the width
difference. a) HA. b) LA.
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GB width is possible for HABs but not for LABs which are more sensitive to h.186

3.2. QC fitting process187

The GB simulations presented in Ref. [19] allow for the identification of overall trends in the GB me-188

chanical properties depending on the degree of GB misorientation, focus on the GB shear modulus G, the189

GB yield stress σ0, the GB strain-to-failure δc and the GB critical stress σc. We can also identify trends190

for h from the results presented in Figure 6. These trends are quite different for each GB type, HA or LA.191

Within the HA range, it is possible to extract trends from the QC results according to the GB misorientation192

while results variations are far too important within the LA range, making accurate mechanical behavior193

predictions of LABs unlikely and consequently in need of individual GB simulations. In order to achieve194

reproducible results and avoid duplicating work, we have chosen to fit the HABs results for which trends are195

clearly identified. This fitting process paves the way for more complex HA textures when a large number of196

grains is present, as it will be the case in the next Section. Fitted curves for all the parameters are presented197

in Figure 9 and the corresponding equations are reported in Table 2. With regards to the intragranular plas-198

ticity and in order to bring together all the parameters needed for larger RVEs simulations, we reproduce199

here in Figure 9(f) the initial CRSS g0 of FCC slip systems as a function of the pseudo grain size hGB as200

extracted from nanoindentation tests [19].201
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Figure 7: Homogeneous width calibration vs. full GB width calibration for both grain textures and sizes: a) HA texture, 3.28
nm; b) HA texture, 6.56 nm; c) LA texture, 3.28 nm; d) LA texture, 6.56 nm.

Figure 8: Influence of h on the intergranular crack propagation. a) HA texture with a grain size equal 3.28 nm. b) LA texture
with a grain size equal to 6.56 nm.

12



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10  20  30  40  50  60  70  80

h 
(Å

)

Misorientation ∆Ψ(°)

QC fitting
QC results

(a)

 0

 10

 20

 30

 40

 50

 60

 10  20  30  40  50  60  70  80

S
h
ea

r 
m

o
d
u
lu

s 
G

 (
G

P
a)

Misorientation ∆Ψ(°)

QC fitting
QC results

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 10  20  30  40  50  60  70  80

Y
ie

ld
 s

tr
es

s 
σ

0
 (

G
P

a)

Misorientation ∆Ψ(°)

QC fitting
QC results

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10  20  30  40  50  60  70  80

S
tr

ai
n
−

to
−

fa
il

u
re

 δ
c 

(n
m

)

Misorientation ∆Ψ(°)

QC fitting
QC results

(d)

 6

 7

 8

 9

 10

 11

 12

 13

 14

 10  20  30  40  50  60  70  80

C
ri

ti
ca

l 
st

re
ss

 σ
c 

(G
P

a)

Misorientation ∆Ψ(°)

QC fitting
QC results

(e)

 5

 5.1

 5.2

 5.3

 5.4

 5.5

 5.6

 5.7

 5.8

 2  3  4  5  6  7

C
ri

ti
ca

l 
R

es
o
lv

ed
 S

h
ea

r 
S

tr
es

s 
(G

P
a)

hGB (nm)

High−angle GB
Low−angle GB

(f)

Figure 9: Fitting of GB parameters: a) h, b) G, c) σ0, d) δc, e) σc. f) CRSS (g0) evolution with hGB for HA and LA GBs.
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a b c
h (Å) -0.00273431 0.239748 10.5098
G (GPa) 0.0153508 -1.40075 59.1799
σ0 (GPa) 0.00153539 -0.130957 3.65036
δc (nm) 0.000228623 -0.0196728 2.10974
σc (GPa) 0.000931509 -0.108071 11.0947

Table 2: Fitting values of a, b and c in the polynomial equation a∆Ψ2 + b∆Ψ + c for all GB parameters.

4. Two-scale model vs. fully-atomistic model202

In this Section, we present the fully-atomistic model that we will compare with the fully calibrated203

two-scale model of Section 3.204

4.1. Fully-atomistic model205

The two-scale continuum model fully calibrated for NC copper is compared with the fully-atomistic ones206

simulated with the QC method. To this end, the fully-atomistic QC model is set for both textures, HA and207

LA, and the two mean grain sizes 3.28 and 6.56 nm. All simulations consisted of 16 grains, where dimensions208

depend on the mean grain size: 117 Å × 117 Å × 2.55619 Å and 233 Å × 233 Å × 2.55619 Å for a grain209

size of 3.28 nm and 6.56 nm, respectively.210

The polycrystalline structure was constructed as follows. The GBCD was first created using a Voronoï211

diagram construction. All atoms were added using the Bravais lattice vectors starting from the 16 reference212

atoms. A common tilt axis along the [110] direction was assigned to each grain and in-plane misorientations213

were set according to the texture type. Periodic boundary conditions were applied along the out-of-plane214

direction in the entire model. Consequently, this work focuses on 2-D columnar-grained microstructures,215

and as such, plastic deformation may be different to those that could be observed for 3-D polycrystalline216

structures whereas this assertion is valid for all QC simulations presented in this study, the results presented217

here can be extended to 3-D and are expected to be qualitatively similar in the plane-strain state.218

The total energy was minimized using the conjuguate gradient method until the addition of out-of-219

balance forces was found to be lower than 10−3 eV. Å−1. All structures were relaxed under zero pressure to220

obtain the lowest state of energy. During this relaxation step, all atoms at the bottom of the sample were221

fixed in all directions while those on the left and the right sides were fixed in the X− and Z−directions,222

see Figure 3a. These strong boundary conditions were set up so as to avoid the complete crystallographic223

reorganization of NCs, especially in the case of the LA type where GBs can disappear after relaxation. Atoms224

at the top of the samples were then subjected to tensile loadings, see Figure 3b, by means of incremental225
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Figure 10: Snapshots for both HA and LA textures for a
mean grain size of 3.28 nm, before and after the relaxation
step.

Figure 11: Snapshots for both HA and LA textures for a
mean grain size of 6.56 nm, before and after the relaxation
step.

displacements of 0.25 Å in the Y-direction until the sample reached a deformation of 20%. Between each226

loading step a new energy minimization was performed. Moreover, the centrosymmetry parameter p [35]227

was computed at each loading step to allow for the detection of planar defects during deformation. Both228

HA and LA textures, with mean grain sizes equal to 3.28 and 6.56 nm, are presented with this p value in229

Figures 10 and 11, respectively. Although the relaxation step implies a slight distortion in the grain shape,230

it appears that GBCDs retain overall their HA or LA character.231

It is worth noting that the QC method was originally conceived to model atomistic systems without232

explicitly treating every atom in the problem by judiciously eliminating unnecessary degrees of freedom. In233

doing so, the QC method reduces calculations time while keeping an atomistic description where needed.234

In this work, this aspect of QC was not used for the fully-atomistic simulations as the small size of the235

grains require all the atoms to be modelled. Therefore, no degree of freedom was eliminated which implies236

a significant slowdown of QC.237

4.2. Results238

For both models, the yield stresses were determined as being the stresses at which the residual plastic239

strain reaches 0.2%. Figure 12 shows the simulated stress-strain curves of both models NC simulations for240

both HA and LA textures and for both grain sizes with the same loading conditions.241
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In the QC models, with both textures, the simulation cells initially deform elastically until reaching a242

critical level of stress. In the HA texture case, yield stresses reach 8.49 GPa and 8.79 GPa for a mean grain243

size of 3.28 nm and 6.56 nm, respectively, while 9.78 GPa and 9.89 GPa are reached in the LA cases, for a244

mean grain size of 3.28 nm and 6.56 nm, respectively. For each texture, it appears that the smaller the grain245

size the sooner the yield point, corresponding to the material softening when the grain size decreases, and246

thus showing the ability of the fully-atomistic QC model to capture the reverse Hall-Petch (RHP) effect.247

Similar observations can be made when considering the two-scale model results, where textures with248

small grains deviate faster from the elastic regime in agreement with Ref. [9]. For a grain size of 6.56 nm,249

yield stresses in HAB and LAB textures are 5.55 GPa and 8.11 GPa, respectively, and decrease to 4.26250

GPa and 7.93 GPa for a grain size of 3.28 nm. It is worth noting that these yield stresses are higher than251

those observed in a recent work [19] for which boundary conditions were less constrained. Additionally, yield252

stresses in the HAB textures are always lower than in the LAB ones which is true for both models.253

When comparing stress-strain curves obtained with both models, a good agreement is achieved quali-254

tatively for different textures and grain sizes. However, the two-scale model is associated in each case with255

yield stresses lower than those observed in the fully-atomistic model, due to the role of triple junctions, i.e.256

the junction between three grains, which are not taken into account in the two-scale model. These triple257

junctions, absent in the GB decohesion calibration of the two-scale model, seem to be responsible for a larger258

GB stiffness by reducing the GB motion freedom. Therefore, our two-scale model may underestimate the259

GB stiffness in opening, and thus underestimate the global stiffness of the NC model. This hypothesis is260

also supported by the decrease of the NC stiffnesses in both textures when the grain size decreases from261

6.56 nm to 3.28 nm in the two-scale model, see Figures 12a and c. Indeed, the effect of the absence of the262

triple junction calibration in the two-scale model seems even more important when the grains are smaller.263

In that case, the GBs lengths involved are smaller which implies a higher proportion of triple junctions in264

the NC and consequently, an apparently softer NC material.265

Deformed configurations for both models are presented in Figure 13 at the yield point and at ε = 10%.266

At yield point, remarkably, a very good agreement is observed in all cases and the crack initiation occurs at267

the same GBs if we compare both models. For 10% deformation, the GB networks responsible for the failure268

of the RVEs remain closely connected. We therefore demonstrate here that the two-scale model makes it269

possible to predict accurately the weakest links and crack initiation loci of these GB networks.270

Regarding the calculation time, clear benefits are found when using the two-scale model. For instance,271

the computation time required to fully calibrate the two-scale model of a complete HA texture for an average272
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Figure 12: Comparison of the stress-strain curves of both models. a) HA texture for a 3.28 nm mean grain size. b) HA texture,
6.56 nm. c) LA texture, 3.28 nm. d) LA texture, 6.56 nm.
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grain size of 6.56 nm is about 89 hours with a 3.33 GHz CPU, to which must be added the time required273

to apply tensile load on this RVE (7451 tetrahedral elements), i.e. 15 hours and 30 minutes, totalling 104274

hours and 30 minutes. On the other hand, the fully-atomistic QC model requires about 95 hours with the275

same device to compute the same texture. For this specific RVE size, both methods are roughly equivalent276

but the interest of using such a two-scale method appears obvious for larger structures as in next Section,277

when studying different loading with the same structure, or when using Figure 9 in the HA case, instead of278

repeating all the bicrystal simulations.279

5. Dogbone study280

5.1. Dogbone description281

To illustrate the efficiency of the two-scale method when dealing with a large number of grains, tensile282

tests were performed on two large dogbones presenting mean grain sizes of 3.28 nm (“A”) and 6.56 nm283

(“B”). The two structures consisted of 103 grains and 251 GBs. The misorientation distribution is presented284

in Figure 14. For this texture, only one GB belonged to the LA type and all the other ones belonged to the285

HA type, thus giving a proportion of 99.6% for the HABs in the texture. Due to the difficulty of fitting the286

LAB features, the QC calibration was performed for this misorientation. However, the mechanical responses287

of all the HABs were calibrated using the fitting parameters in Figure 9. Both meshes contained 2,201 nodes288

for 8,934 tetrahedral and 5,458 nodes for 21,162 tetrahedral elements, respectively. Dimensions and tensile289

boundary conditions are presented in Figure 15.290

5.2. Dogbone results291

The stress-strain curves achieved for the tensile tests are presented in Figure 16. According to these292

curves, we see that if we consider the whole deformation of each dogbone, the elastic part takes a large293

place in the case B (larger grains) whereas the plastic part is more pronounced in the case A (smaller294

grains). Moreover, A appears to be less rigid than B. As a result, B fails for smaller strain than A. These295

last assertions confirm the ability of the model to capture the RHP effect. Snapshots presented in Figure296

17 represent the deformed configurations of both dogbones A and B for three different steps: step 1 is297

taken during elastic deformation, step 2 is taken in the plastic part of the deformation and finally, step 3298

corresponds to the maximum strength experienced by the dogbones. We have chosen to show within the299

grains g − g0, where g0 and g are the initial and current CRSS, respectively, as intragranular plasticity is300

known to be absent when this variable is equal to zero. GB sliding is significantly more important in case A301
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Figure 13: Deformed configurations for both models at yield point and for a ε = 10% deformation.
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as shown in step 3, coupled to the high proportion of intergranular plasticity in the deformation process of302

A. In contrast, comparing A step 2 and B step 3 shows that even for a lower strain in B (4.26% versus 5.01%303

for A) g − g0 is overall higher in B. In fact, while intragranular plasticity seems to be more homogeneous304

in grains of A, many black spots on B indicate a more pronounced intragranular activity. This highlights305

the higher intragranular plasticity occuring in B. In summary, the two-scale model confirms that the failure306

mechanism in NC dogbones is more predominantly intragranular for large grain sizes and intergranular at307

smaller grain sizes.308

6. Conclusion309

In this work, a two-scale model atomistically-informed at the lowest scale has been proposed. The cali-310

bration of the GBs and bulk crystals was done by means of GB sliding and opening; and nanoindentation311

QC simulations, respectively, enabling the creation of a climate of competition between intergranular and312

intragranular plasticity.313

The observation of the relaxed [110] tilt GBs resulting from QC simulations allowed for the obtention of314

the GB width distribution as a function of the GB misorientation. It is concluded that HABs are wider than315

LABs. Moreover, the simulations of RVEs consisting of 16 grains exhibited an almost identical behavior316

at the polycrystalline level when using average width of 1.5 nm for all HABs. In turn, LABs were found317

to be more sensitive to width calibration and still require to be calibrated individually in a polycrystalline318

21



Figure 17: Deformed configurations of dogbones A and B. Three steps of deformation are considered: step 1 is elastic, step 2
is plastic and step 3 is at maximum strength.
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aggregate.319

Built up on previous work [19], mechanical properties evolution equations as a function of GB misorien-320

tation have been proposed for HABs, thus avoiding future QC simulations and significantly improving the321

calculation time of future continuum simulations.322

The prediction of the evolution of the crack propagation in both two-scale and fully-atomistic models is323

similar. However, yield stresses measured with the two-scale model are found systematically smaller than in324

QC simulations. This discrepancy is believed to be due to the absence of triple junctions considerations when325

calibrating the GB opening with QC, thus underestimating the GB critical stresses σc. The smaller the grain326

size, the larger the proportion of triple junctions, and the softer the structures predicted by two-scale model.327

These triple junctions [36, 37] are also already known to play a major role in the propagation of intergranular328

cracks and are recognized as being able to nucleate, block, deviate or transmit them [38]. Besides, special329

mechanisms such as GB migration can be responsible for the growth of a new grain during straining [39] at330

triple junctions. Concentrations of stresses at the triple junctions observed in the two-scale model cause the331

appearance of intragranular plasticity, surely increased, but that does not allow to reflect the specific nano332

mechanisms involved in this area. Thus and as for the GBs, the particular mechanisms taking place in the333

triple junctions may also be considered by adding special elements calibrated with atomistic simulations in334

order to improve the model.335

It must finally be emphasized that the two-scale model stresses remain overvalued compared to dynamics336

simulations as noticed in Ref. [19]. This discrepancy arises from the 2-D nature of the QC method and from337

the fact that no thermally activated processes are accounted for in the simulations.338

The results are also overvalued compared to experiments where nanoscale voids are present and using339

the void-induced stress model recently presented in Ref. [40] would improve the mechanical calibration of340

GBs.341
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