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Abstract

Civil engineering structures that are built in the atmospheric boundary layer have
to be designed according to the gusty winds they are likely to withstand during their
lifetime. Traditionally statistical characteristics of the wind turbulence -as standard
deviation of and correlation between turbulence components, frequency content, etc.
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- are provided to structural engineers by meteorologists. The first dialogue between
these two communities dates back to 1960’s when they agreed on a list of necessary
statistical characteristics of turbulence that need to be observed and measured to feed
the structural models available at that time. In the framework of advanced wind loading
models developed recently, it turns out that this basic list of statistical characteristics
of turbulence is no longer sufficient.

In this chapter, we point out some quantities that would need to be measured and
others that are already measured but require a more precise estimation. This need is
justified by analyzing the sensitivity, to these quantities, of the structural response to
an advanced wind loading model.

After having introduced the need for advanced modeling of the wind loading, and
eventually thus of the wind turbulence, a nonlinear non-Gaussian quasi-steady loading
model is presented. Then the model is rigorously analyzed with cumbersome mathe-
matics and statistics, with the permanent background aim at estimation of the influence
of the turbulence properties. Final results are however presented in a concise way in
order to pave the way for the future dialogue between engineers and meteorologists,
and so build up the advanced design procedures that will presumably be used during
the coming decades.

1. Introduction

A body immersed in a fluid flow is subjected to pressures resulting from the deviation of
the flow around it. So is the case of civil engineering structures. Moreover, when the
considered body is flexible, i.e. susceptible of moving in the fluid flow under the action
of these pressures, its motion generates moving boundary conditions which perturb the
flow. Pressures applied on the body are consequently modified and this ultimately results
in a fluid-structure interaction. From a modeling viewpoint, this coupling requires solving
simultaneously the fluid equations (Navier-Stokes) and the continuum equations (Theory of
Elasticity).

In this picture, turbulence takes place at two levels. First, under consideration of struc-
tures in the atmospheric boundary layer, the wind flow is a high-Reynolds fluid flow and the
turbulent upstream wind creates therefore time-dependent forces on the considered body.
Second the bluffness of the considered body, a typical feature of civil structures, exac-
erbates the triggering of a turbulent wake. It is commonly accepted that the motion of the
body in the fluid flow strongly influences these signature effects. An accurate determination
of the time-space pattern of the wake needs therefore to be studied by means of adequate
fluid-structure interaction simulations.

The design of civil engineering structures needs to embody these two aspects of tur-
bulence [1, 2, 3]. Nevertheless, designers are essentially interested in pressures acting on
structures and the features of the outward fluid flow are usually of relative importance, if not
left behind to fluid dynamists. In caricatural structural engineers’ opinion, fluid-structure
analyses typically provide an exhaustive and confusing information, sometimes with a ques-
tionable pertinence. Moreover, the coupled analysis of a long bridge or high building would
still require weeks of computation, even on supercomputers. Today, fluid-structure interac-
tion models are rather devoted to the simulation of typical bridge/building cross sections,
i.e. the study of only a limited part of the structure, similarly to what is done in the aero-
nautic industry where typical wing cross sections are modeled rather than whole airplanes.
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Consequently, it turns out that experimental characterization by means of wind-tunnel tests
remains a reference when wake effects and other aeroelastic phenomena have to be studied
precisely.

On the contrary, the structural analysis under the second kind of turbulence, i.e. a
turbulent oncoming flow, so-called buffeting analysis, has been modeled and studied for
more than fifty years. In this context, the solution of Navier-Stokes equations is avoided
and the turbulence is considered as an external loading, obviously random and henceforth
characterized by means of probabilistic quantities. Within this framework, the assumptions
of linear structural behavior as well as stationarity and Gaussianity of the turbulent loading
have been accepted since the very early developments of these theories [4]. Actually this
combination of assumptions is a key issue that allowed stochastic dynamic analyses to be
performed fifty years ago. Indeed, the advantages of a frequency approach in a modal basis
gave the opportunity to analyze large finite element structures. Although the original single
mode method was improved to multiple modes [5, 6, 7], with uncorrelated then correlated
modal responses, the three assumptions have so to speak never been reappraised. This
pseudo-sedentary context enabled meteorologist and structural engineers to agree on the
complete statistical description of the atmospheric turbulence that is necessary to feed this
simple analysis model [8]. It consists in a Gaussian random field with correlation in time
and coherence in space. This description is presented in more detail in Section 3.1..

It should be added that assumptions of linearity, stationarity and Gaussianity were
specifically formulated in days where the computational possibilities were tremendously
lower than what is available today. With a retrospective overlook , we may consider that the
last fifty years were just the start-up period of buffeting analysis and that the twenty-first
century will offer the computational means to tackle more realistic problems involving one
or several of the so far assumed limitations. Some noticeable contributions have already
been proposed in order to accommodate the buffeting model with a nonlinear structural
behavior [9, 10, 11, 12], or non-stationary wind pressures [13, 14, 15, 16]. In this chap-
ter we envisage the nonlinearity of aerodynamic forces, which results in a non Gaussian
wind loading. The considered turbulence model is the Gaussian field for want of anything
better, but it is evident that a more accurate representation of the turbulence (by means of
a non Gaussian random field as it is most likely the case) would allow to better focus on
the special features of the statistical properties of turbulence. In other words, because of
the nonlinearity of the aerodynamic forces, a more accurate non Gaussian turbulence field
could be considered at no extra cost, compared to the advanced non Gaussian structural
analysis available today. Aiming at an expansion of the domain of applicability of this non
Gaussian structural analysis model, we address in this chapter the problem of highlighting
the required non Gaussian statistical properties of the atmospheric turbulence.

The most direct route to the characterization of wind forces is evidently to post-process
pressure data, whenever they are available (wind tunnel or CFD results). Next we consider a
variant of this characterization, because emphasis here is put on turbulence modeling, where
the random forces are expressed via random pressures, which are themselves expressed as
a quasi-steady transformation of the random velocity field of turbulence.
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Figure 1. Cartesian reference system (ep,e2,eg) and another fixed reference system
(e}, e3, e}) oriented with respect to the mean wind direction.

2. Probabilistic Turbulence Model

Let (e1, ez, e3) a Cartesian reference system, with eg pointing upward, see Fig. 1. The
wind velocity V (x,t) at a given point x = (x1, x2,x3) in space is supposed to be a sta-
tionary random field. Without any loss of generality, it may therefore be written as the sum
of a mean velocity U (x) (computed on a period of time much longer than the time-scale of
the turbulence, so typically 10 minutes) and fluctuations u (x, t) around the mean velocity

V=U+u. ey

In flat terrain where the mean wind flow is horizontal, a local reference system is defined
with respect to the mean flow as

U
e’{zﬁ; e; —eg X e]; e3=eg ()
in such a way that
U=, 0, 0)' ; u=(uvw) 3)

in (e, €3, e3). The introduction of this new reference system allows interpreting u, v and
w as the (zero mean) longitudinal, transverse horizontal and vertical components of the
turbulence. Because the mean wind direction may change from place to place in space, we
however need to concede that this referential may vary in space. In typical applications
however, the space is divided into three to five zones at most, and the referential system is
supposed to be constant throughout each zone.

Locally the turbulence is therefore represented by three random processes u, v and w.
Their formal probabilistic description requires to characterize unilateral quantities as well as
crossed probabilistic quantities between different components, and different spots in space.
They are detailed in this Section.

2.1. Unilateral probabilistic description of turbulence

The exhaustive description of a random process u is given by its multi-rank probability
density function pq(fo) = py(uq,ti;ug, to;...) which represents a scaled probability that the
process u concurrently takes values in [ug, ux + duy] at times t, for k = 1,...,00. For
experimental reasons, it is difficult to identify this joint probability density function (pdf)

for ranks larger than four or five [17]. The description of the components of the turbulence
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are however usually limited to the second rank pdf [18, 1]. In this framework, the time delay
At = to — t; is introduced, and on account of the assumed stationarity of the turbulence,
the second rank pdf writes

PP = pu (ur;up, At) 4

with the meaning of a joint probability density function of the considered component of
turbulence at two times delayed by At. In order to condensate the information in this
function, it is usually replaced by some mathematical expectation

+oo  ptoo
E g (u1,u2)] :/ / g (ur,uz) pi? (u1; ug, At)duy dus. )

Central moments are the expectations obtained for g = u’lu% (u is a zero-mean process).
Among them, the autocorrelation, obtained for i = j = 1, i.e. R, (At) = E [ujug], play a
pivotal role. We may notice at this stage that the first rank pdf is recovered by considering
all possible values for w2, i.e. by integrating along s

+oo
o) = / p® (ur;ua, At) dus. (©6)

o

In wind engineering applications, for simplicity, pq(}) (uq) is usually considered to be the

(zero mean) Gaussian distribution and is therefore explicitly determined by its standard
deviation o,,. Furthermore, the joint pdf pz(f) (uq) is assumed to be the bivariate Gaussian
distribution with identical marginal distributions for u; and ug, because of stationarity, and
a correlation coefficient p,, (At), i.e.

1 u%72pu(At)u1u2+u§
205 (1-p2(AL) (7)

e
2mo2+/1 — p2 (At)

It is straightforward to prove [19] that the correlation coefficient is related to the autoco-
variance through

732) (ul, ug, At) =

Ry (At)
UU
Because p, (0) = 1, the autocovariance function encapsulates information about o2 (the
intercept of the autocovariance function). An alternative representation of the autocorrela-

tion function is the power spectral density (psd), defined as its Fourier transform

I .
Su(w) = / Ry (m)e " dr. )
27 J_ o

This representation is preferred by structural engineers because the structural analysis is
usually conducted in the frequency domain. There are also evidences that the turbulence
may advantageously be considered as a set of eddies with a continuum of wavelength, see
for instance the famous Kolmogorov cascade [20].

Under so-called ergodic conditions, the psd of a turbulence component may be ex-
pressed as a function of the Fourier transform F7 [u] of an ideal realization of the random
process

.2
Su(w) = lim =2 |1 Fr [u]]® (10)
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where 1" represents the duration of the considered realization. Ergodic conditions are al-
ways supposed to be met; the psd of turbulence components are basically estimated from
experimental measurements with (10) where the measured signals are long enough so that
the limit for 7' — oo is supposed to be reached. Many theoretical models of the turbu-
lence psd are available. The interested reader may refer to [3, 8] for commonly adopted
expressions.

In summary, in the context of Gaussian turbulence, only one quantity, the psd, is pro-
vided for each turbulence component in order to fully characterize them. In particular, from
definition (9) and its inverse Fourier transform, it is possible to prove that the integral of S,
along frequencies corresponds to the variance of the process

+0o0

= / Sy (W) dw. (11)

—00

This illustrates again that a second rank quantity (psd) embeds first rank ones (variance).

2.2. Crossed probabilistic description of turbulence

Because they follow from the same phenomenology, the three components of the turbulence
at the same location in space are not totally independent. Their first rank mutual interde-
pendence is quantified by means of a correlation coefficient. Three coefficients are distin-
guished pyy, Puw» Pow but only the second one is typically assumed to be non zero [21, §].
Again, these first rank scalar quantities are associated to second rank functions, namely the
cross-correlations Ry, (At), Ry, (At) and Ry, (At) and the cross power spectral densi-
ties Sup(w), Suw(w) and Sy, (w). For reasons similar to those mentioned above, the latter
ones are essentially considered in practice and correlation coefficients are recovered by in-
tegration along frequencies. In the framework of Gaussian turbulence, the cross-psd’s are
the necessary and sufficient information to fully describe the joint statistics of the different
components of turbulence; and again, various models are available.

The crossed probabilistic description of turbulence addresses also the correla-
tion/coherence of turbulence components at various locations in space. In the frequency
domain, it is represented by a coherence function I' (w), about which everyone agrees that
it globally needs to decrease with frequency, as, for a given distance between two mea-
surement points, high frequencies are attributable to small eddies that are less likely to
bring coherence between both measurements. It seems however that there is no universal
agreement on the particular expression of coherence functions: real or complex, exponen-
tially decaying/based on Bessel functions, experimental/theoretical/semi-empirical [8]. In
the framework of a Gaussian turbulence, the cross-psd’s of the turbulence components be-
tween various points in the space are strictly sufficient to provide an exact description of
the stochastic processes.

For the sake of conciseness in the notations, the unilateral and cross-psd’s are gathered
in a psd-matrix, as

Su(w)  Sou (W) Swu (W)
Suv (w) SU (w) Sﬂw (LU) : (12)
Suw (W) Sow (W) Sw (w)

More generally, any random field, as (u, v, w) here, is characterized by a psd-matrix.

Su (w) =
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2.3. Higher rank description of the turbulence

Several wind-tunnel tests, field measurements and numerical simulations [22, 23, 24, 25]
have revealed the non Gaussian nature of turbulence. Apparently, consideration of Gaus-
sian wind velocity and acceleration is not a realistic statement. For instance, estimates of the

probability density function p&l) obtained from real wind data indicate a significant skew-

ness, i.e. non-zero third order probabilistic moment. However, the first rank pdf pq(}) (u1)
does not contain an exhaustive information about the frequency distribution of the third
probabilistic moment. Nor does the second rank pdf pg) (u1). In fact a rank-m pdf does
not contain the frequency distribution of a statistical moment of order n, with n > m. With
this respect, exactly as the second rank properties (psd/autocorrelation) have to be consid-
ered in order to characterize the frequency distribution of the variance (second moment),
third rank properties, the bispectrum and the bicorrelation, need to be considered for the
frequency distribution of the third moment [19].

As a matter of fact, this distribution is of paramount importance because the structural
analysis under consideration here is a dynamic analysis where the structure is susceptible
of exhibiting resonance phenomena. So, let us come back to the multi-rank probability
density function pq(fo) and (marginally) integrate it now to the third rank pdf pq(f’). Because
of stationarity, the three arguments t1, t2, t3 may be replaced by two delays At; = to — 3

and Aty = t3 — t1 such that
P = pu (ur;ug, Aty uz, Aty) . (13)

This function definitely encloses much information, as for instance the second and first rank
pdf (by integration along u3), and a series of moments as

+oo
E[f (u1,ug,u3)] = // f (u1,uz,u3) p&) (u1; ug, Aty; uz, Aty) duy dug dus. — (14)

Selection of f = u{ujzulg with k& = 0 shows that second rank moments as the autocorre-

lation function are enfolded in the third rank pdf. Of more importance is the bicorrelation,
obtained for 1 = j = k = 1 and thus defined as

By, (Aty, Aty) = E [ujugus] . (15)

The value of B,, (0,0) at the origin corresponds to the third central moment p3, exactly
as R, (0) = po = o2. For practical purposes, the two-fold Fourier transform of the bicor-
relation, namely the bispectrum D,, (w1, ws2), is used as an alternative representation of the
third rank properties

+o0o
1 ) )
D, (w1,we) = ] //Bu (11, 70) e 1T e 224 d Ty (16)
—0o0

and, similarly to (11), the third central moment is obtained as

+o00
M3 = ﬂDu (wl,WQ) dwldCUg. (17)
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Figure 2. Components v and w of the 2-D wind turbulence and forces generated on a body
immersed in the turbulent fluid flow.

This is the first function that represents the frequency distribution of the non Gaussian tur-
bulence. Similar functions exist for higher orders (trispectrum, etc.). Despite the evidence
that the wind turbulence is not a Gaussian process, very few information is available in the
literature concerning realistic expressions of D,,.

2.4. Short summary

This short glossary of the statistical terms that will be used in the following sections was in-
troduced in the context of atmospheric turbulence. Actually, any other kind of random field
or random process is characterized by means of similar quantities. One could thus simply
change the indices used in the previous two sections and consider therefore that other ran-
dom processes are rather being surveyed. For instance, a random structural analysis consists
in determining the statistical characteristics (of any rank) of the structural response. They
are naturally described by means of their unilateral and cross-psd’s, all gathered together
in S, (the psd matrix of the structural response), as well as higher rank properties in the
context of a non-Gaussian description of the response.

3. Non Gaussian Forces Induced by Turbulence

3.1. Origins of Non Gaussianity

Pressures applied by the fluid flow around a body immersed therein are commonly inte-
grated along the external surface of the body to yield six components, three forces and three
moments of the aerodynamic tensor. They may be expressed at the center of gravity of the
body, or more usually at the aerodynamic center (the point at which the pitching moment
coefficient does not vary with the angle of attack, approximately the quarter-chord point for
symmetric profiles).

In a quasi-steady context, each of these components is expressed as [2]

1
F = 2pCB|v|’ (18)

where p is the air density, B is a characteristic surface or volume and v is the relative
velocity of the wind respect to the structure, which is expressed in the reference system
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(e1,e3,€3) as

U+u—2x*
v = v—y* (19)
w— z*

where x*, y* and z* are the components of the body velocity in the local wind frame. For
the sake of simplicity, we will consider next that the wind flow is 2-D, in the (e}, %) plane.
The wind incidence is therefore expressed as, see Fig. 2,

) w—z* .
Z—arctanU_i_u_:U*—a. (20)
The aerodynamic coefficient C' introduced in (18) corresponds to a particular com-
ponent of the aerodynamic loading. For complex body shapes, it is usually measured in
wind-tunnels although recent advances in CFD offer now rather good estimates. The aero-
dynamic coefficient is typically dependent of the shape of the considered body, but also,
for a given body, to its orientation with respect to the oncoming flow. In other words, the
aerodynamic coefficient measured on a fixed given body depends on the wind incidence. A
simple expression is [26]

P
C (i) = e, QD
k=0

The quasi-steady nonlinear loading model is obtained by substitution of (19)-(21) into
(18). From a first rank point of view, we may already concede that this nonlinear trans-
formation of the random processes related to turbulence components u, v and w results
in a non Gaussian aerodynamic loading, regardless of the consideration of u, v and w as
possible non Gaussian processes.

From the above equations of the quasi-steady aerodynamic loading, we observe indeed
that the origin of non Gaussianity is essentially two-fold: (i) from the intrinsic properties
of the turbulence, and (ii) from the nonlinear factors in (18), namely the squared relative
velocity, the nonlinear geometric expression of the angle of attack and the nonlinear aero-
dynamic coefficient. The first feature is not included in structural analyses today, mainly
because of the lack of knowledge about bispectrum and trispectrum of turbulence. Con-
cerning the second feature, several advanced models exist that encapsulate one or several of
the three nonlinear expressions. These models are qualified as advanced because the ma-
jority of the analyses performed today still hinges on a Gaussian turbulence and linearized
expressions of the three nonlinear factors.

In Section 3.3., we will show how a structural dynamical analysis may be conducted
under non Gaussian loading. There is no doubt that the analysis method is applicable no
matter the origin of the non Gaussianity, i.e. intrinsic to turbulence or not. The analysis
tools are therefore ready to accommodate for a more precise description of the turbulence
and we may therefore claim that a more sophisticated turbulence model could be granted in
the design procedure at no significant extra cost.

3.2. Extremes of Non Gaussian processes

The non Gaussian nature of a random process is usually assessed by its cumulants of orders
higher than two. The influence of the third cumulant/moment is to skew the probability
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Figure 3. Extreme values of Gaussian and non-Gaussian processes. This figure shows that
the linearized aerodynamic force underestimates extreme forces (square Gaussian process
with small intensity): realizations of a non-Gaussian (a) and Gaussian (b) aerodynamic
force signal; histograms of the force in Cartesian (c) and logarithmic (d) plots; probability
distribution of the extreme values (e), in terms of peak factors.
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distribution to the left or to the right, and consequently to affect the distribution in the tails
of the pdf. This results in a more or less significant modification of extreme values, i.e. those
that are precisely considered for a design. This simple deduction on a first-rank quantity
(the pdf) actually needs to be complemented in order to formally establish the statistics of
extreme values. Extreme values are defined as the expected maximum (or minimum) of a
random process, given an observation window length 7T'. Sophisticated analytical models
have been developed in the context of Gaussian processes and more recently extended to
some classes of non Gaussian processes. The purpose of this section is not to present or
compare available methods, but well to illustrate the influence of the non Gaussian nature
of random processes on their extreme values.

For this purpose, a 1-D turbulent flow is considered (v = w = 0) and its frequency
content is obtained as a first order autoregressive filtering of a delta correlated noise e as

uip1 =au; + (1 —a)e; withi=1,...N. (22)

The filtering parameter a is obtained as a = 1+ 3/2— /B (1 + 3/4) with 8 = o2At?,
where « is a characteristic frequency and At is the time step used for the generation. A
realistic choice for atmospheric turbulence is o = 0.1 rad/s, see [27], and we sample it
here with At = 0.1s. The number of points in the synthetic realization of the wind flow
is N = 6,000, so as to generate a 10 minute long sample, in accordance with common
practice. Notice that the generation is performed for Ny = 10,000 values and the first
4,000 ones are dropped in order to free oneself from initial conditions. In a 1-D flow, the
wind incidence is constant and so are thus the aerodynamic coefficients; the nonlinearity
of the quasi-steady wind loading comes down to the quadratic expression of the relative

velocity. For simplicity we consider next a fixed structure in the flow (¢* = y* = z* =
o = 0) and define a dimensionless aerodynamic force

B F P u w2
T I,0BU2 U7 =142+ () 23)

This expression shows the existence of a quadratic term which is usually neglected owing
to its (mean-square) smallness; an approximate linear form of this dimensionless loading is
thus often adopted

~ U
=1+2—. 24
F + i (24)

These expressions show that the loading only depends on the dimensionless turbulence
u/U, which is characterized by the turbulence intensity
o

I, = ﬁ" (25
chosen equal to I,, = 20% in the present illustration. The turbulence generated with (22) is
thus ultimately normalized by the standard deviation corresponding to this wind intensity.
Figure 3-a,b represents samples of F and F generated with this procedure. Notice that
is evidently always positive whereas /* may eventually be negative. Figure 3-c.d represents
the histograms of F and F as estimates of the probability density functions. They have
been obtained as the average histogram of 500 simulations in order to obtain smooth results.
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The parabola shape in semi-logarithmic axes indicates a Gaussian distribution for F. On
the contrary the semi-logarithmic plot emphasizes the limit F > 0 and illustrates clearly
the non Gaussianity of the aerodynamic force. This point is of major concern since both
curves tail apart for values larger than 2. The statistics of the extreme values are assessed
by simulating 10,000 samples of duration 7" = 600s, storing the maximum and minimum
forces obtained on each sample for both aerodynamic expressions, namely m; , M; , m;
and m; , and computing their statistics. Actually, the comparison is rather performed for
peak factors defined as

+  Mi—pr  _ prp—my

g = —— ; g ==
oF OF

R M; — pz L pE—my

o = —L 4 ="T— (26)
O']_’: O']_’:

for: = 1,...,10,000, where pr, u 7 OF and o 7 represent the mean values and standard
deviations of the aerodynamic forces. The histograms of the peak factors are represented
in Fig. 3-e. We can observe identical distributions for g;f and g; which is due to the
probabilistic symmetry of the linearized aerodynamic force. On the contrary, the nonlin-
ear model exhibits different behaviors for values larger and resp. smaller than the mean.
It goes with saying that the estimation of design quantities is obviously affected by the
“small” quadratic term. This statement is usually disregarded because in a typical statistical
analysis, only the mean and standard deviation are considered and they are manifestly not
significantly affected by the quadratic term of the loading (ur ~ puz, oF ~ 03).

In this illustration the actual peak factor is larger than what would be obtained in the
linearized case, because of the presence of only a quadratic term as non Gaussianity catalyst.
The linearized case yields therefore to an unsafe design. Opposite situations may also
happen where actual extreme values are smaller than those predicted by a linear model; in
this case, the design could be more inexpensive, for the same level of safety.

This kind of Monte Carlo illustration is typically not affordable at a design stage. In
practical applications the extreme value F.,; of a random process (the aerodynamic force
here) is expressed as

Feat = HF+goF (27)

where g is a peak factor obtained from an analytical model. The most famous is certainly
due to Rice [28, 29], under assumption of a Gaussian process with independent occurrences
of extreme values during the observation window of duration 7T,

g= /2y T+ ——t (28)
\/2ln1/6F

where v = 0.5772--- is Euler’s constant and VSL is the zero upcrossing rate, which may
be readily deduced from the psd. This universal function is represented in Fig. 4-a, which
indicates that typical peak factors for Gaussian processes are in the range [3;4].

When it comes to extremes of non Gaussian processes, various models exist [30, 31,
32, 33, 34, 35, 36, 37, 38, 39]. Among them, a famous model was developed for cubic
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Figure 4. (a) peak factor of a Gaussian process with independent occurrences of extreme
values; (b) Multiplicative factor that allows taking into account the non Gaussianity. In this
non-Gaussian model, this factor k,,, is simply expressed as a function of the skewness ~y3
and excess ", coefficients.

transformations of Gaussian processes [40]. It consists in simply estimating the peak factor

as
_ / + v
g = kng 2Inyy T+ —F—mne | 29)
\/QIHVS_T

where k4 is a multiplicative factor that takes into account the non-Gaussian nature of the
random process. This factor k4 is expressed as a function of the skewness coefficient 3,
the excess coefficient . and the number of zero upcrossing during the observation period
1/6r T. It possesses an analytical expression derived from mathematical developments, and
is represented in Fig. 4-b for V(J{ T = 600, a representative order of magnitude in wind
engineering applications (1" = 600s, 1/5r ~ 1Hz). This model suggests that the Gaussian
model underestimates extreme values by as much as 30%-50%, which is by the way the
order of magnitude of the discrepancy noticed previously with the Monte Carlo illustration.

In the light of this simple extremum model, it appears that the proper estimation of
the skewness and eventually excess coefficients of random processes is of paramount im-
portance. Next, we present how these statistical properties of the structural response are
computed, and how turbulence characteristics may affect them.

3.3. Non Gaussian structural analysis
The dynamic response of a structure is expressed by means of the equation of motion [41]
Mx+Cx+Kx=f (30)

which translates the equilibrium of inertial and viscous damping forces, as well as external
f and internal Kx forces. In a finite element context, M, C and K represent the mass,
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damping and stiffness matrices while x represents the nodal displacement of the finite el-
ement model and f collects the forces resulting from the turbulent wind flow around the
structure. This equation assumes that the structural behavior is linear.

The first rank stochastic analysis is trivial. It consists in determining the mean response,
on the basis of the mean force. After the transient phase vanishes, or under stationary
conditions, the mean structural response is simply obtained as

px = K g (€29)

We discuss next the procedure to obtain higher rank properties of the structural re-
sponse.

If one is interested in the stationary response of the considered structure under a given
stationary loading, the Fourier transform of (30) is strictly equivalent and provides a bare
insight on the dynamical response. It simply writes [41]

X (w) = H (w) F (w) (32)

where H (w) = (—Mou2 +1wC + K) s the (complex) transfer function of the system.
This formulation is attractive when the applied loading is a random field as the pressures
resulting from the turbulent flow. Indeed as show in (32), thanks to structural linearity,
every single frequency component may be treated independently from others. Furthermore,
the psd of the applied force is expressed as a function of the Fourier transform of the force
field, i.e. F (w), by extension of (10). It is then rather straightforward that the psd of the
structural response Sx (w) is expressed as

S () = H (1) S () HT () (33)

where S ¢ (w) is the psd of the loading. Because the aerodynamic force is related to the com-
ponents of the turbulence by means of the aerodynamic loading model, see e.g. 18, the psd
of the loading S (w) may be expressed as a function of the psd of the turbulence compo-
nents. The advantage of the quasi-steady theory is to consider a static transformation from
(u,v,w) to the applied forces f. This static transformation is not capable of representing
properly the dependency of the wind loading upon the history of the structural motion. For
this reason, the psd of the loading is corrected by multiplying, in the frequency domain, the
expression obtained from the aerodynamic loading by an admittance function [1, 18, 42].
This function is typically measured in wind tunnel for bluff bodies as civil structures. A
deeper discussion on this topic goes beyond the scope of this chapter. We refer to [43, 44]
for more information.

Because the psd contains the information necessary to represent the second order statis-
tics of a random process, in particular the variance which is obtained by integration along
frequencies as in (11), ux and Sx (w) are sufficient to provide an exhaustive description of
the response, provided it is Gaussian, i.e. provided the loading is Gaussian. Traditionally,
random structural analysis stops here and analytical peak factors, as given in (28) are called
for to determine extreme values.

Nevertheless, we have previously seen that the actual non Gaussian nature of a random
process may drastically affect its extreme values. In particular, the non Gaussian random
loading resulting from the turbulence, provides a non Gaussian structural response. By
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Sy (w) H (w)|” Sz (w)

Figure 5. Principle of analysis in the frequency domain. (a) Second order: the psd of the
response is obtained by multiplication of the psd of the loading by the squared transfer func-
tion |H (w)|?; (b) Third order: the bispectrum of the response is obtained by multiplication

of the bispectrum of the loading by the Volterra kernel H (w1) H (w2) H (w1 + w2).

extension of the second rank analysis, the third rank analysis may be regarded as the deter-
mination of the bispectrum of the response Dy (w1, ws2) as a function of the bispectrum of
the loading D¢ (w1, w2 ). For instance, in the case of a single degree of freedom system, this
relation writes

Dy (w1,w2) = H (w1) H (w2) H (w1 +w2) Dy (w1, w2) - (34)

It takes a similar but generalized form for multi-degree of freedom systems, see [45].
Because it encapsulates the (first rank) third statistical moment, the bispectrum is strictly
sufficient to give a third order probabilistic description of the structural response. Similar
developments may be extended to higher orders, with a limitation though due the fact that
bi-, tri-, ... spectra require n—order multiple integration in order to yield to the n‘* moment.
On account that the functions to be integrated present many zones with large gradients, the
computation of such integrals requires a lot of care in the meshing, and are practically not
affordable today for n > 4.

The principle of analysis in the frequency domain, based on (33)-(34) is illustrated in
Fig. 5.

The determination of higher order statistical moments, together with some other in-
formation about the band width of the response in the multi-fold frequency spaces, gives
access to more appropriate estimates of the peak factors g, by using (29) for instance. As
a consequence of the possible dissymmetry, there are typically two estimates of the peak
factors and (29) is therefore applied once for values larger than the mean, and a second time
for values smaller than the mean.
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The analysis method based on (30)-(32) operates in the frequency domain. A similar
method, usually referred to as the method of moments, exists in the time domain. In this
domain, the stationary solution is obtained as the solution of an algebraic equation, but
the method is restricted to a limited class of loading processes, which makes intricate its
application to the atmospheric turbulence.

Another analysis method yet is based on Monte Carlo simulations. Samples of the
aerodynamic forces are generated and deterministic structural analyses are performed to
determine the structural response. An ultimate statistical treatment of the response is per-
formed in order to provide the design values of the response. This method is typically time
consuming because it requires a large amount of simulations in order to provide reliable
estimates of extreme values. In the framework of a buffeting analysis where the turbulence
field (u, v, w) is generated and quasi-steady aerodynamic forces are computed according
to the developments of Section 3.1., this Monte Carlo procedure requires to start with the
generation of that turbulence field. Nowadays, in the absence of non Gaussian turbulence
models, the simulated turbulence field is typically Gaussian [46, 47]. However, generators
of non Gaussian random processes exist [48, 49] and they complete the set of necessary
tools for consideration of a more realistic turbulence model. Monte Carlo simulations are
therefore also receptive to non-Gaussian models of the turbulence.

3.4. Conclusions

Considering reversely the issues raised in this section, we may conclude that (i) structural
analysis tools are ready to take on non Gaussian models of wind pressures, which may
eventually be obtained as a quasi-steady transformation of the turbulence; (ii) the intrinsic
non Gaussianity of the turbulence may therefore be solely integrated; (iii) the lineariza-
tion of the aerodynamic loading, as usually performed, may yield to drastically over- or
under-estimated design quantities; (iv) advanced quasi-steady models generate some non
Gaussianity, based on nonlinear static expressions of the turbulence field, but the intrinsic
non Gaussianity of the turbulence is not included yet. A precise characterization of the
higher statistical properties of the turbulence could be integrated directly into the loading
models.

4. Simplified Structural Analysis under Turbulent Flow

We must concede that the rigorous stochastic analysis as based on (33)-(34) is still not com-
monly applied. Reasons are not only the frustration in front of the lack of knowledge about
the non-Gaussianity of wind pressures and turbulence velocities, but also the computational
demand of the method. In order to make the analysis method more affordable, several
simplified analysis techniques have been proposed. Basing the argument on an illustration
obtained with a particular simplified method, the purpose of this section is to show that such
methods may also be adapted to include turbulence properties that are not considered today.

For the sake of simplicity, a single degree-of-freedom system is considered with mass,
damping and stiffness represented by m, c¢ and k. Consideration of such a system is not
really restrictive since the stochastic analysis is anyway performed in a modal basis.
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4.1. Second order analysis

Let us come back to the quadratic loading (23). The power spectral density of F is given as
[45]

Sr(w)=(1+ 13)2 § (w) + %Su (w) + % /+Oo Su () Sy (2 —w)dQ (35)

—0o0
whereas the power spectral density of F is given as

4
U2
In these expressions, the intensity of the delta-Dirac functions in the first terms represents
the squared mean force. For the small turbulence intensities encountered in applications
related to atmospheric turbulence, we may agree that the mean force is insensitive to the
quadratic term of the loading. The second term provides, after integration along frequen-
cies, a contribution to the variance of order I2 whereas the third term in (35) , which origi-
nates from the quadratic term of the aerodynamic loading, provides a contribution of order
I2. For this reason, linear and nonlinear loadings are usually considered as equivalent with
respect to their variances, and more generally power spectral densities.

The formal application of (33) requires the psd of the response to be computed for many
frequencies so that the numerical estimation of its integral provides a precise estimation of
the variance of the response. In case of large finite element models, this yields to heavy
computational efforts, especially because the estimation of the psd of the force itself may
require a huge computational effort . In this connection, approximate solutions are usually
chosen. The most famous consists in observing that the natural period of civil structures is
one or several orders of magnitude below the characteristic time scale of the atmospheric
turbulence. The psd of the response, as computed by (33) on w € [—o0; +0o0], presents
therefore three distinct peaks, corresponding to background (1 peak) and resonant (2 peaks)
components. A fair approximation, apparently suggested by Davenport [S0] and later on
formally rationalized by Ashraf and Gould, see [51], consists in estimating the variance of
the response ms ., as the sum of two terms corresponding to these components, respectively,

Sz(w) =0 (w) + 7555 (W) (36)

mar | mwo Sy (wo)
R T

(37

maq. =

where wg = +/k/m is the natural frequency, £ = ¢/2muwy is the damping ratio and my ¢

is the variance of the aerodynamic force. Notice also that Sy (w) = (3pC BU 2)2 Sr (w)

according to the scaling chosen above. ’

Tracing back from (37) to the characteristics of the turbulence, we may see that the
variance of the structural response depends essentially on (i) the mean wind velocity U, (ii)
the turbulence intensity I,,, (iii) the psd of the wind turbulence around the natural frequency
Sy (wo). These issues have been raised for a long time as the predominant features of the
statistical properties [50]. Although the psd of the wind turbulence provided by various
codes, provisions and standards are not accurately consistent on S, (wp), everyone at least
agrees that these quantities require to be inspected with care in the context of a structural
design.
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4.2. Third order analysis

The bispectrum of F is expressed as a function of S, as a result of the consideration of the
nonlinear aerodynamic loading [45]

8
Br (wi,w2) = i [Su (w1) Sy (w2) + Sy (w1 + w2) Sy (w1) + Su (w2) Sy (w1 + w2)]
1 +oo
+W/—oo Su (24 wi) Sy (2 — wa) Sy (©2) d (38)

but under the assumption that u is Gaussian. Because of that, the bispectrum of F is evi-
dently null,
Bz (w1,w2) =0 (39)

but if this was not the case, it would simply be proportional to the bispectrum of w,
Bz = %Bu, as Sz (w) is proportional to Sy (w), see (36). In a framework where the
non Gaussianity of the wind turbulence would be taken into account, the actual bispectrum
of the force (38) should also be complemented by terms in B,,, and there are no reasons
yet to postulate that these terms related to the intrinsic non Gaussianity of the turbulence be
much smaller or much larger than those resulting from the nonlinearity of the loading.

For reasons similar to those evoked before, the computation of the third moment of
the response may turn to a heavy computational task, if (34) has to be twice integrated
numerically. Instead, and based on the same assumption of existence of multiple time

scales in the response, the third moment of the response m3 , may be expressed as [52]

3 +o0 B
k k —o0 (25 LL)O) -+ w?

(40)

m3q. =

A proper estimation of the third statistical moment of the response is therefore sub-
ject to a careful estimation of (i) the third statistical moment of the force mg3 y and (ii) the
bispectrum of the force B (w1, w2) in the vicinity of (w1, w2)=(wo, 0). The first issue is re-
lated to the proper identification of the nonlinear transformation from turbulence u to force
f on the one hand, and of the possible intrinsic statistical dissymmetry in the turbulence.
Concerning the estimation of B (w1, ws) in the vicinity of (w1, w2)=(wy, 0), Equation (38)
indicates that it is sensitive to .S, (wo) and Sy, (0) in the context of this quadratic Gaussian
loading. There is no doubt that B,, (wp,0) would also deserve a particular attention if the
intrinsic non Gaussianity of the turbulence was considered.

4.3. Further simplification

The practical application of (40) may still be demanding, despite the double integral has
been cut down to a single one. A possible way to further simplify the analysis (and that will
also highlight the major features of the turbulence that influence the structural response) is
to assume that the power spectral density of the turbulence is expressed as

a 02

a2 :aﬂ ' @D

Sy (w) =
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where a is a characteristic frequency that needs to be tuned in order to fit the actual data.
Various methods exists depending on the desired fitting objective [45, 27]. Substitution of
(41) into (35) and (38) and transformation from the dimensionless force JF to the physical
one f yield

a 1
= T 42
St (w) m27f7r a2 + w2 42)
a\?2 a® + 2 (w? + wiws + W}
Br(w) = mas () 5 (1 2) . 43)
™ (a® + w?) (a? + w3) <a2 + (w1 + wa) )
where the second and third statistical moments of the loading are obtained as
— 2. _ 3
ma,r = (pC BU 0y,) i may=31,(pCBUa,)". (44)
Notice that the skewness coefficient of the aerodynamic loading is obtained as
m3,
V3, f = 72/2 = 31,. (45)

(ma,f)

In this context of a 1-D turbulence flow, the pertinence of a third order analysis is therefore
directly related to the turbulence intensity.

Substitution of (42) and (43) into (33)-(34) and integration along frequencies provides
closed form expressions for the second and third statistical moments of the response. They
are written

maa = maaii Ao (SR€) 5 =54 () (46)
where
Ay = 2151 ?2(;;?(%’?)2 @7)
2+ (4
As — %+§£2 (%)2 k= ock (?0) (49

(1+2¢2) (142650 4 (22) ) (44462 + (20)%) (1+4g20 44 ()’

where ¢ (€), k = 0,...7, are polynomials in ¢ given in Table 1. Because ma, ;/k? and
ms,r/ k3 are precisely the second and third statistical moments of the response that would
be obtained if the response was quasi-static, factors .4 and A3 may be seen as the second
and third order dynamic amplification factors. They are represented by solid lines in Fig.
6. A major difference between both factors is that the second order one is unbounded for
& — 0 whereas the third order one is bounded to A3 = 3.

Finally the non Gaussian peak factor g that is considered for the design requires esti-
mation of the skewness coefficient of the response, expressed as

m3 Az ms g As
TV =~y = ey = V3,f- (49)
m3/2 (As mZ,f)g/Q Ag/z f
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32
352
8 (17 + 184¢%)
16¢ (53 + 184¢?)

131 + 20402 4 2816¢7
2 (197 + 11282 + 512¢7)
12 (3 4 34¢% + 80¢%)
24¢ (14 8¢7)

N NN R W= O

Table 1. Coefficients cj, for the computation of the third order dynamic amplification coef-
ficient, (48).

The ratio A,, = A3/ Ag/ 2 appears therefore to be the scalar that characterizes the
decrease of skewness from the loading to the response. As a consequence of the central
limit theorem, it is expected that a structure responds in such a way that it is more Gaussian
than the loading to which it is subjected (because the structural response is obtained by
convolution). It is thus expected that A, be smaller than unity. Moreover, A, is a function
of only ¢ and wy/a, i.e. the structural parameters, once a has been fixed. One can readily
check that the limit behaviors of .42 and A3 corresponds to a quasi-static response for a
highly damped structure (A ~ 1 for oo <EL L As ~ 1 for 1 < &) and to a dynamic
response for a slightly damped structure (Ay >~ 1/2¢ for { < J-; Az >~ 3 for { < 1).
These limit cases translate into asymptotic behaviors 4,, ~ 1 for quasi-static response
(¢ < 1),and A,, ~ €3/2 for a dynamic response (£ >> 1). The most basic and typical
shape of A, (£) is therefore monotonic, increasing from O to 1. This function is reported
in Fig. 6, for the particular psd of turbulence given in (41). Consideration of variants of
the previously assumed power spectral density (41) shows that A, is little sensitive to that
assumed frequency distribution. It is however much more sensitive to the nonlinearity of
the aerodynamic force.

Similar developments exist for the fourth order analysis and yield a scalar A,, that
similarly represents the reduction of the excess coefficient trough the process of the dynamic
response. It turns out [45] that this other coefficient is almost equal to A, . It is not further
discussed here.

As a conclusion, this design procedure presented in this section indicates that the skew-
ness of the response is smaller than the skewness of the loading. This latter one may there-
fore be considered as a safe estimate of the skewness of the response (A,, ~ 1). This
highlights again the need to precisely estimate the statistical properties of the aerodynamic
loads applied on a structure. Furthermore, if the shaping parameter a may be estimated
from the actual loading, the abacus given in Fig. 6 allows a more precise estimation of A,
and therefore the skewness of the response v, 3, thanks to (49).
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Figure 6. Dynamic amplification factors A2 and A3 of the second and third statistical
moment of the response. The second moment grows up to infinity for & — 0, whereas
the third moment is limited to three times its quasi-static values. The lower plot represents
A, the coefficient by which the skewness of the force is reduced to obtain the skewness
coefficient of the structural response.
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5. Focus on the statistical properties of forces generated by tur-
bulence

Along the same line as the conclusions of the previous section, and with the firm wish to
point out the statistical properties of the atmospheric turbulence that need to be considered
the most carefully, there is evidence that the statistical properties of the loading requires
a deeper investigation. To this aim, we come back in this section to a more general case,
where the 2-D wind flow around a structure with nonlinear aerodynamic coefficients is
investigated. More precisely, we consider the most general nonlinear quasi-steady loading
given by (18)-(21), but limit the turbulence field to two components (v = 0). This is
motivated by the fact that the structural motion takes place in a space of dimension smaller
than or equal to 2, e.g. along a line for a roof with a proper bracing system (dimension
1), in a vertical plane for a bridge deck (dimension 2), in a horizontal plane for a high-rise
building (dimension 2). It is often admitted that the small surface roughness and the large
structural rigidity along the third direction do not allow for a significant motion, which
therefore justifies the focus on a 2-D wind flow.

5.1. 2-D turbulence model

Plugging (19)-(21) into (18), one obtains

p * k
U+u—z*

k=0

F JE—
1pBU? B

. (50)

. u—z n w—z
U U
In the following, we consider one aerodynamic force at a time and F' may therefore
refer to drag as well as moment or lift forces.

The subtraction of z* and z* from the corresponding components of turbulence cor-
responds to considering the relative wind velocity. This is a simple way to introduce in
the model the aeroelastic effects (fluid-structure interaction), which is valid as long as the
quasi-steady assumption holds, i.e. as long as the considered reduced frequencies of the
motion are small. In the linearized aerodynamic model, this materializes by a supplemen-
tary damping. This damping may be positive or negative depending on c;, the derivative of
the aerodynamic coefficient with respect the angle of attack. Positive damping is of course
welcome, whereas negative damping may lead to troublesome situations when it compen-
sates for the structural damping [1].

Evenifz*/U <« 1and z*/U < 1, the formal neglect of * and z* is a crude assumption
that does not allow for instance the modeling of the supplementary damping in the linearized
aerodynamic loading. In the context of the nonlinear model (50), z*/U and z*/U are
indeed much smaller than unity but they are responsible for the existence of a nonlinear
damping, slight indeed, but sufficient to drive the dynamic response of the structure to that
of a nonlinear system. It is well known [53] that systems presenting a nonlinear damping
even slight exhibit a dynamic response that is significantly different from that of a linear
system. This particular case is not discussed further here as the main scope concerns the
characteristics of the turbulence. From (50) we thus drop terms in z* and z* and express
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the dimensionless aerodynamic force as

p

o k
E CL (arctan A)
1+14

k=0

F

f:*:
$pBU?

[(1 + )% + 0 (51)

where & = u/U and @ = w/U are the dimensionless turbulence components. In the
context of this 2-D turbulence field, the linearized aerodynamic force is readily obtained as

]AE = ¢p + 2¢cot + 1 W. (52)

The statistical properties of F are exhaustively expressed by its probability density

function pr (F) (pdf), which may be estimated, from the (known) joint probability density
function pg; of 4 and w, as

pr (F) oo (1, W) didi. (53)

d}—ﬁo dF /L:<F () <F+dF

The complexity of (51) does not allow however to express pr (F) explicitly. A possible
solution to cope with this problem is to limit the statistical description of F to its statistical
moments. In particular, raw moments are defined as

pFEE = E[}"k} fork=1,...,4+0 (54)

where E [ ] represents the mathematical expectation operator. Although an infinite number
of moments is in principle necessary to represent exhaustively the random variable F, its
representation is usually limited to the first few moments (typically up to pux4). Their
exact expressions may be obtained analytically but yields excessively long formulations.
In order to circumvent this problem, the asymptotic statistical moments obtained for small
turbulence intensities, I, I,, < 1 may be obtained [54]. For instance, for p = 2 (quadratic
aerodynamic coefficient),

2
pra =~ co (L+I2+12) + Lyper (1—2I2) + e (14 12) (55)
pro =~ o (1+6I2+212) + il (1+ (1+2p%) 12 +4I2)
3 5I2
teocal? (14 (1+2p%) I2 +412) + 31, <4 - 2“’)
+coc1Lulwp (64 617 +1012) + creol, Iy p (3 — 1517) (56)
prs =~ cy (141512 +3I2) + cipl Iy (943 (3 + 2p%) IZ + 30I2)
315I 8 2 2 2 3137 2
g (1+7L5) + cgerLulwp (15 + 9017 + 7217) + e
312 2112 9 7512
+cheal? (21” + (1 +2p) 912 + 2“’) + cAeal) <2 + 2“’)

+g (L+4p°) I2Tcico + 3eoctIy, (1 + 6 (14 2p%) 12+ TI2)

9 9 7512 45
+eoc3 1y, ( 7 (1+ 4p*) I2 + 4w> +ce1cs LI <4 — 10513)

+eoereal IS p (27 +9 (3 + 2p%) I2 +9012) . (57)
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These expressions are obtained regardless of the relative magnitude of cy, c¢; and c2 and
could eventually be further simplified if one of them was much smaller than the other ones.
Similar but simpler developments for the linearized aerodynamic force gives

PE1 = Co
HEo = g (L+41I7) + 12 + 4eoer plu Iy
pgs = 0 (58)

The particular shape of aerodynamic coefficients for bridge decks is such that cg is
typically of order 1, c¢; too -except for lift forces that may show a stronger dependence to
the angle of attack, up to ¢; = O(10)-, whereas ¢y is typically of order 10. Also based on
the fact that the turbulence intensities I, and I,, lie within the range [0; 0.20] depending on
the roughness of the surrounding terrain, one may conclude from (55)-(56) that the linear
model captures fairly well the most important terms necessary for a decent estimation of the
mean and standard deviation of the aerodynamic force. Other terms, i.e. those present in
(55)-(56) but not (58) are indeed of a smaller order of magnitude for this kind of application
(notice they may however become predominant for other applications). This explains why,
in the framework of the second order analyses performed during the last decades, linear
loading models were esteemed so much.

Nevertheless, the linear model is of course incapable of representing properly the third
and higher statistical moments of the loading, unlike the nonlinear model. Without a precise
information about the relative importance of cg, c;, c2 and eventually higher derivatives of
the aerodynamic coefficient, it is difficult to dig into the series of terms in (57) to take out, in
a general fashion, the dominant contributions. However, in practical applications, it appears
that the curvature cy and the intensity of the transverse turbulence [, are responsible for
significantly skewed distributions of the loading.

Formulae (55)-(57) refer to a quadratic aerodynamic coefficient; a general procedure is
presented in [54] to obtain similar expressions for any higher degree polynomial approx-
imation. Application of such awkward relations may appear odd at first sight, especially
because Monte Carlo simulations may provide similar results, and even without having
to formulate the assumptions of small turbulence intensities. They consists in computing
the statistical moments of F, integrals of pr (F), see (53), from a proper sampling in the
high-dimensional (4, w, F) space. This method is really powerful but its crude application
is known to be excessively time consuming, a reason for which approximate formula as
(55)-(57) are useful.

5.2. Example

A brief example is presented next in order to illustrate the influence of the turbulence on
statistical properties of the nonlinear aerodynamic loading. To this purpose, the drag co-
efficient of the new Tacoma Narrows bridge is considered [1], see Fig. 7-a. It exhibits a
typical bowl-shape which indicates that the drag force is roughly constant for small wind
incidences (usually due to a high deck thickness and a flat vertical wall to the wind). The
slight typical dissymmetry for larger wind incidences is a due to the dissymmetry of the
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Figure 7. (a) Drag coefficient of the new Tacoma-Narrows bridge project, as a function
of the wind incidence 7; (b) Mean, standard deviation, skewness and kurtosis of the cubic
aerodynamic force, as a function of the turbulence intensity I,,, with I, = I,,/2 and for
various correlation coefficients between v and w.

cross sectional profile about a horizontal axis, an unavoidable consequence of the necessity
to present a flat circulation surface. The limitation of the traditional linear loading model is
illustrated by the representation of the linear approximation of the drag coefficient, which
clearly underestimates the actual drag force. On the contrary, the third degree polynomial
approximation (which is considered next) provides an accurate fitting to the actual drag
coefficient. This fitting is based on a stochastic linearization principle considering the prob-
abilistic character of the range of variation of the wind incidence, see [26], (based here on
I, =0.1; I, = 0.05 and p = 0.5) and yields

co = 0.299; ¢ = —0.375; 9 =2.43; c3=4.60. 59)

The first four statistical characteristics (mean, standard deviation, skewness coefficient,
excess coefficient) are obtained from the raw moments. They are represented for the con-
sidered drag force in Fig. 7-b, as a function of the turbulence intensity I,,, with I,, = I,,/2
and for various correlation coefficients p between © and w. We may observe that the mean
aerodynamic force is relatively few affected by the nonlinearity of the loading, even by the
turbulence intensity. Moreover, the standard deviation of the force seems to depend linearly
on the turbulence intensity, which is also predicted by the linear model. Actually there is so
to say no discrepancy between the standard deviations obtained with the linear and cubic
loading models. The linear model is therefore sufficient for the representation of the first
and second order statistics of the loading.

Plots corresponding to the third and fourth moments indicate that the skewness and kur-
tosis coefficient of this loading may be large enough to significantly affect the statistics of
the extreme values of the force. The results represented by symbols are obtained with a



26 Authors

Mean Standard deviation

0.312

0.310

0.308

0.8

0.6

0.4

0.2 -1 -0.5 0 0.5 1 05 -1 -0.5 0 0.5 1

P p

Figure 8. Influence of the correlation between turbulence components, on the first four
statistical characteristics of the drag coefficient of the new Tacoma-Narrows bridge deck
(for I,, = 0.1 and I, = 0.05).

Monte Carlo simulation (generation of 500,000 samples of the turbulence and computation
of the wind forces for each of them), whereas the continuous lines correspond to the ana-
lytical approximations obtained for small turbulence intensity. These expressions provide a
very good approximation up to the third order, for any correlation between the turbulence
components u and w. Figure 7-b also shows that the skewness and kurtosis of the loading
are highly sensitive to the correlation p between turbulence components: for the particular
case of the new Tacoma-Narrows bridge, an inappropriate choice of p may result in more
than 100% discrepancy on the estimation of the skewness coefficient.

This high sensitivity to this correlation coefficient is emphasized in Fig. 8, where the
first four statistical characteristics are represented as a function of the correlation between
the turbulence components. This graph is obtained for /,, = 0.1 and I,, = 0.05. On this
figure, we may observe the strong influence of p on the standard deviation; this kind of result
should encourage any designer to precisely assess the actual correlation between turbulence
components. The dependency of the skewness and kurtosis upon the correlation p is not
monotonic and presents large gradients. This further illustrates the need to better estimate
the correlation between turbulence components. Notice that the approximate relations (solid
lines) matches properly the results of the Monte Carlo simulation (dots), except for the
kurtosis for which only the global profile is correctly captured.
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5.3. Outlook

In this section we have presented simplified expressions for the computation of the statisti-
cal properties of the nonlinear aerodynamic loading. They are based on the assumption that
the joint distribution representing the statistics of the components u and w of the turbulence
are jointly Gaussian. In this context, we have shown the high sensitivity of the skewness and
kurtosis of the aerodynamic loading to the correlation between v and w. According to the
developments of the former Section, this sensitivity of the loading translates automatically
into a significant sensitivity of the structural response.

This strong dependence to the correlation between turbulence components suggests that
the joint distribution between v and w be estimated accurately. In particular, there are no
reasons for the marginal distributions of u and w (separately) to be Gaussian, and this ap-
pears to be a first topic that needs to be refined in the future. As a potential outlook, similar
expressions could then be developed (or Monte Carlo simulations could be performed) in
the context of a more realistic first-rank turbulence characteristics. They would in turn
provide more accurate estimates of the structural response to turbulent loading.

6. Conclusions

Throughout this chapter we have pinpointed a series of statistical characteristics of the
turbulence that would need to be assessed more precisely in order to properly feed advanced
aerodynamic loading models. They are summarized in this section.

Regarding the traditional linearized aerodynamic loading model, the current character-
ization of the turbulence is obviously sufficient as it has been being applied for more than
fifty year, but conceding however that the relative importance of the correlation between
different components of the turbulence plays a significant role -as shown in Section 5.2.-
that is probably too often disregarded.

First rank properties of the turbulence that would require to be precisely estimated may
be grouped into two sets: unilateral properties and those related to crossed statistics. Indeed,
in a non Gaussian framework, the mean and standard deviation of each turbulence compo-
nents are no longer sufficient to fully describe them. Realistically third and fourth statistical
moments could be obtained and although they do not exhaustively complete the statistical
representation, they would already provide a novel insight onto the matter. Besides, the
joint distributions between the components of turbulence would also require a particular
attention. This is parallel to the enhancement of the marginal distributions. Conforming to
the significant sensitivity to the correlation between turbulence components, as illustrated in
the former example, it is evident that these joint distributions require a particular attention
too.

Second rank properties of the turbulence that deserve attention may also be grouped into
two similar sets. On the one hand, unilateral power spectral densities available today are
typically sufficient to allow a second order analysis. As shown by the background/resonant
decomposition, the second order structural response is mainly dependent on (i) the variance
of the loading (a first rank property) and (ii) the ordinate, at the natural frequency, of power
spectral densities of applied loads, and therefore of the components of the turbulence. Be-
cause many models are available to model the power spectral density of turbulence, which
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may significantly differ from each other in the high frequency range, a precise second order
analysis is typically achieved by selecting the proper power spectral density of turbulence.
We have also seen in Section 4.2. that the third order structural response mainly depends
on the particular shape of the bispectrum of the force in the vicinity of (w1, w2) = (wq, 0),
which therefore involves S, (wp) and S, (0) because of the quadratic term(s) in turbulence
components. This indicates that an accurate estimation of the low frequency content of the
turbulence, by means of S, (0), is also a key issue that will allow premium structural analy-
ses. On the other hand, crossed probabilities between two different turbulence components
or between the same component but at different locations in space, play also an important
role, especially when the analysis of large structures spread out along several hundreds of
meters is in question. This latter case was not really discussed in this chapter, but we may
at least bring back again the necessity to properly model the correlation between various
turbulence components.

Third rank properties of the turbulence need of course to be modeled properly for a
sound application of a third order structural analysis. No notorious model seem to exist
to hand yet in this picture, despite some observations and acknowledgment that the wind
turbulence is non Gaussian. The full third order description of the turbulence may there-
fore be regarded as a must. Again, bispectrum of each turbulence component as well as
cross-bispectra between various components and/or at various locations in space need to be
assessed. Notice that the distinction “and/or” is made here, because up to three different
random processes may be considered for the estimation of a cross-bispectrum. We must
concede that the full third rank description of the turbulence is a utopian aim. It could
eventually be brought down taking into account that essentially the bispectrum of the force
around (w1, ws2) = (wo, 0) require to be accurately estimated.

Fourth and higher rank properties of the turbulence components may also be provided
in the same way, but there are few hopes that these quantities be uniformly standardized in
a near future.

Structural analysis tools, as the frequency domain analysis or Monte Carlo simulations,
are now ready to incorporate the third and higher rank properties of the wind forces. In
this connection, wind forces are estimated from pressures, which are themselves expressed
as a function of the turbulence components, thanks to the nonlinear aerodynamic model
considered in this chapter. As a matter of fact, it is obvious that bypassing the description
of the turbulence in favor of a complete non-Gaussian model of the wind pressures would
provide an even more realistic model, since the developments do not rest then on a theoret-
ical aerodynamic model. In other words, if one had a precise probabilistic description of
the pressures along the structure under investigation, the estimation of the corresponding
forces would naturally sound more realistic. Nevertheless, to utilize wind pressures instead
of turbulence velocity is still restricted to applications where wind-tunnel experiments or
advanced CFD computations are performed. On the contrary, an acrodynamic model based
on a statistical description of the turbulence is applicable to a wide range of applications
and seems therefore to be the perfect canvas for standardization.
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