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In the 32-119 GPa pressure range and at room temperature, a simple cubic phase was reported
for calcium in many different experiments. Standard linear response theory, both within density
functional perturbation theory and frozen phonon calculations, presents dynamical instabilities for
the simple cubic structure in the whole pressure range. Many other possible candidate phases, as
well as several possible stabilization mechanisms for the simple cubic phase, have been proposed
as the result of ab-initio predictions but the role of temperature on the relative stability of the
different phases has not been systematically investigated. We revisit the stability of the three
most important candidate phases of calcium for the intermediate pressure range and for various
temperatures, taking explicitly into account thermal corrections relative to electronic as well as
phononic entropy and anharmonic contributions. This corrects the discrepancies among previous
theoretical results and experiments, and presents a different picture of the temperature driven
phase transition, which results from dynamical anharmonic stabilization of simple cubic and de-
stabilization of the tetragonal phase.

The past decade has seen a complete transformation of
the field of high pressure materials science [1]. The sys-
tematic application of diamond anvil cell techniques to
elemental solids [2, 3] has revealed that no solid is simple
and even a seemingly simple metal can show an extremely
complex and diverse sequence of structural phase transi-
tions under pressure and/or temperature. The standard
method for analyzing these phase transitions is the com-
parison of experimental results with density functional
theory (DFT) calculations of the electronic and phononic
free energy, in order to understand the structure, dynam-
ics and thermodynamics. The case of calcium has proven
to be a deeply challenging problem for theory. X-ray dis-
persion analysis [4–9] showed a series of pressure-induced
structural phase transitions at room temperature, with a
face centered cubic (fcc) structure at 0 GPa, body cen-
tered cubic (bcc) at 19 GPa and simple cubic (sc) at 33
GPa. The CaIV, CaV, CaVI and CaVIII phases have
been discovered more recently [7, 8, 10, 11] with non
closed-packed structures, which are not yet fully deter-
mined by experimental analysis. At least one extra phase
(orthorhombic CaIII′) [8, 9, 12] exists for low tempera-
ture (T<30 K) and for 39<P<42 GPa. A orthorhombic
distorted sc structure (Cmmm) was proposed as a candi-
date structure for this new phase [8, 9, 12], even though
a satisfactory theoretical description of this phase and
of its stability properties is still missing. Very recently,
doubts have been raised even in experiments regarding
the structure of CaIII phase, which was claimed to be a
rhombohedral distortion (R3̄m) of the simple cubic struc-
ture in Ref. [9].

Several recent theoretical studies [12–24] have ac-
counted for the dynamical (phonon) or thermodynami-
cal (free energy) stability of the sc-Ca phase with many
different methods. Standard theoretical methods com-
pletely fail to reproduce the intermediate-pressure (20-
60 GPa) phase diagram [16, 19, 21, 23, 24], stabilizing

other phases instead of sc (cfr. supplementary infor-
mation - SI) which is found to be dynamically unsta-
ble in harmonic theories [18–20]. Two distinct mecha-
nisms were so far investigated to solve this discrepancy:
(i) the inclusion of anharmonic effects in the phonon fre-
quencies of the system either using molecular dynamics
(MD) [17, 23], meta-dynamics [13], or explicitly anhar-
monic phonon calculations [12, 20]. These techniques
can stabilize the vibrational spectrum and/or favor the
free energy of one phase over another. Tse et al. have
found that sc-Ca becomes stable around 200 K with dy-
namical fluctuations to local tetragonality [12], but the
same authors exclude on experimental grounds that Ca-
III′ can have a tetragonal structure; (ii) the use of Quan-
tum Monte Carlo (QMC) [23] combined with DFT-GGA
MD. This corrects the electronic internal energy of sc-
Ca, which is stabilized with respect to I41/amd by quite
large exchange-correlation effects beyond DFT, indepen-
dently of entropic effects. Very recently, more attention
was given to the possibility of solving the problem by
the use of a hybrid functional method, using for example
the PBE0 or HSE functionals [25], which can stabilize
phonon frequencies for the I41/amd phase, but phonon
temperature dependence was not considered in this work.

The situation is not easy to disentangle, as the meth-
ods used vary in each study, and they are not always
applied to phases other than sc-Ca. In some cases, the
(electronic) free energy of a dynamically unstable phase
was used as a reference for stability comparisons. In other
cases, the ergodic convergence of MD studies can be dif-
ficult to assess, and some explicitly anharmonic methods
only include lower (third and fourth) order anharmonic-
ities [20]. A systematic study of anharmonicity for dif-
ferent phases, pressure and temperatures does not exist
to our knowledge and the origin of the calcium phase
transition to sc is still uncertain: is the structure favored
energetically with respect to other stable phases, or is it
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simply the only phase which preserves phonon and elastic
stability in the medium pressure range?

In this Letter, we calculate the fully anharmonic
phonon spectrum, renormalized to infinite order using
the self-consistent ab-initio lattice dynamical (SCAILD)
method [26–28], for all the relevant phases (sc, I41/amd,
and Cmmm) of calcium in the pressure range from 30
to 50 GPa. This allows the first systematic and consis-
tent comparison of both dynamical and thermodynamical
stability effects among these phases. We show that dy-
namical instabilities are the main limiting factor for the
phase diagram and that anharmonicities have opposite
effects on different phases. They can have weak effects
on the vibrational spectra (as for Cmmm) but can also
stabilize (as for sc) or even can destabilize a phase (as
for I41/amd) at elevated temperature. The QMC [23]
reduction of the internal energy of sc respect to I41/amd
and Cmmm is therefore not the determining factor sta-
bilizing sc since I41/amd and Cmmm are dynamically
unstable at room temperature and their free energies can
not be compared.

The main source of discrepancy between theory and
experiments is the effect of temperature on phonon fre-
quencies. Usually, in DFT, the quasi-harmonic approxi-
mation (QHA) is employed i.e. the phonon frequencies
are calculated in the harmonic approximation for differ-
ent cell volumes. The QHA takes into account only the
effect of thermal expansion since the free energy will be
minimal at a different volume for each T - the tempera-
ture enters through the Bose occupation of the harmonic
phonons, while other sources of anharmonicities are ne-
glected. This picture is in principle valid when phonons
do not interact, for example at low T . However, when the
temperature increases, phonons undergo mutual scatter-
ing, which corresponds to the anharmonic vibrations of
atoms. Anharmonicity is in general weak [29] and usu-
ally hardens unstable phonon frequencies, as the restor-
ing forces which keep atoms in the vicinity of their equi-
librium positions become progressively larger with tem-
perature. We show below that the QHA is not reliable
for any of the phases under study at higher tempera-
tures, and explicit anharmonic contributions are key to
obtain correct vibrational spectra, as was also seen for
the high-temperature phonons of bcc metals [26].

Starting with the QHA, we first determine the elec-
tronic free energy Fel = U − TSel [30] (with U the
internal energy) for different values of the cell volume
for the five phases viz. fcc, bcc, sc, I41/amd, and
Cmmm. We use the ABINIT [31] implementation of
DFT and the exchange-correlation functional of Perdew-
Burke-Ernzerhof [32] for the generalized gradient approx-
imation, using both norm-conserving [33] and projector
augmented wave [34] potentials (for details see SI).

The electronic Gibbs free energy Gel = Fel + pV is
calculated for every cell volume and the results are fitted
to a second order Murnaghan equation of state [35]. The
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FIG. 1. (Color online) Thick lines: electronic Gibbs free en-
ergy fit at T=300 K of the bcc, sc and I41/amd relative to fcc
phase (GCmmm

el and Gsc
el are indistinguishable). Thin dashed

lines with open symbols: harmonic total Gibbs free energy
(including Fel and Fph,qha) for fcc, bcc and I41/amd in their
ranges of stability. Fph,qha can be determined neither for sc
nor for Cmmm, due to the instability of these phases in the
QHA. Full line with closed squares: total Gibbs free energy
for sc (Gsc) after including the anharmonically renormalized
phononic contribution Fph at 300 K.

electronic Gibbs free energies are shown at T=300 K for
the five phases as thick lines in Fig. 1, with fcc as ref-
erence. Contributions from electronic entropy and ther-
mal expansion give a result in agreement with previous
works [16, 17]. At this level, Cmmm is more stable than
sc by about 1 meV but both have energies higher than
I41/amd by about 50 meV.

We then compute the harmonic phonon free energy
and add it to the electronic Gibbs free energy to obtain
the global (electron plus phonon) harmonic Gibbs free
energy Gqha = Gel + Fph,qha as a function of pressure
. We then use the same second order Murnaghan equa-
tion of state [35] to fit our results, which gives the thin
dashed lines with open symbols in Fig. 1. The fit param-
eters are given in the SI. This approach is possible only if
the phonon frequencies are stable, since the presence of
imaginary modes in the vibrational spectra precludes the
calculation of a free energy. In the QHA, fcc is stable for
P.22 GPa, bcc is stable in the whole pressure range in-
vestigated while I41/amd is stable for P&25 GPa. The sc
and Cmmm structures are dynamically unstable in the
whole 0-50 GPa pressure range, thus we can not calcu-
late Fph,qha: we then conclude that QHA contributions
are not sufficient to correct the phase diagram, as was
also found by previous authors [17, 20, 23].

Errea et al. [20] were the first to consider explicit an-
harmonic contributions in sc-Ca. They introduced the
third and fourth order anharmonic terms of the pertur-
bative expansion in a self-consistent harmonic approxi-
mation (SCHA). They show that the sc phase is stable
at 50 GPa for all temperatures, even for 0 K, as a result
of quantum fluctuations.

To calculate the complete phononic free energy Fph we
use the SCAILD method, which renormalizes phonon fre-
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FIG. 2. (Color online) Phonon dispersion curves for I41/amd, Cmmm and sc phases. Harmonic results are compared
with anharmonically renormalized frequancies at finite temperature (10 K and 300 K). Anharmonic contributions destabilize
I41/amd, stabilize sc and have weak effect on Cmmm.

quencies self-consistently to all orders. In this scheme the
harmonic and anharmonic free energy contributions are
not separable, and one makes a classical approximation
for the canonical displacement of the phonons. The en-
tropy and free energy contributions are calculated using
the SCAILD method as described in Ref. [28], in order
to include also anharmonic contributions to the lattice
potential. We add SCAILD results on top of QHA cal-
culations for fixed pressures, in order to consider the ef-
fect of anharmonicities beyond thermal expansion, taking
into account explicit phonon-phonon interactions. The
phonon dispersion curves for the Ca III candidate phases
are compared in Fig. 2 for P=40 GPa, and for T=300 K,
10 K, and the harmonic case. Our sc harmonic calcu-
lations are very close to linear-response calculations in
the literature [18–20] and show unstable modes along
the X and M directions (the stabilization of sc down to
0 K seems to be possible only with a fully quantum ap-
proach [20]). As the temperature increases, sc becomes
dynamically stable in agreement with Ref. [12] and all the
experimental reports. Full phononic free energy contri-
butions can now correctly be taken into account and are
included in the Gibbs free energy G = Gel +Fph, leading
to the full line with closed squares in Fig. 1, in which the
sc phase has a phononic contribution of F sc

ph ' −60 meV
at 300 K and pressures between 32.5 and 47.5 GPa. More
details on these calculations are given in the SI.
We stress that, within SCAILD, the difference between
Fph and Fph,qha is not an additive anharmonic part of the
free energy, since Fph is obtained from a renormalization
process of all the frequencies with T .

To treat all phases on the same footing, we investigate
the anharmonic contribution to the phonon frequencies
of I41/amd and Cmmm, and find that they have very
different behaviors. I41/amd is the only stable phase in

the harmonic approximation. Once temperature correc-
tions are introduced, we find that it is still dynamically
stable at low temperature, with a phononic free energy of

about F
I41/amd
ph ' 50.7 meV at 10 K and 40 GPa (Fig. 2)

compared to F
I41/amd
ph,qha ' 35 meV in the harmonic case.

We note that the value of Fph can be positive or neg-
ative for a given T , as can the anharmonic correction
Fph−Fph,qha, but the free energies all decrease as a func-
tion of T , as required by thermodynamics. The Fph term
is symptomatic of destabilization for I41/amd: a large
anharmonic softening of phonon branches with temper-
ature is present, which is particularly pronounced along
the Γ-N and Γ-M directions. At T=300 K the I41/amd
phonon dispersion acquires imaginary segments along the
directions to N and M. The midpoint between Γ and N
is explicitly calculated and renormalized in our supercell,
and shows a downward shift from 75 cm−1 for harmonic
calculations to 64 cm−1 at 10 K and 30 cm−1 at 300 K.
To our knowledge, this is the first time that anharmonic
contributions have been shown to have this effect.

We examine the qualitative behavior of the free energy
landscape for the N point of the I41/amd phase at low
and high temperature in a 2×2×2 (16 atom) supercell
for the first and second lowest energy modes (Fig. 3).
The N point mode is frozen with amplitude η and all
others sampled thermally and anharmonically (see SI).
When the temperature is increased, the anharmonicity
transforms the single-well low-temperature free energy
profile into a triple well profile for the chosen phonons.
The system is destabilized and any excitation of finite
amplitude η produces a decrease of the total energy. The
free energy considered here is averaged over 35 SCAILD
iterations, and contains the intrinsic information about
the entropy of the rest of the phonons.

In the Cmmm case, anharmonicity leads to smaller
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FIG. 3. (Color online) Anharmonically averaged poten-
tial energy surfaces for the two lowest energy modes of the
I41/amd phase at the N point at high and low temperature,
as a function of the frozen normal mode coordinate η (unit-
less) - see SI. Note the log scale on the horizontal axis, and the
local minimum at 300 K for extremely small displacements.
The error bars show the standard deviation of the energy for
the set of random displacements.

changes. Its stability range is known to be very narrow
in the phase diagram [12]. In our case, Cmmm is stable
neither at P=40 GPa (up to room temperature) nor for
the conditions proposed in Ref. [12] or in Ref. [8] (cfr.
SI) though, again, the SCAILD method can not exclude
a quantum stabilization at these very low temperatures.

Teweldeberhan et al. found Cmmm stable for 45 GPa
and 300 K with MD [23], but this observation must be
tempered. They calculate the phonon frequency at high
symmetry points finding the peaks in frequency of the
velocity autocorrelation function. By construction, the
autocorrelation function is calculated for real frequen-
cies: it can confirm the presence of a real frequency, but
not the absence of imaginary modes. The latter corre-
spond to transient phenomena, which will not show up
in the Fourier transform of an ergodic propagation. The
frequency which may appear is that of the oscillation be-
tween equivalent distorted structures, if they are visited
periodically. The system may also lack a reference struc-
ture with appropriate symmetry: imposing a specific cell
shape can impede certain phase transitions, in particular
if the cell is too small or is incommensurate with other
structures (e.g. sc versus Cmmm). The local environ-
ment analysis carried out in Ref. [17] is more robust for
identifying phases, but also depends on ergodic, size, and
symmetry conditions.

In conclusion, anharmonic phonon renormalized cor-
rections can have very different effects on the same chem-

ical element, depending on its crystalline phase. They
provide crucial insights into the phase diagram of cal-
cium and clarify both the reason for the stability of the sc
phase and the mechanism behind the temperature-driven
phase transitions Ca III′→ Ca III. Adding anharmonic
corrections to the QHA, the correspondence with experi-
ments is restored at room temperature and we show that
sc is the correct structure for the CaIII phase, with a crit-
ical pressure for the bcc → sc phase transition at 300 K
is of about 33.7 GPa, consistent with the experimental
value (33 GPa). On the other hand, the I41/amd desta-
bilization is both dynamical and (as a consequence) ther-
modynamical. According to our calculations, the CaIII′

phase can be identified with tetragonal I41/amd at low
temperature, though additional quantum effects may af-
fect both phonons and free energies at extremely low T .
Note that, given our anharmonic analysis, the dashed
red line with open symbols for I41/amd in Fig.1 does
not correspond to a physical phase, and its intersections
with other lines do not represent phase transitions.

Recent experiments show that the calcium phase dia-
gram has a complicate shape: [5, 7] predict sc stable up
to 119 GPa, though high pressure work suggests that sc
is never fully stabilized with respect to rhombohedral dis-
tortions [9]. Alternative phases of calcium (e.g. a small
sc distortion [9]) may exist between the sc and the tetrag-
onal P43 phase [7]. Ishikawa et al. [36] have shown good
agreement with experiment in the higher pressure region
using only the enthalpy, suggesting phononic and anhar-
monic contributions are not dominant for P>70 GPa.

Our analysis shows that sc is dynamically stable be-
tween 32.5 GPa and 47.5 GPa (in agreement with [4] - see
SI). The similarity between the experimental XRD pat-
terns of I41/amd in [12] and the one simulated in [25], to-
gether with our results on its dynamical stability support
the idea that Ca III′ has indeed a I41/amd structure.
This shows that the inclusion of anharmonic effects is es-
sential to understand the complex problem of the CaIII′

phase. A fully quantum treatment of the vibrations [20]
will probably be necessary clarify the low temperature
part of the calcium phase diagram.
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