
ABSTRACT: Owing to its accessible implementation and rapidity, the equivalent linearization has become a common 

probabilistic approach for the analysis of large-dimension nonlinear structures, as encountered in earthquake and wind 

engineering. It consists in replacing the nonlinear system by an equivalent linear one, by tuning the parameters of the equivalent 

system, in order to minimize some discrepancy error. Consequently classical analysis tools such as the spectral analysis may be 

reconditioned to approximate the solution of structures with slight to moderate nonlinearities. The tuning of the equivalent 

parameters requires the solution of a set of nonlinear algebraic equations involving integrals. It is typically performed with the 

fixed-point algorithm, which is known to behave poorly in terms of convergence. We therefore advocate for the use and 

implementation of a Newton-Raphson approach, which behaves much better, even in its dishonest formulation. Unfortunately, 

this latter option requires the costly construction of a Jacobian matrix. In the approach described in this paper, this issue is 

answered by introducing a series expansion method that provides a fast and accurate estimation of the residual function (whose 

solution provides the equivalent parameters) and a fast and approximate estimation of the Jacobian matrix. An illustration 

demonstrate the good accuracy obtained with the proposed method. 
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1 INTRODUCTION 

In many engineering matters, structures are subject to random 

excitations. Probabilistic theories aim at describing their 

random structural responses by means of statistical 

characteristics such as probability density functions or 

cumulants [1,2]. These theories are well established and 

readily applicable for classical problems like the stochastic 

analysis of linear deterministic systems [3], but are scarcely 

applicable in a much wider sense like for instance in the 

presence of a nonlinear structural behavior. Conversely the 

Monte-Carlo approach is compatible with the widest range of 

applications such as those involving nonlinearities, large size 

structures or non markovian loading processes. The numerical 

implementation of a simulation technique has however a 

certain cost, especially when it comes to analyzing large-

dimension structures. 

At a design stage, approximate probabilistic methods are 

thereby preferred. Among them, the equivalent linearization is 

frequently applied for the analysis of large-dimension 

nonlinear structures, as encountered in earthquake and wind 

engineering. In fact, it is all the more well adapted to these 

fields that these loadings, wind and earthquakes, are or might 

be provided by means of a spectral representation. The main 

idea of the equivalent linearization consists in replacing the 

nonlinear system by an equivalent linear one, by tuning the 

parameters of the equivalent system in order to minimize a 

mean-square discrepancy. 

The Gaussian equivalent linearization expresses the properties 

of an equivalent linear system in terms of the covariance 

matrix of the response of the system. Even though the system 

has been linearized, the set of equations to calculate the 

covariance matrix is nonlinear. The computational effort in 

this method pertains to the resolution of this (possibly large) 

set of nonlinear algebraic equations involving integrals. The 

format of this set of equation is actually well adapted to the 

use of a fixed-point algorithm which is recommended in 

dedicated literature [4]. We presume it is also of standard 

application in common practice, although this kind of detail is 

seldom reported. The use of this low-order and sometimes 

badly conditioned algorithm is surprising at first glance. It is 

seemingly justified by the a priori expensive cost of the 

Jacobian of the problem that would allow for second-order 

algorithms such as the Newton algorithm. 

Thanks to a perturbation approach, which was formerly 

investigated by the authors in similar applications [5, 6], the 

stochastic linearization of a large scale structure is 

reformulated in a novel framework which opens the possible 

implementation of a second-order method, at few extra costs 

compared to the standard application. These developments are 

presented in this paper, together with some illustrative 

examples demonstrating the benefits of the approach. 

2 MATHEMATICAL SETTING 

2.1 Stochastic Linearization in a Reduced Basis 

The equation of motion of an n-DOF nonlinear system reads 

  (1) 

where M, C and K are the deterministic n-dimensional mass, 

damping and stiffness matrices associated with the linear 

counterpart of the structure, f(t) is the vector of random 

external forces (assumed to be Gaussian in this paper) and y(t) 

gathers the displacements of the nodes of the structural model. 
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These are expected to be non-Gaussian processes due to the 

nonlinear forces . 

Application of standard stochastic linearization techniques 

[4] provides the equivalent linearized equation of motion 

  (2) 

which is readily solved in a spectral analysis 

  (3) 

where Sx() and Sf() represent the power spectral density 

matrices of the structural response and of the loading, while 

Hl() represents the n-dimensional frequency response 

function. It of course depends on Keq and Ceq, which is the 

central issue of this equivalence. Indeed matrices Keq and Ceq 

represent the equivalent stiffness and damping matrices. They 

depend on the a priori unknown covariance matrix of nodal 

displacements and velocities  and  expressed as 

  (4) 

  (5) 

The equivalent matrices and the covariance matrices are thus 

determined with an iterative scheme, as a result of the 

equivalence equations [1] 

  (6) 

 
.
 (7) 

For most common types of nonlinearities , the 

expectations may be worked out in closed form so that (6)-(7) 

may be translated into the explicit form 

 
,
 (8) 

  
.
 (9) 

Implementation of the fixed-point algorithm requires (i) to 

initiate Keq and Ceq to a start-up value (usually zero), (ii) to 

provide a provisional estimation of the covariance matrices  

 and  with (3)-(5), (iii) to update Keq and Ceq with (8)-

(9) and (iv) iterate until convergence is (hopefully) reached.  

In order to bypass the computationally expensive construction 

and double multiplication of these matrices, reflexes of linear 

structural dynamics drives the solution (3) toward a reduced 

basis analysis. For a linear equation as (2), the modal basis is 

demonstrated to be optimum [7]. Some sort of optimality 

would thus request the use of the normal modes of vibration 

resulting from the eigenvalue problem 

  (10) 

a solution that is immediately rejected as it would require the 

updating of the modal basis at each iteration, i.e. for every 

new value of Keq. Instead and inspired by a solution adopted 

in a similar context [8], we use a fixed modal basis defined as 

  (11) 

where  is there to represent the influence of the (a priori 

unknown) converged equivalent stiffness matrix, on the 

natural mode shapes and frequencies of the underlying linear 

problem, i.e. (1) without g.    

Although we present it as a fixed estimation, one might 

desire to update the matrix  during the iterations of the 

solution algorithm, be it the fixed-point or not, in order to 

optimize this tuning. This option is open and should be used 

wisely in order not to lapse again in an eigenvalue 

decomposition at each step of the algorithm. Our experience 

has demonstrated that two to three updates in a moderately 

nonlinear problem is by far sufficient. 

In this reduced basis where the generalized shapes are 

normalized through the mass matrix , the 

governing equation (2) becomes 

  (12) 

where 

          

           (13) 

and where  represents the generalized forces. 

Because the generalized basis is not the modal basis , 

the generalized stiffness matrix  is not diagonal. Nor is the 

generalized damping matrix D. The generalized equivalent 

matrices  eq and Deq are certainly not diagonal either. All in 

all, the projection into a reduced basis has limited the number 

of degrees-of-freedom to a bunch of modes (at the opposite of 

the large number of degrees-of-freedom of the nodal model 

(2), possibly), but has not uncoupled the equations of motion, 

as a formal modal basis would have produced. 

 The response in the generalized basis reads 

  (14) 

where the psd matrix of the generalized forces is  

 and the generalized frequency response 

function is .  

The covariance matrices of the generalized responses and 

velocities read 

  (15) 

  (16) 

In the reduced basis, implementation of the fixed-point 

method translates into (i) initiation of Keq and Ceq, (ii) setting 

up the provisional estimation of  and  from (12-14) and  

  (17) 

  (18) 

then (iii) to update Keq and Ceq with (8)-(9) and (iv) iterate. 

2.2 Second-order Algorithm 

The fixed-point algorithm as exposed above is definitely 

convenient for practical purposes, but has unfortunately 

convergence properties that are known to be rather poor [9]. 



As an alternative we suggest to use a formal Newton-

Raphson approach for the solution of the same set of 

equations. 

Plugging (15)-(16) into (17)-(18) and further elaborating the 

expression of Sq, from (14), where the dependence of Keq and 

Ceq in H() is explicitly developed, yield, after finally 

considering (8)-(9), 

  (19) 

where the first term of the residue  originates from the 

lefthand sides of (17)-(18), while operator  is an assemblage 

of matrix multiplications and integrations on the frequency 

space, as per its construction described above. 

This operation has reset the problem into a usual format that is 

suitable for a Newton-Raphson solution.  Writing 

, the (n+1)
th

 iterate is obtained as 

  (20) 

starting from the response of the underlying linear system 

(setting g to zero) as an initial estimate, and where 

  (21) 

represents the Jacobian of the residual function . These 

equations demonstrate that the implementation of a second-

order accurate numerical method is possible. In practice, the 

implementation of this technique is not necessarily auspicious 

as the derivatives taking place in the expression of the 

Jacobian would be performed with a finite difference 

approximation. This operation requires a tremendous number 

of operations, as derivatives have to be established for each 

degree-of-freedom (in position and velocity).  

With the following approach, we propose however a rapid and 

accurate way to solve this issue, and therefore to keep on 

working with a Newton-Raphson algorithm. 

 

2.3 Non-diagonal modal matrices  

 The governing equations in the generalized basis (12) are 

slightly to moderately coupled, depending on the intensity of 

the nonlinear forces in the global balance of forces, as a result 

of the projection into a fixed basis. The origin of the drift is 

threefold. First, the larger the nonlinear forces, the more 

different the generalized basis from the modal basis, which 

results in a coupled generalized stiffness matrix. Second, the 

same argument holds for the damping matrix, which is 

however also complemented by a modal diagonality 

assumption, such as in the Rayleigh damping. Third, the 

larger the nonlinear forces, the larger eq and Deq compared to 

 and D. 

Former works have demonstrated the advantage of 

considering this kind of coupled set of modal equations as a 

perturbation of the uncoupled problem [5,6]. To this aim, the 

generalized damping and stiffness matrices are split into two 

contributions each 

            (22) 

such that the generalized frequency response function H reads 

  (23) 

with 

         (24) 

Under some smallness properties of the off-diagonal terms 

in (23), compared to the diagonal ones –which is formally 

expressed by J < 1, i.e. the spectral radius J of , 

where we also notice that  corresponds to the 

frequency response function that would be obtained it there 

were no off-diagonal terms–, a convergent series expansion of 

H reads 

  (25) 

so that the generalized response (14) translates into 

 (26) 

or, after expanding and collecting both series, then truncating 

the result to N terms, 

  (27) 

The response is thus seen as a perturbation of the response 

 that would be obtained if the off-diagonal coupling terms 

were all neglected.  

The format of this equation is particularly efficient in an 

implementation stage as it does not involve any matrix 

inversion, contrary to the formulation based on the formal 

expression (14). Indeed, expanding out the algebra from (26) 

to (27), the successive correction terms are shown to be given 

by 

  (28) 

and the following recurrence for k larger than 1, 

  (29) 

In these two relations, the only matrix inversion concerns the 

establishment of Hd, which is trivial and inexpensive for it is 

diagonal. 

Keeping everything unchanged in the estimation of the 

residual (19), but the estimation of Sq with an N-order 

truncated approximation (26) instead of the formal (N=∞) 

approach (14), we thus provide a much faster estimation of the 

residual .  This in turn brings significant saving on the 

solution algorithm, since the residual has to be estimated once 

at each iteration (in the fixed-point formulation). The saving is 

even more appreciated when the solution is performed with 

the Newton-Raphson algorithm as, in the basic formulation 

exposed earlier, each entry of the Jacobian requires another 

estimation of the residual (except that symmetry could 

interestingly invoked) for its finite difference estimation. 

It is well known that an inexact estimation of the Jacobian 

worsens the convergence order of the Newton-Raphson [9]. 



What only matters to preserve the convergence of the 

algorithm is a proper estimation of the residual. Of course, the 

convergence rate worsens according to the severity of the 

approximation of the Jacobian. The better the estimation, the 

higher the convergence rate. 

 

Even with the asymptotic expansion (27), the analytical 

expression of the residual remains rather heavy. Indeed with 

the explicit expression of operator  , we have 

  (30) 

 (31) 

where  as well as  are both functions of the 

unknown covariance matrices  and , through H, which 

itself depends on Keq and Ceq  after (8)-(9).  The derivatives of 

these components of the residual function, with respect to   

and   lead to endless chain rule differentiations and 

provide a too complex result. 

 

Instead, driven by the idea of the dishonest Newton-

Raphson, it is possible to provide an approximation of the 

Jacobian of the problem. It is developed in two steps. First we 

observe that the integrand inside the brackets in (30) is 

nothing but the power spectral density of the generalized 

coordinates Sq. Avoiding the series expansion in this first step, 

the derivative of Sq with respect to  reads 

  (32) 

with no assumption. The central issue with the endless chain 

rule differentiation pertains to the factor . In a second 

step, with two approximations related to the series expansion 

of the generalized frequency response function (25), we write 

  (33) 

where the first approximation consists in trunctating the series 

(25) after the first term, while the second approximation limits 

the chain rule differentiation. 

Considering the definitions in (13), the two remaining 

derivatives in (33), namely  and , are readily 

expressed as a function of the derivatives of  and . This 

straightforwardness only holds because of our specific choice 

to work with a constant reduced basis . 

 

To summarize, the asymptotic expansion (25) has brought 

an efficient way to determine the residual function, as well as 

an approximation of the Jacobian of the problem, which opens 

the door to application of a dishonest Newton-Raphson 

procedure. Some additional algorithmic benefits of the 

formulation are detailed in [10]. 

3 ILLUSTRATIONS 

A multistory shear-type building under a uni-dimensional 

seismic excitation is considered. The structural model consists 

of Ns=10 stories modeled by lumped masses m connected by 

geometrically nonlinear beam elements. The hardening 

behavior of steel beams is taken into account for large elastic 

displacements by an additional cubic nonlinear stiffness as in 

[11,12]. The structure is sketched in Fig. 1 and the equation of 

motion for the j
th

 story is  

  (34) 

where gj is the j
th

 component of the nonlinear force vector 

with 1≤j≤Ns-1,defined as 

  (35) 

and where Yj represents the horizontal displacement of storey j 

with respect to the ground motion. The structural masses and 

stiffnesses are m=1290tons, k=10
8
 N/m and c results from a 

Rayleigh damping imposed to 1% in the first two linear 

modes. The natural frequencies of the first five linear normal 

modes are 0.21, 0.62, 1.02, 1.40, 1.75Hz. 

 

   The parameter  quantifies the intensity of the nonlinear 

forces. It is considered as a variable parameter in this example 

in order to demonstrate the viability of the proposed approach 

for slightly to moderately nonlinear structures. 

 The 1-D ground motion is modeled with a modified Kanai-

Tajimi spectrum [3], with the stationary power spectral 

density given as 

  (36) 

with 1=5rad/s, 1=0.2, 2=0.5rad/s, 2=0.6 and S0=0.03 

m²/s³. 

 

 

Figure 1. Sketch of the considered structure. 



 

Figure 2. Illustration of the lack of convergence of the fixed-

point algorithm. The main graph represents the power spectral 

density of the ground excitation; the vertical lines localize the 

natural frequencies of two successive iterates (shown in inset). 

 

The classical fixed-point method fails to converge in the 

solution of this problem for moderate nonlinear behavior. The 

algorithm is trapped in a period-2 cycling, without converging 

thus. This is illustrated in Fig. 2 with results obtained in the 

nodal basis for the 10 degrees-of-freedom. After a number of 

iterations, the algorithm provides a provisional estimation of 

the covariance matrix that is large enough (result with 

stars in Fig. 2) to provide a significant equivalent stiffness 

matrix Keq, compared to the initial stiffness matrix of the 

underlying linear model. This additional damping 

substantially shifts up the natural frequencies of the equivalent 

linearized structure. This increase in the natural frequencies 

translates into a reduction of the response, since the frequency 

content of the ground excitation is smaller at high frequency. 

Consequently, the new iterate of the covariance matrix is 

much smaller than the former provisional state. This leads to a 

smaller equivalent stiffness matrix and finally larger ground 

excitation which drive the iterations back again to the 

provisional state. Figure 2 illustrates this lack of convergence 

of the fixed-point algorithm. The inset shows the covariance 

of nodal displacements corresponding to these two iterates 

between which the algorithm switches back and forth. The 

exact solution lies somewhere in-between, as indicated by the 

thick dashed line.  

 

For value of  smaller than 10 (the numerical value considered 

in Fig. 2), the convergence of the fixed-point algorithm is 

actually really slow, for similar reasons. 

The explanations given above make it clear that this poor 

convergence is a result of the decreasing nature of the power 

spectral density of the excitation. A reason why this sort of 

lack of convergence is seldom illustrated is that the typically 

considered academic examples assumed a white noise or 

broad band, ground excitation. This prohibits the occurrence 

of the period-2 cycling in the algorithm performances. 

   For this problem, the proposed method (with N=2, two 

terms in the series expansion) reaches convergence thanks to 

the advanced convergence properties of the Newton-Raphson 

algorithm. We also take advantage of this example to illustrate 

the updating procedure of the equivalent matrix  that is 

used to determine the reduced basis. 

In a first run, the linear structure (=0) is analyzed. This 

provides a first estimation of the covariance matrices of 

displacements and velocities. To compute the equivalent 

matrix  with the response of the linear system proves to be 

too severe. Instead, only a fraction of the variances of the 

displacements and velocities of the linear structure are 

considered. Consistently with the ratio the internal forces from 

the linear structure and those in the equivalent linear one, this 

fraction is chosen as 1/(1+3). In the sequel, we explore the 

possibility to update the equivalent matrix  until twice 

during the iterations of the Newton-Raphson algorithm. 

Update is to be activated when the convergence criterion of 

the asymptotic series (25) is weak, or when getting closer to 

the converged solution. In this latter case, an ultimate update 

of the equivalent matrix offers a more accurate reduced 

basis, and therefore a more accurate estimation of the 

structural response   and . 

 

In all simulations, five modes are kept in the reduced basis. 

Although the index of off-diagonality J is rather large when 

the equivalent stiffness matrix is not updated, see results 

labelled 
(0)

 in Fig. 4-a, this actually does not prevent the 

proposed method to converge.   However, there remains a 

discrepancy with the exact solution because the approximation 

of the equivalent stiffness matrix does not exactly fit the 

equivalent stiffness matrix corresponding to the final 

displacement. With this respect, the projection into five mode 

shapes is not rich enough to represent the covariance of the 

response. 

 

 

 
Figure 3. Index of diagonality as a function of the level of 

nonlinearity and error estimates on the covariance of the 

response (estimated with respect to the exact linearization). 

 



 
Figure 4. Standard deviation of the transverse displacement 

for various level of the nonlinearity. The proposed approach 

matches perfectly the results of the exact linearization. 

 

However, with one, respectively two, update(s) of the 

equivalent stiffness matrix, as represented by the results 

labelled 
(1)

 and 
(2) 

in Fig. 4-a, these two limitations are 

circumvented at once. On the one hand, we can decrease the 

diagonality index to very small values, which ensures the fast 

convergence of the series expansion (25). This guarantees a 

perfect accuracy of the second order approximation (N=2) of 

the series. On the other hand, with an update or two of the 

equivalent stiffness matrix, the reduced basis in which the 

response is projected much better suit the formal normal 

modes of vibration of the equivalent linear system, as given in 

(10). 

The proposed approach was tested for several values of the 

parameter , which rules the intensity of the nonlinear forces. 

Every result displayed in Figs 3-4 is obtained from a condition 

at rest, and thus not on with a continuation procedure. This 

just aims at demonstrating that our algorithmic arrangement is 

able to cope with initial conditions that are possibly large 

from the actual solution. 

With the initial estimation of , convergence toward a 

solution is achieved with less than four iterations, in any 

configuration ( in [0;50]). In order to illustrate the influence 

of the update of the equivalent stiffness matrix , its is 

updated once from this converged solution. Another series of 

iterations (four again at most) provides a better estimation of 

the covariance of the nodal displacement. At last but not least, 

whenever a second update of   is required, we extend with a 

couple of iterations, from there again, with the updated 

matrix. 

This finally provides the results of Fig. 4, which are  

virtually in perfect agreement with the results obtained with a 

formal solution of the equivalent stochastic linearization 

procedure. This latter reference results were obtained with the 

fixed-point method, started this time from the converged 

solution of our algorithm. As is starts close enough to the 

exact solution, the fixed-point method behaves much better in 

this case. The results in Fig. 4 indicate that  =25 produced 

significant nonlinear forces, as it results in a decrease of the 

response of the linear system ( =0) by almost 50%. 

The overall 2-norm error, reported in Fig 3-a, is at most 

equal to 1%, both on the diagonal terms of the covariance as 

well as on the whole covariance matrix itself. This 

observation is also valid for large nonlinearities, as the only 

remaining assumption in the method is related to the 

truncation of the series expansion, which after all converges 

very fast as the diagonality index is kept very small. 

4 CONCLUSIONS 

The proposed developments demonstrate that for slightly 

coupled nonlinear systems, the equivalent linearization can be 

seen as a convergent series of correction terms around the 

stochastic response of a main decoupled linearized system. 

The computational effort is thus attractively reduced, while 

the method also offers much insight on how to physically 

interpret the nonlinear coupling.  

The concept of asymptotic expansion of modal transfer matrix 

can thus be used to speed up the solution of the large equation 

set involving integrals by avoiding inversion of full transfer 

matrices and repeated integrations. 
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