

A VISION-BASED AUTONOMOUS ROBOTIC INTERROW-WEEDER

Sruthi Moorthy¹, Renaud Detry², Bernard Boigelot², Benoît Mercatoris¹

¹Gembloux Agro-Bio Tech, University of Liège, Belgium ²Montefiore Institute, University of Liège, Belgium

2

Robotic weed destruction – towards sustainable environment

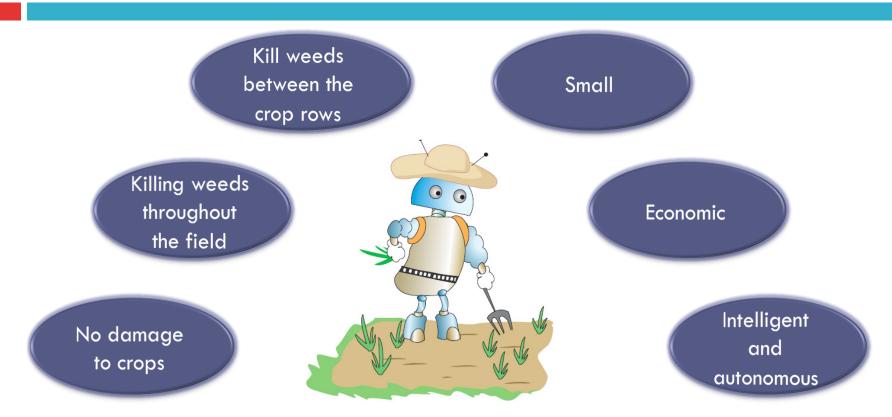
- Objective
- Challenges foreseen
- Sensing for intelligent and autonomous robots
 - Necessary sensory information
 - Appropriate choice of sensors
 - Vision-based crop row detection
- Crop row detection state of the art
- Planned contributions

Robotic weed destruction – towards sustainable environment

Robotic weed destruction – towards sustainable environment

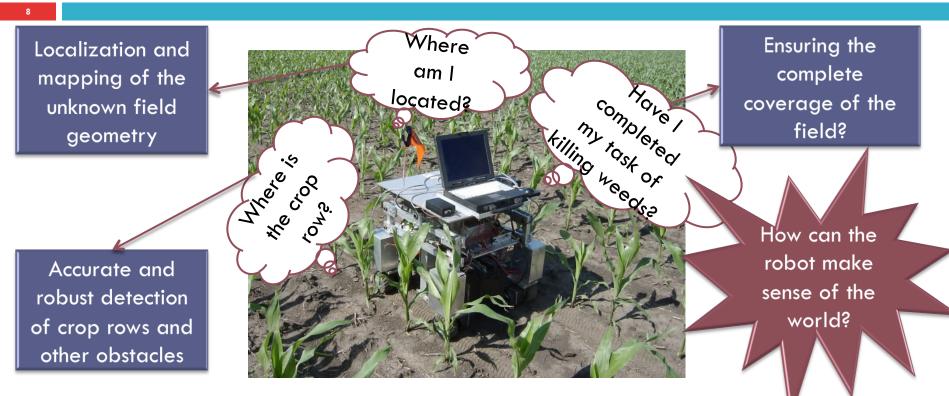
Chemical weeding

• Expensive


Not environmentally friendly

Why not let the robots do the otherwise boring and expensive weeding task?

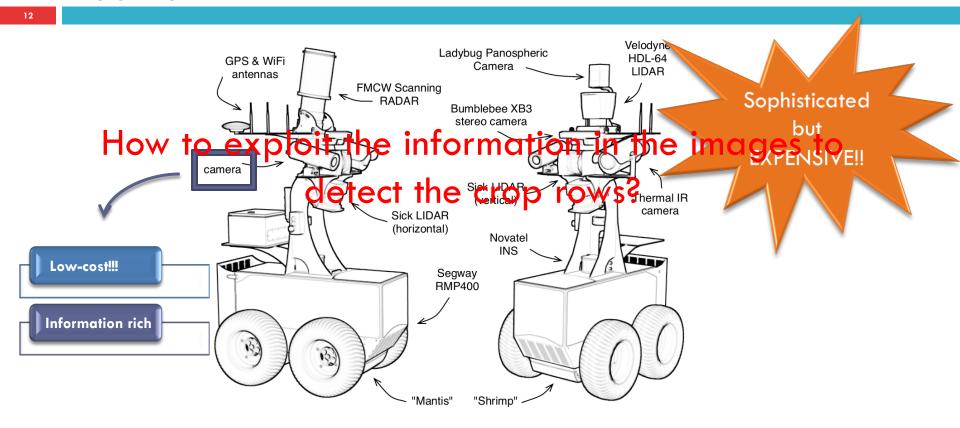
- Robotic weed destruction towards sustainable environment
- 🛛 Objective 🖛
- Challenges foreseen
- Sensing for intelligent and autonomous robots
 - Necessary sensory information
 - Appropriate choice of sensors
 - Vision-based crop row detection
- Crop row detection state of the art
- Planned contributions



7

- Robotic weed destruction towards sustainable environment
- Objective
- Challenges foreseen
- Sensing for intelligent and autonomous robots
 - Necessary sensory information
 - Appropriate choice of sensors
 - Vision-based crop row detection
- Crop row detection state of the art
- Planned contributions

Challenges foreseen

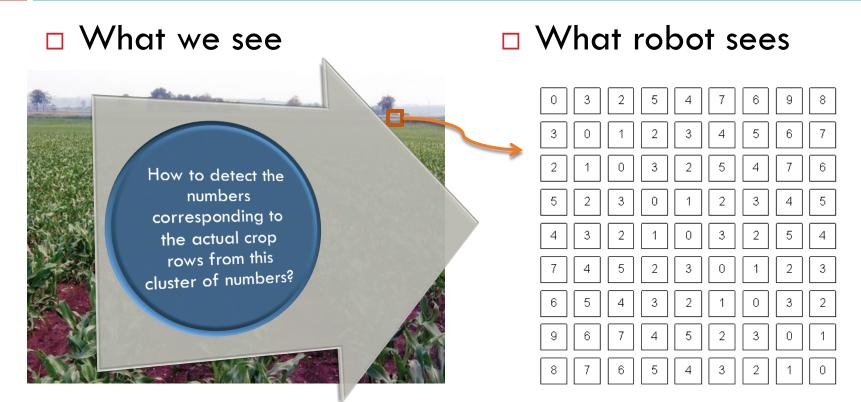

- Robotic weed destruction towards sustainable environment
- Objective
- Challenges foreseen
- Sensing for intelligent and autonomous robots
 - Necessary sensory information
 - Appropriate choice of sensors
 - Vision-based crop row detection
- Crop row detection state of the art
- Planned contributions

Sensing – for intelligent and autonomous robots Necessary sensory information

For autonomous navigation Identifying Navigation crop rows No crop damage Complete coverage of the field Localization Relative position with respect to other and mapping objects Detecting Ensuring security obstacles

- Robotic weed destruction towards sustainable environment
- Objective
- Challenges foreseen
- Sensing for intelligent and autonomous robots
 - Necessary sensory information
 - Appropriate choice of sensors
 - Vision-based crop row detection
- Crop row detection state of the art
- Planned contributions

Sensing – for intelligent and autonomous robots Appropriate choice of sensors



- Robotic weed destruction towards sustainable environment
- Objective
- Challenges foreseen
- Sensing for intelligent and autonomous robots
 - Necessary sensory information
 - Appropriate choice of sensors
 - Vision-based crop row detection

- Crop row detection state of the art
- Planned contributions

Sensing – for intelligent and autonomous robots Vision-based crop row detection

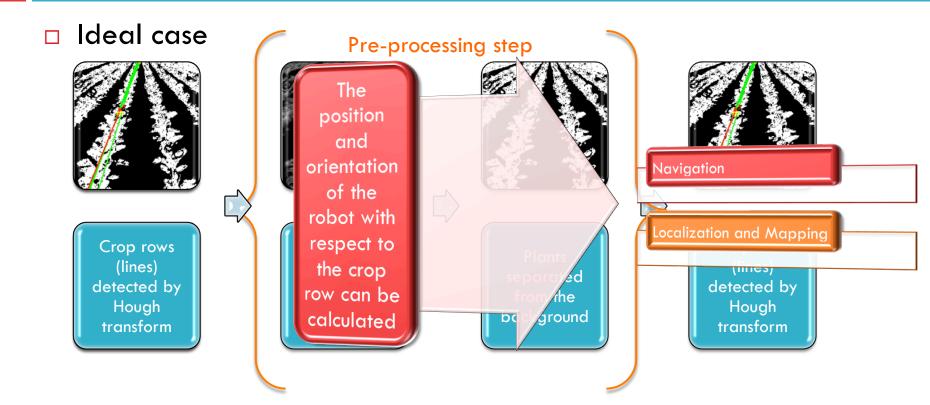
Sensing – for intelligent and autonomous robots Vision-based crop row detection

Why is it challenging?

Presence of weeds

How to cope up with the variability in this dynamic and ever-evolving environment?

Shadow occluding the rows



Missing crops

Crops of varying types and growth stages

Sensing – for intelligent and autonomous robots Vision-based crop row detection

16

- Robotic weed destruction towards sustainable environment
- Objective
- Challenges foreseen
- Sensing for intelligent and autonomous robots
 - Necessary sensory information
 - Appropriate choice of sensors
 - Vision-based crop row detection
- Crop row detection state of the art
- Planned contributions

Crop row detection – state of the art

- 8
- Handling all the uncertainties of the ever-evolving real world – daunting task
- Existing works do not handle all the variabilities encountered in agriculture
 - technique handling missing crops fails when there is high weed pressure and vice versa [J. M. Guerrero et. al, 2013]
- Static predetermined chain of pre-processing techniques
 - not appropriate to handle the dynamicity of the environment

- Robotic weed destruction towards sustainable environment
- Objective
- Challenges foreseen
- Sensing for intelligent and autonomous robots
 - Necessary sensory information
 - Appropriate choice of sensors
 - Vision-based crop row detection
- Crop row detection state of the art
- Planned contributions

Planned contributions

Short-term

- - Enabling accurate and robust crop row detection
 - Selecting various combinations of multiple appropriate preprocessing techniques
 - Using machine learning to dynamically select the best set of preprocessing techniques for the given problem at hand
 - Hough transform and RANSAC based algorithms for fitting the lines after pre-processing
 - Kalman filter like data fusion algorithms to combine data from heterogeneous sensors if needed

Planned contributions

Long-term

Efficient and complete coverage of the field

Hardware and software platform implementing the robotic system

Testing the system on an actual case study

Thank you!!

