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Abstract 

The Ground Penetrating Radar (GPR) is a nondestructive technique increasingly 

used for the inspection of concrete structures. The method is well suited to study 

multilayer media, because only a part of the incident energy is reflected at each 

interface. But the quantitative determination of the thickness and properties of 

thin embedded layer remains an application under development, in particular 

when the tests are performed with contact antennas of high frequency. The aim 

of this work is to contribute to the development of a fast method for the thin layers 

determination, based on measurements performed with commercial antennas, 

by proposing an analytical estimation of the reflection coefficient. 

As a first step, the equations allowing to estimate the reflection coefficient on a 

simple interface were developed, taking into account the wave spherical 

reflection in the near field and the lateral wave propagation. Similarly, for thin 

layers, equations taking into account the multiple reflections on the interfaces 

can be developed with different approaches. On the basis of the comparison of 

these equations with simulations of wave propagation, a hybrid model was 

defined: it allows approaching the reflection coefficient by the most adapted 

method depending on the thickness and the permittivity of the thin layer. 

This model was then compared to reflection coefficients obtained by FDTD 

numerical simulations and laboratory tests. The reflection coefficients were 

obtained by comparing each measurement to a measurement performed on a 

metallic sheet embedded at the same depth. The tests were conducted on 

concrete slabs containing air layers of variable dimensions. Exploiting the spectral 

analysis of the laboratory tests performed with a single antenna, the use of the 

model allowed determining the permittivity of the layers and their thickness with 

respective errors of 0% and 20%. When tests with two antennas (CMPs) were 

performed, the precision was inferior because additional phenomena appear, 

including different waves propagating at the surface.  

Therefore, the proposed method can be applied directly in some precise cases 

(when a reference measurement on a metallic sheet can be performed), but 

could be extended to numerous other situations by means of the quantification 

of the surface phenomena. In this case, it could be applied unaltered, possibly 

completed by an inversion program, or used as a first step of a more 

sophisticated method (modelling or full waveform inversion), in order to reduce 

the space of parameters to investigate. 



   

 

 

Résumé 

Le Ground Penetrating Radar (GPR) est une technique d’inspection non 

destructive de plus en plus utilisée pour inspecter les structures en béton. La 

méthode est bien adaptée pour étudier des milieux présentant plusieurs couches, 

car seule une partie de l’énergie incidente est réfléchie à chaque interface. Mais 

la détermination quantitative de l’épaisseur et des propriétés des couches 

minces enfouies reste une application en cours de développement, notamment 

lorsque les essais sont pratiqués avec des antennes de contact à hautes 

fréquences. L’objectif de ce travail consiste à contribuer au développement 

d’une méthode rapide de détermination de couches minces sur base de 

mesures réalisées avec des antennes commerciale, en proposant une estimation 

analytique du coefficient de réflexion. 

Les équations permettant d’estimer le coefficient de réflexion sur une interface 

simple ont été développées dans un premier temps, en tenant compte de la 

réflexion sphérique des ondes en champ proche et de la propagation de l’onde 

latérale. De même, pour les couches minces, des équations prenant en compte 

les multiples réflexions sur les interfaces peuvent être développées de différentes 

façons. Sur base de la comparaison de ces équations avec des simulations de 

propagation d’onde, un modèle hybride a été défini : il permet d’approcher le 

coefficient de réflexion par la méthode la plus adaptée en fonction de 

l’épaisseur et de la permittivité de la couche mince.  

Ce modèle a ensuite été comparé à des coefficients de réflexion obtenus par 

des simulations numériques en FDTD et des essais de laboratoire. Les coefficients 

de réflexion sont obtenus en comparant chaque mesure à une mesure effectuée 

sur une feuille métallique enfouie à la même profondeur. Les essais ont été menés 

sur des dalles de béton contenant des couches d’air d’épaisseur variable. Sur 

base de l’analyse spectrale des essais de laboratoire réalisés avec une seule 

antenne, l’utilisation du modèle a permis de déterminer la permittivité des 

couches et leur épaisseur avec une erreur respective de 0% et 20%. Lorsque des 

tests à deux antennes (CMPs) sont effectués, la précision est inférieure car des 

phénomènes additionnels apparaissent, dont différentes ondes se propageant à 

la surface. 

La méthode proposée peut donc être appliquée directement dans certains cas 

précis (lorsqu’une mesure sur une feuille métallique peut être effectuée en 

comparaison), mais pourrait être étendue à de nombreux autres cas moyennant 

la quantification des phénomènes de surface. Elle pourrait alors être appliquée 

telle quelle, éventuellement complétée par un programme d’inversion, ou alors 

utilisée préalablement à une méthode plus lourde (modélisation ou inversion 

d’onde complète), afin de réduire l’espace des paramètres à considérer. 
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Introduction 

The maintenance and replacement of the road infrastructures is currently a major 

concern for the industrialized countries. Indeed, the majority of the road networks 

were developed in the post-war reconstruction of the years 1945-1985. After this 

period, the economic crises led numerous governments to reduce the 

infrastructure maintenance budget to a minimum. As a result, many industrialized 

countries have now to deal with an ageing network of roads and bridges and 

colossal investments will be needed in the next years, just to maintain the current 

infrastructures. The OECD estimates the worldwide investments requirement for 

the road infrastructures to more than 110 billion of US dollars per year [1].  

The issue of infrastructure underfunding is particularly acute when it concerns the 

bridges maintenance, because aging structures are susceptible to get altered 

with time and insufficient maintenance is then directly linked to safety concerns. 

Even if unpredicted bridge collapses are relatively rare, a lack of maintenance 

often leads to bridges closures or load restrictions, with high traffic and economic 

consequences. For this reason, many countries are developing bridge 

maintenance and control programs [2, 3].  

In the particular case of  Wallonia (Belgium), a total of more than 3500 bridges 

over highways, roads and waterways, are handled by the local administration [4]. 

In 2007, the average age of those bridges was estimated to 40 years old [5]. And 

in only four years, the number of bridges classified as to be repaired, in medium or 

short term, had increased by 28% [6]. The cost for the inspection, maintenance 

and repair of all the bridges is important: in 2009, the yearly cost rose up to more 

than 30 million €, only for Wallonia [4].  

The causes of concrete bridge degradation are the constant rise of the traffic 

charges and the physical-chemical concrete degradation [6]. The increase of 

the traffic charges is due to the augmentation of the number of vehicles, but also 

to the growth of the heavy goods vehicles charges. In the period 1985-2005, the 

annual traffic expansion on Walloon highways has been estimated to 3.9%. On 

the period 1990-2006, the freight traffic in tons-km has raised up to 90% [7]. 
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The physical-chemical degradations of concrete can be caused by different 

mechanisms: steel corrosion, concrete freeze sensitivity or alkali-aggregate 

reactions [6]. Those pathologies can be accelerated by the infiltration of water or 

chlorides  arising from the de-icing salts. If several pathologies are combined in 

the same structure, they can cause irreparable damage leading to the 

demolition of the bridge. This happened for relatively recent structures: 30 years 

old bridges have been destroyed after being submitted to concrete degradation 

[8].  

 

Figure 1 : Bridge deck suffering from concrete pathologies [9]. 

In order to prevent such extreme cases, every bridge has to be carefully 

monitored. A specific inspection (type A), visual and systematic, is planned at 

least every 3 years, depending on the bridge vulnerability [5]. If any sign of 

disorder is detected, a detailed inspection (type B) will be considered. During 

detailed inspections, every useful device can be used to determine the nature 

and extent of the problem [10].  

To precisely characterize the structure geometry and its constitutive materials, 

cores can be drilled from the edifice. But the results are only representative from a 

small area and the multiplication of core samplings can cause damages to the 

edifice [11].  In order to limit to a minimum the number of destructive tests, non-

destructive techniques (NDT) of investigation, generally based on methods used 

in geophysics prospection, have been developed in the last decades [12]. They 

do not impair the function of the structure and permit regular testing at the same 

location to evaluate changes in properties with time. They can be calibrated on 

a small number of destructive tests and give a complete overview of the structure 

state [13].  

Among all the non-destructive techniques, this thesis focuses on the ground 

penetrating radar (GPR), with the objective to develop a methodology to 

determine quantitatively the properties of a structure containing a thin layer, 

using a commercial antenna. Using analytical developments and the analysis of 

the antennas properties, we developed a methodology of data acquisition and 
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analysis allowing (under a few conditions) the determination of the layer thickness 

and permittivity. 

The body of the text will be divided into five different chapters. The first one will 

present the general context of the detection of thin layers with the ground 

penetrating radar, as well as a review of the literature on the subject.  

In the second chapter, we will establish the theoretical bases of the thesis. The 

physical principles governing the Ground Penetrating Radar waves propagation 

will be detailed, with a special emphasis on the equations describing the waves 

reflection in the specific case of an embedded thin layer. Finally, the principles of 

the finite difference time domain (FDTD) method will be summarized. This 

numerical simulation method will be used throughout this thesis to simulate the 

wave propagation. 

The third chapter will focus on the studies performed on the antenna to 

characterize the signal and to optimize the acquisition. After a presentation of the 

materials and methods used throughout the work, different preliminary tests will 

be performed to characterize the antenna and define good practice rules for the 

signal acquisition. Finally, different determination methods for the properties of the 

surface material will be compared.  

Using the theoretical principles detailed in Chapter 2 and the acquisition 

principles determined in Chapter 3, the two final chapters will tackle the issue of 

the GPR detection and characterization of thin layers embedded into concrete. 

In Chapter 4, an analytical estimation of the reflection coefficient will be 

determined on the basis of the observation of the results of numerical simulations. 

The feasibility of using those equation to determine thin layers from surface 

measurements will be tested numerically and experimentally.  

The fifth and last chapter is dedicated to the characterization of thin layers by 

comparing the reflection coefficient extracted from experimental measurements 

or numerical simulations to its analytical expressions. In the first section of the 

chapter, only the peak-to-peak amplitude will be extracted from the radargrams 

and compared to the analytical curves. In the second section, the same 

radargrams will be exploited to determine the layers properties using a spectral 

analysis of the reflection coefficient. The last section of the chapter will be 

dedicated to the layer determination using CMP measurements.   
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Chapter 1: General context  

In this first chapter, we will briefly present the different concrete degradation 

mechanisms that can lead to the appearance of structural damages (§ 1.1). The 

second section of the chapter (§ 1.2) will focus on the different non-destructive 

techniques that can be used for bridges inspection, with a special focus on the 

Ground Penetrating Radar and its testing capabilities. Finally, in § 1.3, a review of 

the literature for the specific case of the layer detection with GPR will be 

presented.  

1.1 Pathologies of concrete structures 

Concrete structures can be damaged by different deterioration processes. 

According to the European standard EN 1504-9, the identification of the cause or 

the causes of defects should be the first step of a complete structure assessment 

before a concrete repair [14]. It is Indeed generally impossible to evaluate the 

necessity to repair a structure or to choose a repair method without a complete 

identification of the origin of degradations and a setting up of protection 

strategies [15]. 

One of the most important causes of degradation for prestressed and reinforced 

bridges is the rebars corrosion [8]. The corrosion of the rebars generates a loss in 

the reinforcement resistance, but the main danger lies in the expansive nature of 

the phenomenon, which will generate cracks and delaminations in the 

surrounding concrete.  

The concrete itself can also be damaged due to diverse degradation 

mechanisms that will ultimately lead to its disintegration. The concrete 

pathologies are generally accelerated by climatic and exposure conditions. In 
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concrete bridge decks, the most significant disintegration processes linked to 

environmental conditions are [12]: 

- disintegration due to freeze-thaw cycles; 

- alkali-aggregates reactions; 

- sulphate reactions. 

A more complex degradation process, named concrete decay may be also 

observed in some cases. This is caused by the combination of several simple 

degradation processes; it has been observed on numerous concrete bridge 

decks, generating important delaminations and disintegration [8]. 

It is important to note that for all the pre-cited degradation mechanisms, water is 

an essential factor for the development of degradations. Indeed, it is estimated 

that 99% of the degradation mechanisms require the presence of water (in a 

liquid state) for developing [8]. In the particular case of bridge decks in cold 

temperate climate areas, chloride contamination due to the use of road salt is 

considered likely to be the most serious cause of deterioration [8, 12, 16, 17]. It 

means that the first cause of concrete degradation is indirectly the presence of 

defects in the waterproofing system [18]. 

But materials degradation is not the only cause of structures pathologies: the 

problems can also be caused by a lack of chemical or thermal compatibility 

between healthy materials, causing the appearance of delaminations.  

The mechanisms of the different pathologies will be detailed in the next 

paragraphs.   

1.1.1 Steel reinforcement corrosion 

Corrosion is an electrochemical process involving an anode, a cathode and an 

electrolyte. In reinforced concrete, steel rebars can provide both anode and 

cathode, and moist concrete matrix forms an acceptable electrolyte. In the 

anodic zone, iron atoms dissolve into the interstitial solution as ions Fe2+. This 

causes a local diminution of the section of the rebar. In the same zone, the 

electrical equilibrium requires the release of electrons: 

 
               

(1) 

These electrons travel in the electrolyte as an electrical current and they are 

consumed in the reduction reaction with Fe atoms at the cathode. This reaction 

results in the precipitation of   (  )  and in an increase in metal volume (up to 

800%). The phenomenon is described in Figure 2 [8, 15]. 
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Figure 2 : Corrosion mechanism (after [8]). 

Concrete is a high alkalinity material, in which a passivating film appears around 

reinforcing steel bars, protecting them from corrosion. To observe corrosion in 

reinforcing bars, three different factors must be present simultaneously: 

- an electrolyte with a high ionic conductibility; 

- oxygen in the cathode zone; 

- disruption of the passivating film by chlorides attack or carbonation. 

If a passivating film appears around steel rebars into healthy concrete, it is due to 

its high pH, situated around 12.5. A phenomenon susceptible to decrease this pH 

is carbonation: the     naturally contained into the atmosphere dissolves into the 

interstitial water of the concrete at the surface of the structure and reacts with 

the lime contained into the concrete. The simplified reaction mechanism is: 

 
  (  )                

(2) 

The dissolution of     creates a decrease of pH to about 9. This is not 

damageable for the concrete itself but, at this pH, the passivating film is disrupted 

and steel corrosion can take place. For this reason, concrete carbonation is a 

very common cause of bridge degradation. An easy mean to reduce 

carbonation damages is to make sure to have a sufficient concrete cover for the 

bottom surface of the slab, directly in contact with air [8]. 

Another cause of passivating film disruption can be a chloride attack, which can 

permit corrosion of the steel bars even in a non-carbonated concrete. For this 

reason, de-icing salts (NaCl or CaCl2) can play a crucial role in the corrosion 

process [15]. The chloride act as a catalyser of the reaction, generating a very 

fast and local pitting corrosion (Figure 3) [8]. 
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Figure 3 : Rebars corroded by a chloride contamination [9]. 

In addition to the spoiling of the rebars themselves, with a diminution in their 

effective section, corrosion also damages surrounding concrete because of the 

volume change of corroded steel in the cathode zone. In function of the 

corrosion level of the rebar, concrete tensile strength and quality of the concrete-

rebar bond, this can lead to cracking, spalling and, in drastic cases, concrete 

delaminations [12, 15, 19].  

1.1.2 Pathologies leading to concrete disintegration 

The disintegration of concrete can be the consequence of different deterioration 

mechanisms. Indeed, it can be induced by the physical stresses generated by 

freeze-thaw cycles as well as by chemical reaction such as the alkali-aggregate 

reactions or the sulphate reactions. 

1.1.2.1 Freeze-thaw cycles 

Freeze-thaw cycles may damage concrete if it is too porous and is able to absorb 

water. Indeed, concrete interstitial water will expand into pores close to the 

surface when transformed into ice and cause microcracking and localized stress 

in concrete matrix. A concrete submitted to a high number of freeze-thaw cycles 

can lose its whole cohesion.  

A solution to avoid this problem is to use concrete with entrained air: this creates 

air bubbles inside concrete, in which water coming from the capillaries will have 

the possibility to expand without causing any damage [20]. Unfortunately, the 

presence of the bubbles also causes a strength decrease, seldom compatible 

with the resistance requirements for bridges [9]. 

Another solution to limit the damages due to freeze-thaw cycles is to use a 

concrete with a low water to cement ratio (less than 0.5); those high-strength 

concretes will indeed present a higher traction strength and lower porosity 

dimensions [8].   
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1.1.2.2 Alkali-aggregates reactions 

Alkali-aggregates reactions can occur when specific aggregates containing 

reactive forms of silica react with potassium, sodium and calcium hydroxide from 

cement paste or from de-icing salts. The reaction produces a gel that takes place 

around the aggregates. When submitted to moisture, this gel expands, creating 

microcracks in the surrounding concrete, that becomes less and less 

impermeable and allows an increasing quantity of water to reach the 

aggregates [15, 21].  

1.1.2.3 Sulphate reactions 

This category regroups all reactions implying sulphate ions (   
  ). These ions react 

with the cement compounds, resulting in the possible formation of two products: 

the ettringite and the thaumasite. The ettringite formation is a highly expansive 

phenomenon, which will cause cracking of the concrete. The thaumasite is not 

expansive, but it is formed to the detriment of tobermorite, which is the highest 

resistant cement paste compound. This results in concrete disaggregation [8]. 

As sources of sulphates, we can mention maritime environment, specific ground 

water, products storage, organic matter in decomposition and atmospheric 

pollution. Anyway, in some cases, the presence of sulphate reaction was 

observed without the presence of any of those factors, the sulphates coming 

then from the cement paste itself [18]. 

1.1.3 Concrete decay 

This complex form of concrete degradation was first observed and named in 

1985. Ever since, more than 70 cases have been diagnosed in Wallonia. It occurs 

in both reinforced and prestressed bridges, mostly in beam-type structures [9]. The 

concrete decay is a complex process, involving several simple pathologies: 

freeze-thaw cycles, alkali-aggregates reactions and chloride attacks… [9, 18]. In 

some situations, the decay of decks slabs can ultimately lead to their perforation 

(Figure 4 (a)) [8].  

The phenomenon generally develops as a top-down process and creates two 

main types of degradation [8]: 

- concrete disintegration at the upper surface of the slab, at the interface 

slab/preslab or at the bottom surface of the deck: only the granular 

framework is remaining. 

- concrete delamination: the concrete degrades into a few millimetres 

thick leaves, essentially at the upper surface of the slab, creating 

horizontal cracks (Figure 4 (b)). 
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Figure 4 : Damages due to concrete decay [18, 22] 

(a) Slab perforation (b) Delaminations location.  

1.1.4 Degradations due to materials incompatibility or 

non-adhesive interfaces 

Structural problems can be due to material degradation, but also to 

incompatibilities between different materials. This is true in new structures 

compounded of different materials in contact, but it is also a key factor in 

structural repair. The incompatibility can be chemical, thermal or mechanical 

(mainly due to a lack of surface preparation). 

 When two materials in contact are chemically incompatibles, this will induce a 

lack of adherence that will ultimately lead to the appearance of delaminations 

at the interface.  

Thermal incompatibility happens when the dilatation coefficients of the materials 

are too different. This causes the appearance of high shearing stress at the 

interface when the structure is submitted to temperature variations [12]. 

The debonding of an interface can also be due to an improper surface 

preparation, causing a lack of mechanical strength at the interface. The surface 

preparation (for example sandblasting) should ensure a sufficient roughness to 

obtain a good interlocking without creating microcracks. Coupled with an 

adequate bonding agent, it insures a good transmission of the mechanical 

stresses between the materials and prevents the appearance of debonding [23, 

24]. 

1.2 Non-destructive methods in civil engineering 

When disorders are detected during the visual inspection of a bridge, specific 

detailed inspections are decided. During those inspections, the objective is to 

determine whether the structure is still suitable for its designed use:  defects are 

detected and quantified so that maintenance and repair works can be planned. 

During those inspections, non-destructive techniques are more and more used as 

a complement to the destructive tests, allowing inspection of larger areas and 

reduction of the number of destructive core samples. [25]. 
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In addition to the detection of defects, non-destructive testing can also be used 

on healthy structures, in order to estimate or check the building characteristics. 

This can be part of an assessment to evaluate the residual strength of an old 

structure, but can also be applied on new (or recently repaired) structures, in 

order to assess the respect of initial specifications of the client [11]. 

Two different objectives are often distinguished for non-destructive techniques: 

the material assessment and the structure geometry determination. Material 

assessment methods aim at determining the quality of concrete, the water 

content or the corrosion situation of the rebars, while the purpose of geometry 

determination methods is to determine the dimensions of the reinforced concrete 

structures.  

Some methods are uniquely dedicated to the material characterization. An 

example is the Schmidt (or rebound) hammer, a spring loaded hammer used for 

estimating the compressive strength of surface concrete using the rebound 

height after striking the concrete surface [26, 27]. But many methods can be used 

for both the material and the geometrical characterization. Examples are the 

radar and gamma rays, whose propagations are linked to the concrete water 

content, or the ultrasounds, whose speed is related to the concrete compressive 

strength. 

In this section, common non-destructive techniques used in the inspection and 

the characterization of concrete structures are presented, with a particular focus 

on the methods used for the geometry determination. The methods can be 

classified in two categories, depending on whether the measurement is based on 

electromagnetic (§ 1.2.1) or compressive (§ 1.2.2) waves. Finally, § 1.2.3 will detail 

the main applications of the Ground Penetrating Radar for the inspection of civil 

engineering structures. 

1.2.1 Electromagnetic methods 

Depending on their frequency, electromagnetic waves present totally different 

physical behaviour. For this reason, they are usually classified in different wave 

types: radio waves, infrareds, X-rays,… An overview of the approximate 

frequency range of all the waves types is displayed in Figure 5. 

 

Figure 5 : Non-destructive techniques in the electromagnetic spectrum (after [26, 28]). 
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Many electromagnetic frequencies can be used in non-destructive testing (Figure 

5). The most common methods (visual inspection, infrared thermography, ground 

penetrating radar, cover-meter and nuclear methods) are described in the 

following paragraphs. To this list, we could also add the microwaves non-

destructive testing, which can be used for the evaluation of the moisture content 

[25]. 

1.2.1.1 Visual inspection 

Any investigation campaign on a structure starts with a visual inspection. It can be 

considered as an electromagnetic method as the visible light and the colours 

correspond to a specific frequency range in the electromagnetic spectrum.  

Visible indicators of problems are for example surface degradation, water 

leakage, movements or metal corrosion [15]. A relationship has been established 

between the degradation of the slab near-to-surface layer and the stains on the 

inferior surface, after a high number of cores drilling into damaged decks in 

Wallonia [8]: if visual inspection reveals signs of concrete distress, further 

investigation is necessary. 

1.2.1.2 Infrared thermography 

Infrared thermography is an electromagnetic method, whose useful wavelengths 

(           ) are intermediate between the visible spectrum and the radar 

spectrum [29]. Every surface emits an infrared radiation, whose amplitude will 

depend on the material, the surface condition, the observation angle, the 

distance and the temperature [30]. 

If all parameters are constant, the infrared thermography show local temperature 

variations, which can be due to the presence of voids beside the surface.  

Indeed, the thin air layer in the void acts as an insulator from the deeper 

concrete, and the delaminated surface will then warm up or cool down more 

quickly than the rest of the structure. 

 

Figure 6 : Infrared detection of a defect in a concrete bridge deck [31].  
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With infrared thermography, large areas can be tested simultaneously. However, 

to be used successfully, it requires an external thermic solicitation (for example the 

sunrise or the sunset), and variations in the surface (if the whole bridge is 

delaminated, no defect will be detected. This method is particularly well adapted 

to detect adhesion defects after placing the waterproofing membrane and 

concrete delaminations [30, 32]. It will give a good estimation of the 

delaminations extent, but does not give indications about their depth [32].  

1.2.1.3 Ground penetrating radar 

The Ground Penetrating radar is an electromagnetic non-destructive method, 

using the frequency range 0.5-2.6 GHz for concrete testing. It is based on the 

reflection of short electromagnetic pulses on the interfaces inside the structure. 

Two main types of GPR antennas are distinguished: the contact antennas, 

maximizing the power of the transmitted waves, and the non-contact (horn) 

antennas, allowing fast material testing. The different uses of GPR in non-

destructive inspection of concrete structures will be detailed in § 1.2.3. 

1.2.1.4 Cover meter 

The cover meter uses very low frequency electromagnetic waves (~ 0.05 - 5 kHz), 

using either eddy current effects or magnetic induction effects [33]. The probe 

creates a magnetic field, which will be affected in the presence of metallic 

reinforcement. Using this field variation, the device detects the rebars, but also 

determines their depth if their diameter is known (and vice-versa) [26]. The cover 

and the size of the rebars can also be simultaneously estimated using an 

adequate acquisition procedure. In combination with the GPR, the cover meter 

allows a very good determination of two layers of reinforcement [25]. 

1.2.1.5 Corrosion measurement 

Different methods can be used to estimate the corrosion of the reinforcing rebars. 

Most of them use direct or low-frequency alternative electric current.  

Zones of possible reinforcement corrosion can be detected by the half-cell 

potential mapping method, measuring the potential difference between the 

surface concrete and a reference electrode [26]. To obtain a quantitative 

estimation of the instantaneous corrosion rate, the linear polarization resistance 

(LPR) method can be used. In this technique, the corrosion equilibrium is disturbed 

by a counter electrode around the half-cell, insuring a homogeneous current 

distribution along the reinforcement in the inspected zone. Among numerous 

limitations [19], the main drawback of both methods is the fact that they need a 

connection to the reinforcement steel, which may require a localized drilling into 

concrete [34, 35].  
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1.2.1.6 Nuclear methods 

The nuclear methods use the very high frequency X-rays and gamma rays. X-rays 

are produced by a specific electric device, while gamma rays are produced by 

a pellet of radioactive element. Their use in non-destructive testing mainly relies 

on the fact that their amplitude is highly attenuated in dense materials [26].  

A first method to exploit the characteristics of nuclear rays is the radiography, 

high-scale equivalent to the medical examination technique. A photographic 

film is placed on the opposite side of the structure and allows a visualization of the 

denser zones (rebars) or voids [25, 26]. 

Radiometry uses the gamma rays. Unlike in radiography, the ray amplitudes 

variation are measured by a probe: the radiometer. This method can be used in 

transmission mode as the radiography, but also in backscatter mode, when only 

one side of the structure is accessible [27]. 

Those methods are complicated to apply, because of the heavy administrative 

procedure linked to the nuclear risk. X-rays are intrinsically less dangerous than 

gamma-rays and they also have the advantage to be produced by a generator 

that can be turned off and not by a permanently radioactive material. The x-rays 

main disadvantage is the low portability of the equipment [11, 26].  

1.2.2 Methods based on sound waves 

Sound waves, also called elastic or acoustic waves, need a medium to 

propagate. As shown in Figure 7, only a limited range of frequencies are actually 

audible to humans.  

 

Figure 7 : Non-destructive techniques based on sound waves (after [26, 28, 36]). 

In Figure 7, the frequency range of the most common non-destructive sound 

methods for concrete are represented. Unlike the electromagnetic methods, the 

frequencies excited by the different methods are not very different. The main 

difference lays in the method selected for the wave emission. 

Two different types of sound waves are distinguished: the P-wave, or 

compressional wave, and the S-wave, or shear wave.  The shear wave is also 

called the secondary wave, because its propagation speed is lower. Surface 

waves have specific (Rayleigh and Love) propagation modes [28, 37]. 
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1.2.2.1 Metal rebar and chain dragging tests 

Those methods are straightforward tests allowing detecting the presence and the 

extent of a delamination. The metal rebar test consists in hitting the concrete slab 

with a metal rebar. If the slab is delaminated, the shock will create a hollow 

sound, easily distinguishable from the sound obtained on an intact slab. If the 

concrete is covered by an overlay, it has to be exposed before the test. In some 

countries, the metal rebar is replaced by a heavy metal chain dragged on the 

exposed concrete in order to produce the hollow sound. With this alternative 

method, greater areas can be tested within a short time [30].  

1.2.2.2 Impact echo 

In the impact-echo method, the sound waves are generated by a steel sphere 

impact at the surface of the concrete and have a frequency less than 80 kHz. 

Wavelengths typically range from 5 cm to 2 m, which is sufficient to avoid 

detection of the natural heterogeneities of concrete. Waves reflect on interfaces 

between materials of different acoustic properties. Those interfaces are typically 

situated between concrete and air, concrete and water or concrete and steel. 

The acoustic properties of two different concretes are generally too close to be 

detected; it means that the main applications are to detect voids, cracks or steel 

rebars inside concrete. [38]. 

The measured signal is transformed into the frequency domain through a fast 

Fourier transform (Figure 8). The resonance peak can be related to the reflection 

depth. 

 

Figure 8 : Impact-Echo principle [36]. 

1.2.2.3 Ultrasonic testing 

Different methods using ultrasonic waves for non-destructive testing have been 

developed. Two of them are more widespread: ultrasonic pulse echo (UPE) and 

ultrasonic pulse velocity (UPV) [11]. In both cases, the ultrasonic wave is emitted 

and measured by transducers transforming electrical energy into mechanical 

energy and vice-versa. The contact between the transducer and the concrete 
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surface has to be excellent. For this reason, the method will require a proper 

surface preparation and/or the use of a coupling agent. 

In ultrasonic pulse echo method, the transducer emits a short pulse of ultrasonic 

wave. The wave propagates into the material and reflects on boundaries 

separating materials with different densities and elastic properties. The reflection 

time is estimated and the distance to the reflecting interface is calculated if the 

compressional wave speed is known [26, 28]. The method is particularly efficient 

to detect delaminations, discontinuities and small cracks, to detect compaction 

faults inside post-tensioning tendons or for measuring slab thickness [25, 27]. 

In the ultrasonic pulse velocity (UPV) method, the receiving transducer is coupled 

to the specimen at a known distance, so that the propagation speed can be 

deduced from the time interval between the transmission and reception of a 

pulse can. This speed can be correlated to the concrete quality and strength 

[26]. 

1.2.3 Ground penetrating radar inspection of structures 

Ground Penetrating Radar (GPR), is a non-destructive evaluation technique used 

in soil, sediment and rock prospection since the sixties. It is frequently used for ice 

studies, archaeological or geophysical research and, since the eighties, it has 

been increasingly used in concrete elements characterization. Initial civil 

engineering applications included condition assessment of highway pavements 

and their foundations, with applications to structural concrete focussing on bridge 

decks inspection [39]. 

GPR is now recognized as a useful tool in concrete structures characterization. 

The widespread applications generally focus on the geometrical characterization 

of the structures: thickness [40], detection of defects such as delaminations or 

cracks, localization of reinforcing bars. Recent works also showed that radar 

could be used for the characterization of the material itself, which opens new 

application fields: detection of humid and salt-contaminated zones [41] or 

measurement of the water content [39, 42, 43]. In both geometry and material 

characterization, the qualitative detection of variations into the structure is of 

current application, while the quantitative estimation of properties is still subject of 

researches to improve the methods accuracy and robustness. 

In this section, representative examples of studies focusing on the current main 

uses of GPR are detailed: rebars detection, layers thickness estimation and humid 

zones detection. The particular case of layer thickness determination will be 

detailed in § 1.3. 

1.2.3.1 Detection of rebars 

The detection of rebars with ground penetrating radar is relatively straightforward 

for the first layer of rebars. By a combination of GPR and cover meter, layers of 

reinforcement can even be differentiated [25]. From GPR measurement, the 
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distance between rebars can be precisely determined. The rebar depth can be 

estimated as well, but the precision is lower due to possible heterogeneities in the 

material or surface effects. The diameter of the rebars can be estimated as well, 

but it requires a sophisticated analysis (for example an artificial neuronal network) 

and the precision remains lower [44]. A better solution for diameter estimation is to 

use a cover meter in combination with the radar.  

As an illustration of the possibilities of detection of rebars with GPR, Figure 10 

displays a profile that we measured on a prestressed box girder concrete bridge 

(Figure 9 (a)) in Kirchberg, Luxembourg, in June 2010. The objective of the test 

was to determine the position and quantity of reinforcement and prestressing 

cables in the bottom part of the bridge. The profile measurement was facilitated 

by the fact that the space under the bridge had been partially backfilled in 

prevision to the upcoming bridge demolition (Figure 9 (b)). The profiles were 

performed close to the zone where the bridge would be cut (represented by the 

red paint line in Figure 9 (c)). The resulting profiles are displayed in Figure 10.  

   

      

 

Figure 9 : Tested bridge (a) section;  

(b) lateral view; (c) deck bottom view, with the profile line. 

(a) 
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Figure 10 : Profile measured on the bottom of a prestressed bridge. (a) Raw measurement; 

(b) after  signal treatment (migration), detection of different rebars zones; (c) zoom on the 

limit between zones I and II and differentiation of the two types of reinforcement. 

In Figure 10 (a), the raw signal measured by the radar is represented. The same 

profile, after signal treatment (time zero adjustment and migration F-K), is 

displayed in Figure 10 (b) and Figure 10 (c), in which a part of the radargram is 

enlarged. After this signal treatment, the prestressing cables are distinguishable 

from the reinforcing bars because their reflection keeps a curvature: their 

diameter is too important to appear as punctual.  

This distinction can be observed in the zones situated in the centre of the deck 

(Zones I and II), hyperbolas corresponding to reinforcing bars are visible every 20 

cm, at a depth of about 6 cm. In Zone II (1-2.5 m from the centre), prestressing 

cables are detected as well. They are situated a little deeper than the reinforcing 

rebars (at about 8 cm), with more important depth variations. We evaluated their 

number to 10 on each side of the bridge. 

1.2.3.2 GPR thickness determination 

The ground penetrating radar is one of the most popular methods for the 

thickness determination of structure elements, and in particular to estimate the 

thickness of road asphalt overlays [30]. 
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Many papers tackle this problem [40, 45-47]. The method adopted by most 

authors consists in measuring in the radargram the time of the reflection on the 

different interfaces (Figure 11 (a)). To transform this information on depth 

estimation, an estimation of the wave speed is needed. The wave speed mainly 

depends on the dielectric permittivity (see § 2.1.2), which can be evaluated  on 

the basis the amplitude reflected on the different interfaces. The GPR antennas 

generally used for those tests are air-launched horn antennas, which can be 

mounted on cars for automatic measurements at a relatively high speed (up to 

100 km/h) [46].  

In Figure 11 (b), Hugenschmidt [45] compares the asphalt thickness estimated by 

GPR with a 1.2 GHz contact antenna to the actual thickness, measured during 

pavement removal operations. He showed that the error was small (less than 

11 mm for the tested structures). The validity of the all-GPR measurements for 

asphalt thickness estimation was also confirmed by Loizos [47]. 

 

 

Figure 11 : (a) Example of road survey displaying the interfaces between the different 

layers [47]. (b) Comparison of the asphalt thickness estimated by GPR measurements to the 

real one [45].  

1.2.3.3 Detection of humid zones 

A good example of the possibilities opened by GPR utilization on concrete 

structures is given by Perez-Gracia [48] for the inspection of the reinforced 

concrete base of a block of flats. The slabs of the underground parking of the 

buildings showed evidence of moisture and numerous cracks were visible at the 

surface. Forty different GPR profiles were recorded in the building.  
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Figure 12 : Profiles showing evidence of (a) cracks  and (b) humid zones [48]. 

On each profile, the reinforcement bars situated at the bottom of the slabs were 

clearly visible. Faults and cracks appeared as local changes of the time 

associated to the rebars, indicated by white circles on profile P25 (Figure 12 (a)). 

The humidity causes a decrease of the concrete speed and thus increases the 

two-way travel time. This is clearly visible on the scan P24 (Figure 12 (b)). 

With those radar results, it was possible to create maps of the cracks (indicated 

by black points on Figure 13 (a)). If some of the detected cracks correspond to 

visible cracks on the surface (reported as grey lines), a majority of them weren’t 

visible. A map of the humid zones was also drawn (Figure 13 (b)) and the 

presence of a shallow water table, probably responsible for the humidity 

problems, was also revealed. 

(a) 

 

 

 

 

 

 

(b) 
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Figure 13 : Maps of (a) points with evidence of cracks (b) humid zones [48]. 

In addition, this GPR inspection of the slabs permitted to detect variations in the 

slab thickness. To distinguish them from the wet zones, the authors used the 

different frequency content of the radargrams. 

1.3 GPR detection of thin layers 

Among all the non-destructive methods, the Ground Penetrating Radar is well 

adapted to inspect multilayer structures because only a percentage (about 50%) 

of the energy is reflected at every interface. An inspection can thus reveal the 

thickness and electromagnetic properties of two layers or more, if the conditions 

are favourable [40], as shown in §1.2.3.2. This is not possible with other non-

destructive techniques such as impact-echo or ultrasonic testing, because they 

use stress waves which have an air-concrete reflection coefficient almost equal 

to 100%. 

But when the considered layer is thin, the radar waves reflections on both 

interfaces of the thin layer generate a complex global reflection which can be 

hard to recognize and interpret for the radar user. In this situation, the layer is 

detected but a deeper analysis of the signal is required for a quantitative 

estimation of its properties. Different researches are currently led to achieve this 

goal, and the objective of this thesis is to contribute to the development of a fast 

method for the thin layers characterization.  

The first part of this section (§ 1.3.1) will describe different situations in which thin 

layers are present in civil structures. In the second part (§ 1.3.2) we will present a 

(a) 

(b) 
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brief literature review for the different methods allowing to determine thin layers 

into concrete with GPR. 

1.3.1 Thin layers in civil engineering structures 

In many structures, features presenting a small thickness to surface ratio are 

relatively common. Almost every soil or wall in recent commercial, residential or 

industrial building is constituted of multiple layers of different materials: concrete, 

bricks, wood, plaster, insulation material, waterproofing membrane, air… Each 

one of the different layers is selected to bring to the element the required 

properties in resistance, but also insulation, waterproofness and appearance. 

The layered structures are also widespread in civil engineering structures, and 

especially in the roads and bridges design [49]. Concrete bridge decks are 

typically compounded of a concrete slab (sometimes casted on concrete pre-

slabs), covered by an asphalt overlay. Between those layers, all modern bridges 

include a waterproofing layer, to prevent the (de-icing salts contaminated) water 

penetration into the concrete. In Wallonia, the waterproofing layer can consist of 

casted asphalt (for a thickness of 15 mm), bituminous sheets or resin [30] (Figure 

14). 

   

   

Figure 14 : Different types of waterproofing layers used on the bridges in Wallonia : (a) 

Casted asphalt; (b) Bituminous sheet and (c) resin [30]. 

The waterproofing layer, presenting usually a thickness less than 5 mm, is a vital 

element for the durability of the bridge. Indeed, all the concrete degradation 

mechanisms (freeze-thaw cycles, corrosion, alkali-aggregate reactions, …) 

require the presence of water to develop [12, 18, 50]. Detecting problems in the 

waterproofing membrane can thus help to prevent many degradation 

mechanisms. 

If the defects into the membrane may be difficult to detect due to their small 

lateral extension, the presence of a problem may still be detected using the 

difference of properties of the concrete under the membrane. Indeed, a wet 

zone in the underlying concrete will have a larger extension, especially after a 

rain event.  

(a) (b) (c) 
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At another scale, thin layers into concrete can be caused by some degradation 

mechanisms, and especially the concrete decay (§ 1.1.3). Indeed, one of the 

consequences of this pathology is the appearance of concrete delaminations at 

the upper surface of the slab: the concrete degrades into a few millimetres thick 

leaves, creating horizontal cracks [8]. The horizontal delaminations caused by 

concrete decay can be considered as well as very thin layers appearing in the 

structure. Their thickness is usually very low (<1 mm), but can sometimes rise up to 

a few millimetres, as can be observed in Figure 15. 

 

 

Figure 15 : (a) Concrete core drilled from a bridge deck; (b) View from the surface of the 

corresponding hole (Photo P. Gilles (SPW)). 

After raining events, those delaminations are usually preferential paths of water 

penetration into the concrete, creating horizontal wet zones that can be 

sometimes more easily detected with radar. 

1.3.2 Thin layers resolution with GPR 

In order to illustrate the difficulty of thin layer detection with GPR, the 

measurements performed on three samples representing a road structure are 

displayed in Figure 16. For each sample, the bottom material is a concrete slab,  

with a thickness of 10 cm, and the surface material is a 7 cm asphalt overlay. In 

the first case, the materials are directly in contact. In the second case they are 

separated by a 4.5 mm waterproofing bituminous layer. In the last sample, a local 

defect (air void with a thickness of 3.9 mm) was created at the concrete surface 

before laying the bitumen, to simulate the presence of a delamination. 
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Figure 16 : Example of GPR measurements performed on layered samples, with the 

presence of different thin layers. 

In Figure 16, it is visible that the reflection with and without the bituminous layer 

are different, but the presence of the bituminous layer could not be deduced 

from the signal without a deeper analysis than a visual inspection. The presence 

of the defect under the sealing layer is visible, thanks to a brutal change of the 

reflected amplitude. Nevertheless a further analysis would be required to 

characterize the nature and thickness of the defect. 

The exact equation for a reflection from a single embedded layer and 

considering simple harmonic waves was reported by Rayleigh [51]. The extension 

of this theory to seismic wavelets was then proposed by Widess [52], who set the 

limit of thin layers to     and observed linearity between the layer thickness and 

the reflected amplitude. 

To detect and determine thin layers with ground penetrating radars, or more 

generally to try determining a layered medium, different approaches have been 

considered in the literature: 

- Ray-tracing method; 

- Inversion of the reflection spectral content; 

- Full waveform inversion. 

Each one of these methods has been used and improved by different authors 

and given successful results under specific conditions. They will be briefly 

introduced in the next sections. 
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1.3.2.1 Ray-tracing method 

The ray-tracing method is based on the analysis of the reflection time and 

amplitude. It approximates the wave propagation to a propagation as 

geometrical optical rays. This method allows to estimate the propagation time 

into the medium and to use the physical laws ruling optical reflection and 

refraction (for example Fresnel reflection coefficients of Snell’s refraction law). The 

ray-based method is only valid for low-conductivity, non-magnetic materials and 

does not take into account the wave phenomena as diffraction or polarization 

[53]. 

 

Figure 17 : Typical ray path in a three layers medium [53]. 

This is the most direct way to analyze the radargrams registered with GPR. The 

time, and possibly the amplitude, of the reflections measured in the radargram 

are evaluated and are directly used to determine the thickness and permittivity 

of the different layers. A good example is given by Al-Qadi [40], who applied this 

method to the determination of a road structure. 

If thin layers are involved, the different reflection events overlap in the radargram 

and this method cannot be directly used. But the interferences generated by the 

thin layers can be taken into account by specific equations [54]. This requires the 

presence of the thin layer to be suspected by the user (for example through core 

drilling) before analyzing the signal. 

Ray-based methods are often derived from seismic techniques. Indeed, the 

acoustic waves propagate as rays and most acquisition procedures can be 

adapted for radar inspection. This is the case of the profile measurements, in 

which the underground is measured by moving the antennas along the surface, 

but also of common mid points (CMP) measurements, performed by moving 

away the two antennas. This method allows obtaining a range of offsets and 

incident angles.  

1.3.2.2 Inversion of the reflection spectral content 

This method studies the reflection of GPR waves on thin layers, and in particular 

the variations of the amplitude and phase versus offset (APVO) curves. The high 

dependence of the reflection coefficient on the layer properties and thickness 
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can lead to the determination of those properties on the basis of measurements 

with a variable offset.  

The extension of this method, initially developed for seismic data, was initially 

suggested by Bradford and Deeds [55], who used the amplitude versus offset 

(AVO) curves to detect pollutant plumes over water table. Other authors 

suggested to exploit all the frequency range of the radar wavelet, for a single 

reflection. They determined thin-bed fractures using the amplitude versus 

frequency [56] or the amplitude and phase versus frequency [57] curves. They 

also introduced the frequency dependence of the material properties through a 

Jonscher formulation (see Appendix 2). Deparis [58, 59] successfully combined 

both approaches, inverting the APVO curves for different frequencies in order to 

characterize thin fractures in limestone formations.  

1.3.2.3 Full waveform inversion 

One of the most recent and promising method for the determination of thin layers 

with GPR is the full waveform inversion (FWI). With this method, the forward model 

aims at fitting the whole GPR waveform, and not only a single parameter such as 

the  amplitude of a reflection event. It has been used successfully to determine 

the properties of layered soils and concrete slabs [60, 61].  

This method requires an excellent knowledge of the incident signal emitted by the 

radar. For this reason, its first developments included the use of horn, off-ground 

antennas, for which the near-field effects can be neglected. The antenna has to 

be calibrated over a metallic plane [60]. To avoid the computation of the signal 

Fourier transforms, the measurements can be performed using a succession of 

continuous sine wave of various frequencies. 

Recently, the FWI has been applied to the determination of concrete structures. 

Patriarca [62] used the FWI to estimate the dielectric parameters of concrete 

slabs and their thickness. He managed to simulate the full waveform response of 

a crack into concrete and to determine the depth and aperture of a crack 

whose filling properties were known. In [61], Kalogeropoulos used a bistatic horn 

antennas to estimate the chlorides and moisture contents in concrete slabs.  

Bush [63] tackled the problem of the FWI with on-ground antennas, for geologic 

applications. The coupling of the antennas with the surface highly influences the 

incident wavelet. For this reason, the inversion process includes an explicit 

optimization of the effective source wavelet. 

The issue of near-field, on-ground radar was also tackled by Lambot [64], who 

modeled radar antennas using an equivalent set of infinitesimal electric dipoles. 

After a complex calibration of the antennas over a metallic plate, the inversion of 

results registered by on-ground antennas revealed to be possible. Nevertheless, 

the concordance between real and modeled results are less satisfactory than 

with sine signals and horn antennas.  
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Chapter 2: Ground Penetrating 

Radar theory 

In the first chapter, different current uses of ground penetrating radar (GPR) were 

presented, as well as the different methods used to determine thin layers 

thickness. In this second chapter, the theoretical principles related to this work are 

presented. In the first section (§ 2.1), we present the global wave propagation 

theory. In the second one (§ 2.2), the equations of the reflection coefficient of 

thin layers are developed. Those equations will be used in Chapter 5 to estimate 

the layer thickness from experimental and numerical tests. Finally, in § 2.3, the 

principles of the finite difference time domain (FDTD) are presented. This 

numerical method will be used all along the thesis to perform simulations. 

2.1 Physical properties of radar waves 

The GPR principle is to create, with an emitter antenna, very short pulses of 

electromagnetic waves which propagate through the medium in all directions (or 

in the half-space downward only, if the antenna is shielded). They reflect on the 

interfaces between materials of different electromagnetic properties. At the 

surface, a receiver antenna measures the amplitude of the signal over time 

(Figure 1). Each measurement made by the receiving antenna is called a sample. 

The set of all the samples collected at the same point is called a trace or a scan 

in which both the direct wave and the waves reflected on the different interfaces 

can be observed.  



   

28 

 

 

Figure 18: Simplified GPR trace measured on a two-layer structure. 

In electromagnetic spectrum, radar frequencies range from 100 MHz to 100 GHz. 

For geological applications, in which penetration depth has to be quite 

important, frequencies of antennas are generally less than 500 MHz. For civil 

engineering applications, useful central frequencies can rise up to 2.6 GHz [44, 

65]. 

2.1.1 Propagation of electromagnetic waves 

GPR waves are electromagnetic waves, whose behaviour can be described 

using two different sets of relationships: Maxwell’s equations and the constitutive 

equations. Only Maxwell’s equations are exact: the constitutive equations are 

only accurate for isotropic linear materials. Nevertheless, they can be used as 

good approximations to solve Maxwell’s equations [66].  

2.1.1.1 Maxwell’s equations 

The four Maxwell’s equations describe the relationships linking the different fields 

and properties in a dielectric environment submitted to a magnetic field. 

    ⃗   
  ⃗ 

  
 (3) 

    ⃗⃗     
  ⃗⃗ 

  
 (4) 

    ⃗⃗    (5) 

    ⃗    (6) 

In those equations,  

-  ⃗  is the electric field strength vector (V/m); 

-  ⃗  is the magnetic flux density vector; 
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-  ⃗⃗  is the magnetic field vector (A/m); 

-    is the electric current density vector (A/m²); 

-  ⃗⃗  is the electric displacement vector (C/m²); 

-   is the electric charge density (C/m²); 

-   is the time (s). 

The first equation (3) is Faraday’s law and expresses that a varying magnetic field 

generates a closed loop electric field. The second equation (4) reflects Ampere’s 

law and describes that an electric current gives rise to a magnetic field. The third 

equation (5) expresses that any electric displacement  ⃗⃗  starts or ends on an 

electric charge, which means that any electric field should terminate on a 

charge or form closed loops. The last equation (6) expresses the fact that 

magnetic charges do not exist: all the flux loops are closed [67]. 

2.1.1.2 Description of the constitutive equations 

In addition to Maxell’s equations, the physical properties of the materials and the 

electromagnetic field are also related by three constitutive equations: 

       ⃗  (7) 

  ⃗⃗     ⃗  (8) 

  ⃗     ⃗⃗  (9) 

Where: 

-   is the electric conductivity (S/m) 

-   is the dielectric permittivity (F/m) 

-   is the magnetic permeability (H/m) 

In equations (7), (8) and (9),  ,   and   are scalars only if the material is 

homogeneous, linear, isotropic, time-invariant, nondispersive and nonmagnetic. 

Otherwise, they should be expressed as complex functions of the vector position 

(if the material is not isotropic and homogeneous) and of the frequency if the 

material is dispersive. This will be the case for many applications in radar (see 

§ 2.1.6).  

Equation (7) describes how free charges flow to form a current when an electric 

field is present. In concrete, electric conductivity is linked to the number, the 

charge and the speed of ionic particles moving under the electric field action 

and to the concrete porous structure characteristics. 
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Equation (8) describes how constrained charges are displaced in response to an 

electric field. This movement creates a dielectric displacement current. 

The last constitutive equation (9), describes the magnetic field influence on 

intrinsic atomic and molecular magnetic moments. Concrete being a non-

magnetic material,   is equal to   , void permeability [54]. 

In dispersive materials, the conductivity and permittivity are complex values and 

depend on the frequency ( ).  

 
 ( )    ( )      ( ) 

(10) 

 
  ( )    ( )      ( ) 

(11) 

Where: 

 -       (12) 

 -       (13) 

In the radar frequency range, it is impossible to experimentally distinguish the 

contribution of electric conductivity from that of dielectric permittivity in the total 

current density. Therefore, effective parameters    and    are defined to take into 

account both effects [44]: 
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(15) 

Generally speaking,   and   are tensors and can be non linear. Indeed, they can 

be dependent on electric field magnitude and direction. Anyway, for GPR 

applications, those parameters are generally treated as field independent scalar 

quantities [54]. Experimental works proved that this assumption is close to reality 

when high frequencies are employed [68]. 

Consequently, in (7), total current density   ⃗⃗  generated by the application of the 

electric field  ⃗  can be expressed as a function of effective conductivity or 

effective permittivity: 

       ⃗       ⃗  (16) 

Permittivity is usually expressed as a relative value, when divided by    (void 

permittivity): 
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(17) 

The imaginary part of relative permittivity,   
  , represents energy losses by 

absorption, resulting from combined effects of    and    . The real part   
  

represents the material capacity to accumulate electric energy by electric 

polarization. It is usually defined as the concrete dielectric constant. In radar 

frequency range, the polarization can be induced by different mechanisms [69]: 

- electronic polarization due to the distortion of the electronic cortege of 

an atom with respect to its nucleus; 

- ionic polarization due to the relative motion of anions and cations within a 

crystalline structure; 

- dipole polarization, linked to water molecules in concrete constituting 

permanent dipoles; 

- interfacial polarization, linked to charge accumulation at solid-liquid 

interfaces. 

The first two phenomena are applicable to all solids. In case of concrete, they 

dominate in the absence of dipole particles i.e. in dry conditions. In presence of 

water, dipole polarization, which is related to water content, has the greatest 

importance and electronic and ionic polarization can be neglected. The 

dominating influence of water content on relative permittivity was experimentally 

confirmed by Soustos [68].  

Interfacial polarization is linked to the ionic concentration in interstitial solution but 

is characterized by very low relaxation frequencies (1-100 KHz). At radar 

frequencies, it does not have time to settle and does not contribute to the total 

permittivity, even if it has a great influence on conductivity [69].  

2.1.2 Speed of electromagnetic waves 

By introducing the constitutive equations (7), (8) and (9) into Maxwell’s equations 

(3) and (4), it is possible to obtain a differential equation describing the 

spatial/temporal variations of the electric field  [54]:  

  ⃗   ⃗   ⃗    
  ⃗ 

  
   

   ⃗ 

   
   (18) 

The electric field   ⃗   can be expressed as a function of the time: 

  ⃗   (    ⃗   ) ̂ (19) 
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In (19),  ⃗  is the propagation direction,    is the spacial position,   is the time and  ̂ is 

an orthogonal vector. The respective positions of the different vectors are 

represented in Figure 19. 

 

Figure 19 : The electric field,  ⃗⃗ , magnetic field,  ⃗⃗  and the propagation direction,  ⃗⃗  are 

orthogonal.  ̂, ̂ and  ̂̂ are orthogonal unit vectors [70]. 

 If we introduce       ⃗ , the scalar distance in the direction that the field varies, 

(19) becomes:  

  ⃗   (   ) ̂ (20) 

In (20),   is the scalar distance in the field variation direction and  ̂ is an 

orthogonal vector. Introducing (20) into equation (18) leads to a differential 

equation of the second order [54]: 

 

  

   
 (   )    

 

  
 (   )    

  

   
 (   )    (21) 

This equation can be simplified if the propagation medium can be considered as 

a low loss environment, in which the attenuation losses can be neglected. The 

criterion for a low loss environment, with   the angular velocity (12), is [71]: 

 

 

  
   

(22) 

Concrete, in radar frequency range, can often be considered as a low loss 

medium [54]. Under this low loss condition, the differential equation (21) can be 

solved [54] and we have: 

 
  

 

√  
 

(23) 

If we are considering a non-magnetic material,      and       . Even 

reinforced concrete can be considered as non-magnetic because the waves 

only travel into the concrete, the rebars being perfect reflectors. By introducing 

the speed of light 
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(24) 

and neglecting the effects of the imaginary part of the effective dielectric 

permittivity   
    which is possible because concrete is a low-loss medium, the wave 

velocity can be finally approximated as: 

 
  

 

√  
 
 

(25) 

Table 1 gives typical values of relative permittivity, conductivity and velocity for 

common geological materials and the different materials that will be 

encountered during this thesis. 

Table 1 : Typical relative permittivity, electrical conductivity and velocity for common soil, 

rocks and building materials [13, 54, 68, 72-74]. 

Material   
  

 

  

(    ) 

  

(    ) 

Air 1 0 0.30 

Distilled water 80 0.01 0.033 

Fresh water 80 0.5 0.033 

Sea water 80 3000 0.01 

Dry sand 3-5 0.01 0.15 

Saturated sand 20-30 1-10 0.06 

Limestone 4-16 0.5-2 0.075-0.15 

Silts 5-30 1-100 0.05-0.13 

Clays 5-40 2-1000 0.05-0.13 

Granite 4-7 0.01-1 0.11-0.15 

Concrete 4-10 1-100 0.09-0.15 

Polystyrene 2.6 <10-10 0.19 

Polyethylene 2.3 <10-10 0.20 

Bitumen 2.6 – 2.8 <10-10 0.179-0.186 

 

For concrete, the main factors influencing the dielectric permittivity are its water 

content and the frequency. This was proven by Soustos et al. [68], who performed 

tests by direct measurement on concrete with a coaxial transmission line. They 
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showed that the influence of frequency is weak for high frequencies, while the 

concrete conductivity increases linearly with frequency (Figure 20). 

 

Figure 20 : Typical variations of permittivity and conductivity with frequency and moisture 

content [68]. 

They also proved that cement type and concrete strength had a minor influence 

on the dielectric properties of concrete, especially with regard to its relative 

permittivity. The main influent factor turned out to be the water content of the 

samples, whose influence on permittivity can be considered as linear (Figure 21). 

 

Figure 21 : Influence of water content on dielectric properties [68]. 

2.1.3 Ground Penetrating Radar acquisition methods 

When inspecting the ground or a structure with GPR, different acquisition 

methods are distinguished, depending on the antennas configuration. A first 

distinction is made between the transmission mode, in which the waves travel 
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directly from one antenna to the other through the structure, and the reflection 

mode, using the reflection inside the material to transmit the waves from one 

antenna to the other one. The transmission mode requires that both sides of the 

structure are accessible, which is seldom the case in reality. For this reason, the 

reflection mode is far more widespread, and transmission modes will not be 

considered in this work. 

In the reflection mode, two different configurations are frequently used. In the first 

one, the profile scanning, the transmitter and the receiver are moved together 

along the surface. This enables to obtain a direct representation of the 

subsurface. The second acquisition mode is the common mid point (CMP). It uses 

varying distance between the antennas. With this method, a single point of the 

structure is tested, to evaluate the speed of the waves or to detect a local 

reflector. 

These two acquisition methods (Profiles scanning and CMP measurements) will be 

briefly presented in § 2.1.3.1 and § 2.1.3.2. Finally, in § 2.1.3.3, we will describe how  

the relative position of the antennas determines the propagation mode of the 

waves (transverse electric or magnetic).  

2.1.3.1 Profile scanning 

In this radar auscultation method, the transmitter and the receiver are moved 

together along a defined line of the structure surface. The user selects the spatial 

interval separating all the traces recordings. All the scans taken together and 

represented as a function of their position constitute a profile (Figure 22). This is the 

most common radar auscultation method, and is also referred to as common 

offset test (the offset is the distance between the transmitter and the receiver). 
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Figure 22 : Profile acquisition principle. 

In a profile, many quantitative properties of the inspected structure or ground can 

be directly observed. Indeed, the interfaces are directly observable. The local 

features, however, appear in the radargram as hyperbolas, because they are 

already visible before being just over the features, and are still visible further. The 

shape of hyperbolas can help determining the dielectric properties of the 

material (§ 3.3.1.3). 

If the antennas offset is known, the depth of the reflection   can be deduced 

from the two-way travel time   displayed on the radargram: 

   
√       

 
 (26) 

If the antennas offset   is small by comparison to the depth of the target  , this 

equation becomes simply: 

   
   

 
  (27) 

2.1.3.2 Common mid point (CMP) measurement 

The other mode of acquisition is the CMP, in which the reflection point remains 

constant and the offset is gradually increased (Figure 23).  
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Figure 23 : CMP acquisition principle. 

Figure 24 (a) represents a CMP radargram obtained by 2D FDTD simulations 

performed with GprMax [75]. In this radargram, we can recognize characteristic 

waves, corresponding to different paths between the antennas (Figure 24 (b)). 

    

Figure 24 : Typical radargram obtained with CMP. 

In Figure 24, wave   is the direct wave in the air. Its speed is known and equal to 

the speed of light           . It is supposed to cross the origin of axes, thus it 

can help to find the emission time    if the initial offset is known. The time of 

reception of this wave is: 

 
      

 

 
 

(28) 

Wave   is the direct wave into the ground. It gives directly the speed   of the 

radar waves into the material. Its time of reception is 

 
       

 

 
 

(29) 

Another highly visible curve in CMP radargrams is the critically refracted wave  . 

This wave actually travels in the air, which explains its final slope equal to 30 
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cm/ns, after a reflection with the critical angle inside the material, which gives the 

waves crossing the surface an horizontal inclination. The equations of the 

recording times of all the curves appearing in Figure 24 are developed in 

Appendix 1. 

2.1.3.3 Antennas orientation: transverse electric and magnetic modes 

In most radar tests, both for profiles and CMP acquisitions, the GPR antennas are 

parallel and oriented perpendicular to the investigation direction. The acquisition 

is then in the transverse electric (TE) mode (Figure 25), which means that the 

electric field is polarized perpendicularly to the propagation plane [55]. This is 

always the case when using a single shielded antenna, because the receiver and 

emitter antennas are parallel into the box (see Figure 45). 

 

Figure 25 : TE and TM configurations for bistatic antennas. 

In the opposite configuration, transverse magnetic (TM) mode (Figure 25), it is the 

magnetic field that is polarized perpendicular to the propagation plane. This 

mode is less used because less energy is radiated, but it can be useful in some 

configurations to use both modes in order to maximize the information measured 

from the surface [55]. 

Some properties, as the antenna radiation pattern or the reflection coefficient, 

are highly dependent on the considered mode [54, 55]. The case of the reflection 

coefficient in the TM mode will be treated in Appendix 3. Nevertheless, in the 

experimental and numerical tests presented in this thesis, we uniquely used the TE 

mode. Adding the analysis of TM waves in the same configuration is an avenue 

that might be worth exploring in order to improve the results. 

2.1.4 Attenuation, scattering and dispersion 

Different phenomena decrease the amplitude of the radar wave during its 

propagation. 

- The ohmic attenuation, caused by the conductivity of the material; 

- The scattering attenuation, caused by heterogeneities into the medium; 
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- The dispersion, caused by the variability of the dielectric properties of the 

concrete with frequency; 

- The geometric spreading, caused by the geometric expansion of the 

wave energy into the space. 

2.1.4.1 Ohmic attenuation  

The ohmic, or intrinsic, attenuation is caused by the electric losses into the 

material. The attenuation factor   describes this diminution in function of the 

covered distance  .  

If the incident wave is a plane sinusoid travelling in the   direction, equation (18) 

can be solved, and the value of the electric field is given by: 

  (   )      
      (  

 
 
)
 (30) 

In this equation,    is the initial electromagnetic field strength and   is the angular 

frequency. The wave speed   and the attenuation factor   depend on the 

dielectric properties of the concrete, as well as on the angular frequency (31) [54, 

71, 76]. 

    {(
  

 
) [(  

  

    
)

 
 

  ]}

   

 (31) 

    {(
  

   
) [(  

  

    
)

 
 

  ]}

   

 (32) 

The two parameters are linked by the relationship: 

 
  

  

  
 

(33) 

Two simplifying assumptions are currently made to estimate   and  . The first one 

is that the inspected material is non-magnetic, which yields     , where 

             is the magnetic susceptibility of free space. The second 

assumption consists in considering that we are in low loss conditions (equation 

(22)). With these two assumptions, (31) and (32) can be estimated by: 
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Equation (34) is then identical to (25), which was obtained directly from Maxwell 

equations. 

2.1.4.2 Scattering attenuation 

The wave scattering attenuation is due to the heterogeneities in the material. 

When the size of heterogeneities is small regarding the wavelength, they will not 

be visible in the GPR scan. This is normally the case of the aggregates into 

concrete, because the wavelength   is given by the equation 

 
  

 

 
 

(36) 

Using the expression (25) for the speed  , (36) becomes: 

 
  

 

 √  
 
 

(37) 

The case in which the aggregates are the most susceptible to be detected is for 

high frequencies and low permittivity. If         and   
   , we find       , 

which is a dimension superior the size of aggregates in classical concrete.  

But each small interface still reflects a small amount of energy in all directions, 

and if heterogeneities are numerous in the material, all these small losses will 

considerably decrease the amplitude finally reflected to the radar.  

The scattering attenuation is, as the ohmic one, an exponential phenomenon: 

 
       

              
(38) 

The scattering attenuation coefficient             is proportional to the number of 

scatterers, as well as to the “scattering area”. When the size of the particles is not 

negligible regarding the wavelength, this scattering area is described by the Mie 

scattering theory and is frequency dependant. When the size of the particles is 

very small, the scattering area can be estimated by Rayleigh scattering cross 

section  , which can be estimated by [76]: 

 
         

(39) 

In (39),   is a constant,   is the radius of the heterogeneity and   is the frequency. 

The scattering attenuation is thus highly frequency dependent. For a 2.3 GHz GPR 

test on a concrete presenting an aggregate radius of 2 cm, the order of 

magnitude of the scattering attenuation coefficient could be about 0.5 m-1, 

which can be larger than the ohmic attenuation for dry concrete. 
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2.1.4.3 Dispersion 

Most commercial GPR antennas emit short wavelets, for which the signal is 

composed of a range of frequencies, distributed around a nominal value. But 

many properties of the materials, and in particular the attenuation, are frequency 

dependent (see §§ 2.1.4.2 and 2.1.6 ).  

During the wavelet propagation, the higher frequencies will thus be submitted to 

a higher attenuation than the lower frequencies, while the differences in 

permittivity will create a difference in the speed at which travel the different 

frequency components. This will result in a change in the wavelet shape and 

amplitude [77].  

Correcting the dispersion is particularly important in a lossy medium, when using 

wavelet or deconvolution analyses, which suppose a constant wavelet shape. 

The frequency analysis, using a Fourier transform, allows to consider each 

frequency component independently and thus to take into account the 

frequency dependant wave dispersion. 

2.1.4.4 Geometric spreading 

During the propagation of the radar wave in a medium without attenuation, its 

total power is supposed to remain constant. As the wave spreads spherically 

away from the antenna, the power density decreases proportionally to the 

sphere surface. This phenomenon will be described in more details in the chapter 

dedicated to the study of the direct wave (§ 3.2.4).  

2.1.5 Impedance and admittance 

The impedance of a plane electromagnetic wave is defined as the ratio 

between the amplitudes of the magnetic and electric fields [54].  

  ̅  
| ̅|

| ̅|
 (40) 

The third constitutive equation (9) allows evaluating the magnetic field as a 

function of the magnetic flux density vector  ̅: 

 | ̅|  |
 ̅

 
| (41) 

If we introduce the time definition of the electric field (19) into the first Maxwell’s 

law (3), we find: 
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But        ⃗  is the distance covered by the wave in its propagation direction. Its 

derivative by respect to the time       is then simply the wave speed  . We find 

thus: 
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Finally, we find, for a medium in which conductivity is negligible (lossless): 
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(45) 

In the particular case of a plane transverse electromagnetic wave travelling 

through a homogeneous medium, the wave impedance is equal to the medium 

intrinsic impedance, defined as the complex ratio between the applied voltage 

and measured current. This electric impedance is the AC (alternative current) 

equivalent of the DC (direct current) resistance and is expressed in ohms. 

The admittance is defined as the inverse of the impedance. It is thus given by: 
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(46) 

2.1.6 Frequency dependence of the GPR properties 

As seen in § 2.1.4.1, the speed and attenuation of the GPR waves in a given 

material are not constant, but tend to increase with frequency. At low 

frequencies, the GPR waves diffuse into the material and do not reach a wave 

behaviour until a transition frequency    (47), at which both the speed and the 

attenuation tend to stabilize. The low frequency diffusion is used in EM induction 

techniques. 

 
   

 

   
 

(47) 

For the frequencies larger than   , the speed and attenuation in most materials 

experience a stabilization zone, called the GPR plateau, in which the properties 

can be considered as stable, even if they increase slightly. 

For higher frequencies (from 500-1000 MHz, depending on the water content), the 

properties, especially the attenuation, increase again, because of two different 

phenomena: 
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- the water approaches its relaxation frequency, which means that its 

permittivity begins to decrease and its conductivity to increase. Physically, 

when the frequency reaches a few GHz, the water molecule dipole 

moment can no longer track the applied electric field. The water 

molecule dipole alignment is not synchronized anymore with the external 

exciting field, which causes energy dissipation in the material. Microwave 

ovens use this phenomenon to heat water-containing food; 

- as explained in § 2.1.4.2, the scattering attenuation is highly dependent 

on the wave frequency. Its contribution to the wave attenuation becomes 

then important. 

In Figure 26, Annan [54] represented the evolution of the velocity and the 

attenuation in a geologic material versus the exciting frequency, as a function of 

the water content. The velocity remains relatively constant until about 4 GHz, but 

the attenuation is submitted to a high increase, even for permittivities less than 

1 GHz. 

 

Figure 26 : Frequency dependence of the velocity and attenuation in geological materials, 

depending on the water content [54]. 

Different mathematical models have been elaborated to take into account the 

frequency dependence of the dielectric permittivity. Three of them (Debye, Cole-

Cole and Jonscher models) are detailed in Appendix 2. 

2.1.7 Reflection coefficient 

The GPR waves are reflected when they meet an interface in the underground or 

into the structure, revealing the presence of this material change and allowing 

the estimation of its depth. But if the user is interested in determining the material 

properties of the buried medium, he has to study in details the amplitude (and 

possibly the phase) of the reflected wavelet. Those parameters can be related to 

the material properties (and especially to the permittivity) thanks to the reflection 

coefficient theory. 

The reflection coefficient,  , is equal to the proportion of the incident wave 

amplitude   that will be reflected at the interface, producing a reflected wave of 

amplitude    (Figure 27). If a phase change occurs at the interface, the reflection 
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coefficient can have an imaginary part. Anyway, no energy can be created 

from a reflection, so the reflection coefficient always lies inside the unit circle [78]. 

 

Figure 27 : Geometry of a wave reflection on an interface. 

Because the global energy is preserved at the interface, the transmission 

coefficient   is deduced from the reflection coefficient [76].  

 

            

          
(48) 

This equation is only valid in the transverse electric mode (TE). The transmission 

coefficient can be situated outside of the unit circle [78].  

The reflection coefficient depends on the contrast in dielectric properties 

between the two mediums, but also on the incidence angle of the wave. For 

example, a wave perpendicular to an interface will penetrate much better into 

the second medium than a raking wave, that will almost totally be reflected. 

Generally speaking, in terms of impedance, the Fresnel reflection coefficient in 

the transverse electric (TE) mode is given by 

 
    

               

               

 
(49) 

In this equations,    and    are the respective admittances of the two layers (see 

§ 2.1.5) and    and    are the respective inclinations of the wave. This transverse 

electric equation applies to the electric field in the transverse electric plane 

(which corresponds to the plane perpendicular to the antenna if the emitting 

antenna is a dipole,). For transverse magnetic equations and reflection 

coefficients for the magnetic field, see in Appendix 3. 

If the medium is lossless, this equation can be expressed in function of the 

dielectric permittivities of the media     and    , using (46): 
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√         √        

√         √        

  (50) 

Figure 28 depicts the reflection coefficient for different permittivity contrasts and 

incident angles, with    
  and    

  the relative dielectric permittivities of the 

mediums 1 and 2 in Figure 27. When the second layer has a higher dielectric 

permittivity than the first one, the reflection coefficient increases smoothly 

towards one when the angle increases. When the second layer has a lower 

dielectric permittivity than the first one (dashed lines), the amplitude of the 

reflection coefficient is the same at vertical incidence, but it increases very fast to 

one. The limit angle from which the reflection is total is called the critical angle. 

 

Figure 28 : Description of the Fresnel reflection coefficients (see Figure 27) 

The dashed lines represent the case of inverse permittivity ratios. 

If the incident wave is perpendicular to the interface (       ), the reflection 

coefficient simply becomes:  

       
√    √   

√    √   

 (51) 

The definition (50) of the reflection coefficients is referring to the incident and 

transmitted angles    and   . However, those angles are not independent but are 

linked by Snell’s law, which expresses the conservation of energy at the interface 

of two materials. This law, valid in numerous domains in wave physics, can be 

written (for lossless media): 
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Using this relationship,    can be expressed in function of    in (50). Moreover, if 

we consider a low loss medium, the velocity ratio can be expressed in function of 

the permittivities ratios (25).  
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Equation (50) becomes: 
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(54) 

The reflection coefficient can be negative if material 2 has a higher relative 

permittivity than material 1 (Figure 27), which is the case for embedded metallic 

rebars for example, whose dielectric permittivity approaches the infinity. At an 

interface between air and concrete, the reflection coefficient is about 50%, 

which means that GPR waves are able to penetrate beyond such interfaces and 

detect deeper features in the material.  

In the expression of Fresnel reflection coefficient (54), the term under the square 

root will be negative if the deeper material has a lower permittivity than the 

surface one and if         We have then:  

   
    

    

        (55) 

The reflection coefficient becomes imaginary, with unit amplitude and non-zero 

phase. The theoretical reflection phase for a reflection with    
      and    

    is 

displayed in Figure 29 (a). The resulting effect on the reflected wave can be 

observed in Figure 29 (b), displaying the radargram of a synthetic CMP with the 

same parameters. We observe that the phase change is visible in the graph. 

Indeed, for the low angles, the main peak in the reflection seems to be a black 

peak, surrounded by two white peaks. At large angles, the main peak is a white 

peak, surrounded by two important white peaks. The phase change is then 

almost equal to 180°. 
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Figure 29 : Angle-dependant reflection phase change for     
      and    

   .  

(a)  Theoretical reflection phase change. (b) Resulting effect on the measured wavelet. 

2.1.7.1 Evanescent wave 

When a total reflection occurs, the amplitude and the phase of the transmission 

coefficient are not equal to zero. No power is transmitted to the second medium 

but a field is generated along the interface. This powerless field is the evanescent 

field. It is represented in Figure 30.  

 

Figure 30 : The evanescent wave appears when the incident angle    is larger than the 

critical angle. 

The transmitted wave is the evanescent wave, traveling along the interface at 

the horizontal speed [79]: 
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(56) 

Its amplitude decays exponentially from the interface, with the amplitude 

decaying as [78, 79]: 
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     (57) 

In (57),   is the pulsation and   is the distance from the interface in the direction 

of medium 2. The wave decays thus rapidly in the   direction, especially for large 

incident angles. But the evanescent wave cannot be neglected in all cases. 

Indeed, if a second interface is present close to the first one (in the zone where 

the evanescent wave amplitude is not negligible), the wave can be transmitted 

and reflected by this second interface and becomes a propagative wave again 

[80].  

The general equations describing the transmission coefficient ((48)-(54)) can be 

applied without modification to estimate the evanescent wave [81]. For post-

critical reflection, the expression under the square root in (54) is negative, and the 

reflection and transmission coefficient are thus imaginary numbers. Their 

amplitudes are respectively equal to | |=1 and | |   , but their phase is not 

equal to zero. The wave propagates into the second medium with an imaginary 

angle of energy transfer which can be calculated using Snell’s equation (52): 

 
            (

  

  

     ) 
(58) 

2.1.7.2 Reflection of spherical waves 

The Fresnel reflection coefficients described in § 2.1.7 are rigorously valid only for 

plane waves, i.e. waves whose propagation fronts are planes. In reality, the 

waves emitted by radar antennas always present spherical wave fronts, and can 

only be considered as plane waves at an infinite distance of the antenna. This is 

rarely the case for high frequency ground penetrating radars, designed to 

visualize low-depth features into structures. 

When the incident wave is spherical and not plane, the Fresnel reflection 

coefficient can be used as an approximation, but it is not exact anymore [82, 83]. 

The actual reflection coefficient presents a deviation which can be considerable 

in the neighborhood of the source, if the dielectric parameters of the materials 

are very similar or in the vicinity of the critical angle [82]. The apparent reflection 

coefficient will then be frequency dependent. As a corollary, the approximation 

(54) is very good when the second material has a significantly lower speed than 

the surface material.  
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If the incident angle    is close to the critical angle     (Figure 31), a correction 

can be applied to the Fresnel reflection coefficient to take into account the 

spherical reflection. 

 

Figure 31 : Reflection of a spherical wave on an interface. 

If we note   
√  

  

√  
  

        the refraction index, Fresnel reflection coefficient (54) 

can be rewritten: 

    
√         √         

√         √         

 (59) 

This reflection coefficient can be expressed as the sum of two functions    and   : 

         (        )( 
        ) (60) 

With   

    
(        )  (         )

(        )  (         )
 (61) 

    
  

(        )  (         )
 (62) 

The reflected wave under and beyond the reflection coefficient can then be 

expressed in function of those two functions [82]: 

                     √        √          ( ) (63) 

In (63), the function  ( ) accounts for the discrepancies between            and 

  , and is equal to 1 when the incident angle is different from the critical angle. Its 

analytical expression encloses a complex integral which can be solved 
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numerically. It depends on    a function related to the dielectric properties and to 

the geometry of the reflection (Figure 31). 

 
 ( )  
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∫     √     
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(64) 

With 

The spherical reflection coefficient amplitude and phase obtained by (63) are 

represented in Figure 32 for an air-concrete (        ) reflection. It is compared 

to the reflection coefficient obtained by the plane waves approximation (50). 

 

 

Figure 32 : Amplitude (a) and phase (b) of the spherical reflection coefficient, comparison 

with the plane wave approximation.  

The reflection coefficient at the critical angle can be estimated through the 

formula [82]: 

We remark a brutal leap in the reflection coefficient amplitude at the critical 

angle. In reality, this leap is never observed because the critical angle is also the 

point of appearance of the lateral wave, which will interact with the reflected 

waves for the larger angles. The reflection coefficient that will be observed in 

reality is generated by the combination of both waves. Its equation will be 

developed in the next paragraph. 
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2.1.7.3 Interaction with the lateral wave 

When an incident wave impacts the interface with the critical angle, a lateral 

wave, also called critically refracted wave, is produced and travels along the 

interface. With spherical waves, this always happens when the incident angle    is 

superior or equal to the critical angle, as the waves are emitted from the radar in 

all directions (Figure 33). 

 

Figure 33 : Representation of the ray propagation of a lateral wave. 

For incident angles larger than the critical angle, the electrical field amplitude of 

the lateral wave is equal to [82, 83]:  

 
     

   

  ( 
   ) √    

  ⁄
   (          )  ( ) 

(67) 

In (67),    is the propagation constant of the material: 

 
    (

 

  

      ) 
(68) 

The wave is then traveling along the interface, with a speed equal to the speed in 

the second medium, and is attenuated proportionally to the distance in the 

second medium exponent 3/2.  

The function  ( ) in (67) accounts for the wave specific behavior close to the 

critical angle. Indeed, without this correction function, the critical wave 

amplitude would be equal to infinity at the critical angle. The parameter   is 

defined by: 

   √         
      

 
 (69) 

In (69),    is the distance that would be covered by a wave simply reflected on 

the interface (Figure 33). The function  ( ) is defined by an integral in the 

complex plane [82].  



   

52 

 

  ( )  
(   

  
 )

  ⁄

 (  ⁄ )
 ∫      √  (   ) √    

 

 

 (70) 

This integral does not have any analytical solution, even if it can be approached 

for specific values by asymptotic expansions [83]. Nevertheless, it can be 

evaluated numerically for all values, and is represented in Figure 34. 

 

 

Figure 34 : (a) Amplitude and (b) phase of the function  ( ). 

When    , the function  ( ) approaches zero; but it does not mean that the 

amplitude of the refracted wave is equal to zero. Indeed, the parameter   
  ⁄  in 

(67) decreases faster than  ( )   

As the lateral wave is not reflected, we have to define a pseudo-reflection 

coefficient that could be added to the reflection coefficient on the interface (63) 

to obtain the global reflection coefficient. It is obtained by multiplying the lateral 

wave amplitude by the inverse of the reflected wave propagation term          ⁄ . 

              

  

       
 (71) 

We obtain then the apparent reflection coefficient for the spherical waves [82]: 
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   ) √    

  ⁄
   (          )  ( )

  

       

       √        √          ( ) 

(72) 

The formulas (63)-(72) are based on the exact solution approximated by high-

frequency asymptotic methods. Those approximations are totally valid when the 

source-interface distance is sufficiently important, when the propagation 

constant    is high and for interfaces with a low velocity contrast. In the 

configurations and distances used in this thesis, these equations can thus not be 

considered as exact. According to the Červený, it could probably be possible to 

derive similar formulas that would remain valid in this case through the use of a 

different dimensionless parameter (Vlatislav Červený, personal communication, 

July 30, 2013).  
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Nevertheless, these curves still constitute a far better approximation of the real 

values than the Fresnel approximation. This can be observed in Figure 35, in which 

the angle-dependent amplitude and phase of the global reflection coefficients 

obtained with this formula are compared to values derived from 3D numerical 

modeling results. In the considered configuration,         ,        and        , 

and incident frequencies range from 2.5 to 3.5 GHz.  

 

Figure 35 : Amplitude and phase of the global reflection coefficients with   
  

    ,   
  

   

and         : (a) obtained with the spherical waves formulas;  

(b) obtained through the analysis of 3D numerical simulations. 

The reflection coefficient differs very much from the Fresnel predictions in the 

vicinity of the critical angle and presents oscillations due to the interaction with 

the lateral wave. The concordance with numerical results is relatively good. In 

particular, the position of the amplitude maxima is well predicted. The difference 

of peak amplitude between 3D simulations and spherical waves equations is less 

than 3% at 3 GHz, while it is more than 10% between the simulations and the 

plane wave formulation.  At the critical angle, the difference if considering the 

plane wave formulation rises above 50%. This illustrates the importance to 

consider the spherical waves formulations instead of the classical Fresnel plane 

waves expressions to evaluate the reflection coefficient when considering low-

depth targets. 

The extension of these formulas to a two dimensional case is given in Appendix 4. 
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2.1.8 Resolution 

The resolution in GPR testing is the minimum distance between two reflectors for 

which the two events will be distinguishable in the radargram. The estimation of 

the resolution will be dependent on the alignment direction (horizontal or 

vertical).  

2.1.8.1 Vertical resolution 

The vertical resolution of the radar, also called longitudinal, range or depth 

resolution, depends mainly on the length of the emitted pulse, which is inversely 

related to the frequency bandwidth of the wave. 

Two successive reflections will appear as distinguishable events if the reflected 

pulses are clearly separable on the radargram. Two different methods are 

applied to determine the vertical resolution. The simplest one [48] suggests to 

choose the wavelength   as the vertical resolution. A more complicated method 

[54] proposes to use the width of the pulse at half amplitude   (Figure 36). 

According to the authors, the peaks should be distinguishable if the time 

separation between the pulses is higher than    . The vertical resolution    is 

then the distance covered by the wave during a time equal to    . The vertical 

resolution is then equal to: 

    
  

 
 (73) 

Theoretically,    is thus independent of the reflection depth. Anyway, in practice, 

the resolution will decrease at larger distances, due to pulse dispersion and 

attenuation [54]. 

 

Figure 36 :  Peak separation in the radargram (a); range and lateral resolution (b) [54]. 
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2.1.8.2 Horizontal resolution 

Horizontal (or lateral) resolution can be determined in the same way as vertical 

resolution, by considering that the minimum time difference between the two 

wave arrivals is equal to    . If the lateral offset is small compared to the depth 

of the targets  , we obtain [54]: 

    √
   

 
 (74) 

In this equation, we can see that the lateral resolution depends on the depth of 

the target: the larger the depth, the lower the lateral precision.  

Another approach is consists in considering the horizontal resolution equal to the 

first Fresnel zone radius for signals related to the center frequency   . First Fresnel 

zone is the finite-sized footprint of the wave, travelling in a cone of radiation, on 

any interface (Figure 37). If a feature has a smaller dimension than this first Fresnel 

zone, it will not be pictured [65].  

 

Figure 37 : First Fresnel zone [65]. 

From Figure 37, we have: 

    √
  

 

  
 

   

 
 (75) 

Where    is the wavelength associated with the center frequency of the antenna. 

If    is small in comparison to the depth, we obtain: 

    √
   

 
 (76) 
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This equation is identical to (74) if we use the relationship between the pulse width 

and the center frequency: 

 
  

 

  
 

  

 
 

(77) 

The two expressions of horizontal resolutions described in equations (75) and (76) 

were compared to experimental data obtained on concrete samples by Perez-

Gracia & al. [84]. They also compared the results to other equations, expressing 

the First Fresnel zone as an ellipse or including the attenuation coefficient. The 

results obtained with the equations previously described give a good estimation 

of the minimum distance to detect two targets with no or small interferences. 

Anyway, it is possible to detect the presence of two different targets for a shorter 

distance, which is better described by elliptical first Fresnel zone equations. 

2.2 Thin layers analysis 

When a layer is inspected with GPR, if its thickness is larger than the vertical 

resolution (§ 2.1.8.1), it can be estimated from the time interval between the 

reflections on the two interface limiting the layer. For thinner layers, such an 

analysis is not possible because the pulses overlap in the radargram. Moreover, 

the radar incident waves ( ) undergo multiple reflections on the two limit 

interfaces, which generates constructive and destructive interferences. This is 

visible in Figure 38, in which the radar traces obtained numerically on thin layers of 

different thicknesses are represented. 

 

 

Figure 38 : Description of the reflection interferences caused by a thin layer. 
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But if the user knows that he is inspecting a thin layer (because he knows the inner 

composition of the structure, or after core drilling), further information can be 

extracted from the radargram through the use of more sophisticated methods 

than a simple radargram visual inspection. Those methods range from a simple 

peak-to-peak amplitude evaluation of the reflection [85], which can be sufficient 

if the layer material is known, to a full waveform inversion, which gives very good 

and accurate results [64, 86] but requires a detailed analysis of the radiating 

antenna (see § 1.3.2).  

In this section, we describe how a ray-based approximation can be used to 

estimate the global reflection amplitude of the thin layer by considering the 

incident signal as a sum of plane sine waves [54, 83]. Two different approximations 

will be proposed to take into account the inclination of the incident waves. In 

Chapter 4 and Chapter 5, these approximations will be used to estimate the 

layers properties from numerical and measurements.  

2.2.1 Thin layers detection with a vertical incidence 

The global reflection coefficient      reflected from a thin layer of medium 2 

embedded into a matrix of medium 1 can be estimated by the sum of the 

reflection coefficient of all successive reflections from the layer (Figure 39).  

  

Figure 39 : Multiple reflections in a thin layer. 

For an incident plane wave, the different reflection amplitudes can be estimated 

as functions of the different Fresnel transmission and reflection coefficients of the 

two interfaces    ,    ,     and    (see § 2.1.7). We assume a medium without 

attenuation. 
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In (78),   is the temporal delay (or phase change) undergone by the signal while 

a back-and-forth into the layer. If |   
  |<1, which is always the case if the 

reflection is not total, the geometric series formula can be used. The reflection 

coefficient becomes then:  

 
          

          

     
  

 
(79) 

All the reflection and transmissions can be expressed as a function of    . 

 

         

                      
(80) 

Equation (79) becomes: 

 
         

   

     
  

 
(81) 

If the signal is a sine wave, we can evaluate the phase change  : 

    
   

 
   (82) 

The theoretical complex reflection coefficient is then given by (83): 

 
    (

 

 
    )     

   
    
  

     
  

    
  

  
(83) 

In (83),   is the thickness of the layer and    is the wavelength into the thin layer. 

This exact equation for a reflection from a single embedded layer, considering 

plane harmonic (sinusoidal) waves for a lossless layer, was reported by Rayleigh. If 

one is only interested in the amplitude of the reflection, it is also given by the 

relationship (84) [51, 52]:  
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(84) 

The evolution of |    | with the ratio of the layer thickness to the wavelength in the 

thin layer is drawn in Figure 40. 
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Figure 40 : Reflection coefficient for an air thin layer into concrete. 

The first maximum occurs when the layer thickness is equal to a quarter of the 

wavelength in the layer ( ), and has then a periodicity of    . At the different 

maxima, the reflection occurring on the thin layer has a greater reflection 

coefficient            than a reflection that would occur on a simple interface (   ). 

This amplitude is given by (85): 

 
          

    

     
  

(85) 

When the thickness of the layer can be considered as low compared to the 

wavelength (ratio up to 0.09), the reflection coefficient is directly proportional to 

the layer thickness [52, 54]. It can then be estimated by the following linear 

approximation (84) [6]: 

 
       

   

     
 

 

 
 

(86) 

When the thickness   is small compared to the wavelength in the layer  ,   can 

be approximated by the two first terms of its Taylor series: 

    
   

 
        

 

  

 (87) 

The expression (81) of   becomes: 

 
         

    
 
  

     
     

    
 
  

 
(88) 

If we are considering a thin layer,     ; it means that the term    
    

 

  
 can be 

neglected by respect to the other terms. Equation (88) becomes: 
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 )   
(89) 

In (89), the wavelength has been expressed as a function of the speed, 

considering            . 

If the thickness can be considered as small for all the wavelengths contained in 

the signal, (89) can be solved to express the transient response  ( ) of the thin 

layer as a function of the solicitation   ( ) [54]: 

 
 ( )    ( )  ( 

    

     
 

  

  

 )   ( )      ( ) 
(90) 

By using a Fourier transform, we can obtain the response in the temporal domain: 

  ( )   
 

  
 ( ) (91) 

In the temporal domain, the shape of the reflected signal will thus be identical to 

the derivative of the signal, multiplied by a constant linearly dependent on the 

thickness of the layer [54]. This derivation of the initial wavelet had already been 

described by Widess [52]. It is visible in Figure 38: the reflection on the thinner layer 

(  ⁄       ) has the shape of the derivative of the reflection on the thicker layer 

(  ⁄     ). 

If the intrinsic attenuation into the layer cannot be neglected (   ), a similar 

development can be made and (81) becomes:  

          
        

     
       

 (92) 

The geometric attenuation into the layer cannot be taken into account into the 

geometric series formula and will thus be neglected. This approximation is valid as 

long as the layer is sufficiently thin.  

If the incident wave is spherical and the source is too close to the interface for the 

plane wave approximation to be valid, equations of § 2.1.7.2 can be used as well 

in (78), but this has to be done numerically as they do not have analytical 

solutions. 

2.2.2 Thin layers detection with an oblique incidence 

In this section, we develop analytical formulations to take into account the angle 

influence in the thin layer reflection coefficient. Two different approaches are 

considered: the approximation to a geometric series and the sum truncation. In 
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§ 4.1.2, those methods will be compared to numerical results in order to 

determine the limitations of the methods to approach the real propagation 

behaviour. 

Most GPR tests are in fact performed with an oblique incidence. This is always the 

case in CMP tests, in which the incident angle varies all along the measurement. 

But the angle of incidence may also not be negligible when a profile is 

performed. This is especially the case for high frequency radar with limited 

(< 30 cm) penetration depth. The small distance between the antennas (equal to 

a couple of centimetres) may not be negligible regarding the target depth.  

The variation of the angle influences the reflection coefficients (§ 2.1.7), but it also 

has an influence on the time shift generated by the reflection in the layer. Each 

multiple has a different path into the layer, but also into the matrix, which modifies 

the attenuation. 

 

 Figure 41 : Multiple reflections in a thin layer. 

As in the case of a vertical incidence, the reflected amplitude can be evaluated 

as the sum of all the different multiples. 
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(93) 

In (93),    is the phase change of the     signal compared with the first simple 

reflection   ;   is the attenuation coefficient into the layer and      ,       and 

       are respectively the path of the wave into the layer, the variation of the 

path into the matrix and the total distance for the     multiple. 

In contrast to the vertical case, the different terms cannot be directly summed up 

using the geometric series formula. Indeed, the reflection coefficients and the 

different phase changes vary from one multiple to another due to the angle 

variation. Two approaches can be considered to overpass this problem. The first 

one ( section 2.2.2.1) consists in assimilating the wave to a plane wave. With this 

approximation , the geometric series formula can be used to transform the series 

(93) into an analytical expression. In the second method (section 2.2.2.2), the   

first terms of the series are calculated, and the terms of higher order are 

neglected. Both methods will be compared in § 2.2.2.3, before being confronted 

to numerical results in § 4.1.2. 

2.2.2.1 Approximation to plane waves  

If the incident wave is a plane wave, all reflection angles will be identical, as well 

as the reflection coefficients.  

 

          

   (  )     (  ) 
(94) 

The phase shift undergone for each back and forward in the layer will be 

identical. The simple reflection and the first multiple are represented in Figure 42. 
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Figure 42 : Geometric detail of the first reflection of a plane wave on a thin layer and its first 

multiple. 

The time delay between the two arrivals is equal to the difference between the 

travel time into the layer      and the difference of length of the rays into the 

matrix     .  We have then, using Snell’s relationship (52) between the incident 

and transmitted angles: 
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(95) 

For a sine wave, the phase change for each back and forward into the layer is 

then equal to:  

 

         

  
   

     
   

(96) 

As all the waves are parallel, the time delay is proportional to the number of 

multiples. For a sine wave, the phase change can then be generalized: 
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(97) 

The intrinsic attenuation depends on the distance variations, which are 

proportional to the distance variation in the first multiple: 
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(99) 

The geometric attenuation depends on the quotient 
      

      
, which cannot be 

expressed as a power of  . Nevertheless, if the layer is very thin respect to its 

depth, i.e.: 

 
    

(100) 

We can consider that we have 

 

      

      

   
(101) 

Using the relationships (97)-(99), as well as the approximation (101), equation (93) 

can be solved with the geometric series formula if |   
 (  )   

                | <1 

(which is always the case except in case of total reflection). The reflection 

coefficient becomes then, if the geometric attenuation into the layer is negligible:  
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(102) 

This reflection coefficient estimation is almost exact for a plane wave, as only the 

geometric attenuation is not taken into account. 
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If the incident wave is not a plane wave but a cylindrical or spherical wave 

(Figure 41), equation (102) can be used to estimate the layer reflection 

coefficient (78). The incident angles of all multiples are then identified to the 

angle of the simple reflections. 

       (103) 

This approximation is valid for thin layers when         (Figure 41) or when 

        if the incident angle is less than the critical angle. When       (Figure 

43), this approximation gets very far from the ray theory, as all the ray paths have 

a theoretical incident angle less than the critical angle (and can then be largely 

less than   ) 

 

Figure 43 : Thin layer reflection of a spherical wave  

for incident angle larger than the critical angle. 

The approximation calculates all the transmitted waves as if they had the 

incidence angle   . When       , the transmitted wave is an evanescent wave 

(see § 2.1.7.1) and the transmission angle is imaginary. Anyway, this evanescent 

angle generates a reflection on the second interface and a reflected wave will 

be calculated anyway. 

2.2.2.2 Exact evaluation of the first multiples 

An alternative for estimating the reflection coefficient is the estimation of the 

exact value of the first terms of equation (93). The reflection angles    are 

determined utilizing the fact that the total horizontal path must be in every case 

equal to the distance between the antennas, and that the angles into the matrix 

and into the layer are linked by Snell’s law (52). The path lengths into the matrix    

and into the layer    are determined from these angles. 
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Figure 44 : First (a) and second (b) multiple of the reflection event. 

For the simple reflection on the first interface, the angle and the path lengths are 

directly determined. 
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For the     multiple with reflections into the thin layers, these equations become: 
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Equations (105) cannot be solved directly for   . One solution is to transform it into 

a even polynomial equation of the 8th degree. Among the eight solutions of this 

equation,    is the only positive real value less than    .  

Once the angles are determined, the reflection coefficients for simple interfaces 

   (  ) can be determined using formula (54). The global reflection coefficient for 

the     multiple (which does not account for the phase of the reflection) is then 

equal to:  

              (     
 (  ))     

    (  ) (106) 

From the values of the distances into the matrix and into the layer      and     , 

we can determine the geometric attenuation   of each multiple compared to 
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the geometric attenuation of the simple reflection, as well as the intrinsic 

attenuation   . 
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In addition to the attenuation, a phase change    is affecting each multiple as 

well. For a sine wave, this phase change is equal to: 
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Where  
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The global reflection coefficient for each multiple is then given by 

 
                            

(111) 

And the general reflection coefficient can be estimated by 
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(112) 

Where    is the finite number of multiples that will be studied. 

2.2.2.3 Comparison of the two methods 

The two methods presented in the previous chapters present different equations 

to represent the same phenomenon. They results from different approximations 

and are not expected to be valid in every situation. A comparison of the 

reflection coefficients calculated by these methods to values obtained from 

numerical simulation will be presented in § 4.1.2. But different observations can 

already be made from the equations. 

The two methods only give similar results when the incident angle is much less 

than the critical angle. For larger angles, both methods calculate the same first 

reflection on the layer (  ) but estimate very different incident angles, and thus 

very different reflection coefficients, for the other reflections.  
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On one hand, the first terms approximation (§ 2.2.2.2) calculates exactly the 

angle of incidence of each multiple in order to respect the refraction laws (104). 

On the other hand, the plane wave approximation (§ 2.2.2.1) approximates every 

incident angle to the incident angle of the first reflection (146). Therefore, the 

multiples calculated by the methods are very different, and correspond in fact to 

two different sets of waves travelling in reality. The “multiple reflections” 

calculated by the plane wave approximation correspond to the evanescent 

wave and its different reflections into the layer.  

Indeed, all the “multiple reflections” are calculated from the first reflection 

coefficient (see (102)), whose amplitude is equal to 1 for large angles. The 

transmission coefficient has thus an amplitude equal to zero but a real phase and 

an imaginary propagation angle, which are the characteristics of the evanescent 

wave (see § 2.1.7.1). On the other hand, the exact estimation of the first terms 

does not take into account this evanescent wave, because the multiples are 

calculated for incident waves under the critical angles (Figure 43). A possibility to 

improve the first terms estimations method would be to introduce separately the 

evanescent waves (calculated by equation (57)) into the formulas.  

Other phenomena that were not taken into account by neither of the methods 

are the spherical nature of the waves (§ 2.1.7.2) and the lateral wave 

propagation (§ 2.1.7.3). The first reflection in both methods could take these 

phenomena into account using the formula (72).  

2.3 Finite difference modelling of radar waves 

propagation 

The interpretation of real GPR data can be challenging. Indeed, even for 

relatively simple geometries, the multiple paths and reflections of the radar waves 

can result in a relatively complex radargram. Interpretation hypotheses can be 

checked through laboratory experiments, but these are expensive and time-

consuming. In many cases, they are thus advantageously replaced by numerical 

simulations, which are an easy and fast method to explore different scenarios. 

The FDTD (finite differences time domain) method is largely used for GPR 

simulations. It is an easy, explicit and robust method allowing the use of complex 

pulses and nonlinear behaviour. Once the code is written, the user can simply 

generate models by modifying the mesh [87]. Disadvantages are that it can have 

a high computational cost, especially for 3D refined models, and that curve 

surfaces can be hard to represent with the square grid. Those problem can be 

partially solved in some programs allowing to refine the mesh in critical zones [87], 

but for curve surfaces, the finite elements method can be a preferable 

alternative [88]. 
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2.3.1 Global principle 

The principles of the FDTD algorithm have been published by Yee in 1966 [89]. It 

uses finite differences to solve Maxwell’s equations. It has the particularity to solve 

alternatively the electric and the magnetic fields. The medium is discretized in 

cubic cells; the electric field is evaluated in the middle of the faces while the 

magnetic field is defined on the mesh. With this method, each field unity is 

surrounded by four components of the other field. The electric and magnetic 

fields are alternatively calculated, with temporal and spatial steps     ⁄  and  

   ⁄  [87]. 

2.3.2 Stability 

The time step used on the modelling cannot be arbitrarily chosen. As a necessary 

condition for the stability of the computation, the stability criterion of Courant 

(Courant, Freidrichs and Lewi [90]) has to be respected by the time step: 
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(113) 

In (113),   is the light speed (maximum speed of electromagnetic waves) and 

     if working in two dimensions. This stability criterion expresses that the time 

step between each amplitude evaluation cannot be larger than the travel time 

of the waves between two grid points. [87] 

2.3.3 Numerical dispersion 

An insufficiently refined mesh will induce numerical dispersion and attenuation. 

For this reason, it is essential to use a sufficiently small spatial step. In two and three 

dimensions, this dispersion is anisotropic: the oblique waves travel faster than the 

waves propagating in one of the mesh direction, creating a distortion of the 

wave front [87].  

2.3.4 Limit conditions 

One of the main challenges for modelling the propagation of electromagnetic 

waves is to create permeable boundaries to simulate an open medium. Indeed, if 

the limits of the computational domain do not correspond to any real interface, 

the waves should be able to cross them without any reflection on the borders. This 

could be simply obtained by generating a domain wide enough so that the 

waves never to reach the borders, but this would be particularly slow and 

inefficient in terms of computing cost [87].  

Different limit solutions have been elaborated to tackle this problem. The oldest 

one (1981) is Mur’s absorbing boundary conditions [91]. This method uses one-way 
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wave equations allowing the waves to propagate in only one direction. It gives 

excellent theoretical solutions but numerical dispersion lowers the quality of the 

results that can be observed in reality. 

In 1994, Bérenger [92] introduced the Perfectly matched layers (PML). In 

opposition to the ABC, they do not let the waves cross the borders, but they are 

designed to absorb them. The difficulty is to ensure that there will not be any 

reflection, for any incident angle, at the interface between the propagation 

medium and this absorbent layer artificially placed all around the domain. For this 

reason, the PML are constituted of different layers, with a gradation in the 

electromagnetic properties. The efficiency of PML increases with the number of 

layers, but a higher number of layers induces a higher computing cost and a 

smaller effective computing domain. By comparison to the ABC, the PML give 

better results, but for an increased computing time. Some variants of the PML can 

also help to improve again their efficiency [87, 93]. 

In the FDTD program GprMax [75] that will be used in this work, both the ABC and 

the PML can be implemented. Their efficiency will be compared in § 3.1.4.2. 
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Chapter 3: Study of the high 

frequency antennas signal 

As explained in Chapter 2, radar waves behaviour can be analytically described 

in many situations. However, when the complexity of a problem increases, 

Maxwell equations become impossible to solve analytically. Numerical modelling 

must be used to solve the wave propagation problem, or analytical solutions must 

be developed with strong simplifying assumptions, which may not be valid in all 

cases. 

The numerical modelling may predict with a very good precision the radar wave 

propagation. However, synthetic radargrams will only be comparable to 

experimental measurements under the condition that the radar waveform is 

accurately introduced into the program. It is thus important for the radar user to 

exactly know the features of the wave emitted by his device.  

Similarly, analytical equations, such as the reflection coefficient for the thin layers, 

may only be applied to determine the parameters from real data when all the 

other phenomena have been taken into account. In particular, the geometric 

attenuation and the radar radiation pattern of the antennas have to be 

quantified in order to be integrated into the equations. It is also essential to be 

aware of the limitations of the selected relationships.  

But if a good knowledge of the incident signal may help calibrating the numerical 

simulations and establishing the limitations of the analytical expression, it can also 

help to improve the field measurement routine. Indeed, good acquisition 

parameters and adapted measurement configurations will help to decrease the 

measurement noise and maximize the useful information into the different signals. 

This chapter is divided into three sections. In the first one (§ 3.1), the materials and 

methods of the experimental and numerical tests performed throughout the 
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whole thesis are presented. The antennas system is described, as well as the 

global methodology for estimating the reflection coefficient, the test 

configurations and the numerical parameters that will be used to perform the 

simulations.  

In the second section (§ 3.2), different properties of the radar signal are studied in 

detail: the frequency content, the time drift, the signal noise, the geometric 

attenuation and the radiation pattern.  

Finally, in § 3.3, the specific problem of the in-situ determination of the surface 

concrete permittivity is tackled. Different methods are compared for the 

determination of the permittivity of a concrete slab, in order to determine an 

acquisition routine that can be used to optimize the permittivity measurements.  

3.1 Materials and methods 

This section presents the materials and methods that will be used in this work to 

determine the reflection coefficient from experimental measurements and 

numerical simulations. 

3.1.1 Instrumentation 

Our high frequency system is composed of two 2.3 GHz antennas manufactured 

by Malå Geoscience. The antennas are shielded to prevent the wave 

propagation above the antennas. They are connected by coaxial cables to a 

control unit; this is connected to a laptop for data visualization and storage. They 

can be equipped with a displacement registration system (wheel). Each antenna 

encloses two bowtie antennas: a receiver and an emitter. They are positioned 

2 mm above the bottom of the shielded box. The geometry of the antennas, 

deduced from manufacturer information (Christer Renström, personal 

communication, May 18, 2009), is depicted in Figure 45. 

 

Figure 45: (a) High frequency GPR antenna; (b) antenna geometry. 
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The high nominal frequency of the antennas (2.3 GHz) maximizes the resolution. 

According to the manufacturer, their radial resolution is approximately equal to 

1.3 cm and their maximum penetration depth equal to 40 cm.  

3.1.2 Tests for the determination of the reflection 

coefficient 

In §§ 2.1.7 and 2.2, the analytical expressions for the determination of the 

reflection coefficient were detailed. To be able to use those expressions to 

characterize a buried material, it is important to be able to extract the reflection 

coefficient from the measurements. But when a radar measurement is performed, 

many other parameters influence the measured signal [55]. Those parameters are 

listed in Figure 46 for a two layers medium. 

 

Figure 46 : Parameters influencing the electric field      measured over an interface buried 

in an homogeneous material. 

The amplitude of the electric measured field      can be written: 

 

                  

                 
  

 
   

      

 
     

(114) 

In (114),    is the antenna original signal,    is the direct signal travelling from the 

transmitter to the receiver. The coupling effects,    and   , and the radiation 

pattern effects,    and   , are functions of the incident angle   and of the 

angular velocity  .   is the distance covered into material 1,    and    are 

respectively the speed and the attenuation coefficient in this material and can 

depend on the angular velocity if the material offers dispersive properties (see 

§ 2.1.6).  
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3.1.2.1 General method for the extraction of the reflection coefficient 

The reflection coefficient     can only be extracted from a single measurement 

     if all the parameters in (114) are perfectly known, included the exact 

radiation properties of the antennas. This is the strategy used by the full-waveform 

inversion, in which the antenna radiation must be measured in order to calibrate 

the forward equations [64].  

If the radiation pattern of the antenna into the material 1 (   and   ) can be 

estimated (which is the case when all the targets are situated in the far field – see 

§ 3.2.5.1), another strategy is to perform a CMP measurements and to work with 

the relative amplitudes between two points of different incidences. This method is 

used in diverse APVO curves inversion techniques for geological applications [55, 

58].  

The method that will be mainly used in this thesis consists in comparing the 

amplitude measured on the interface           (Figure 47 (a)) to the amplitude 

measured on a perfect reflector placed at the same depth (Figure 47 (b)). As the 

antennas are placed in the exact same position, all the surface terms and the 

propagation terms will be exactly the same as for the interface between 

materials 1 and 2. Only the reflection coefficient     in (114) will be equal to -1. 

 

                         

                 
  

 
   

      

 
    

(115) 

When the incident wave is a pulse and the interface is sufficiently deep, the 

reflected amplitude       can easily be separated in the global radargram      

from the direct wave   , because they occur at different times (see Figure 24). 

But in many cases, the determination of the reflected wave amplitude will require 

the direct wave to be suppressed from the measured signal. This is especially the 

case when the incident wavelet is a continuous sine or if the interface is situated 

at a low depth. The direct wave travels partly in air and partly in the material 

surface: that means that its exact behaviour is highly complicated and poorly 

described by analytical expressions. The best solution consists in measuring it 

separately in a zone without target and then suppressing it from all the measured 

signals (Figure 47 (c)).  
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Figure 47 : Comparison of the electromagnetic field amplitude observed (a) after reflection 

on an unknown interface (    ); (b) after reflection on a perfect reflector (       ) and 

 (c) when only the direct wave is measured (          ). 

The equation allowing to determine the reflection coefficient of the interface     

is then: 

 
       

       

             

 
(116) 

3.1.2.2 Experimental setup for the determination of the reflection 

coefficient 

In practical terms, the method described in the previous section is straightforward 

when the material 1 is air: it only requires to immobilize the antenna in front of the 

surface and to perform measurements with and without placing a thin perfect 

reflector (as an aluminium foil) on the surface. This method will allow to determine 

the permittivity of the material (see the application § 5.2.3.3). 

When the interface or the thin layer is embedded into another material, the 

method described in the previous section requires to be able to place a perfect 

reflector at the investigated depth. For all the laboratory tests performed in this 

thesis, we used two 10 cm thick concrete slabs. They were cast horizontally with 

self-compacting concrete so that they have one perfectly smooth and horizontal 

face (the formed one) while the other one is still relatively smooth, but not so 

perfectly (it is troweled).  

The slabs have sufficient dimensions (50*80 cm and 50*100 cm) to avoid side 

effects. The 20 cm length difference between the slabs was decided to facilitate 

the handling of the superior slab. Indeed, two straps could be placed around the 

slab extremities, so that it could be lifted by a stacker without the need of specific 

anchorages into the concrete (Figure 48 (a)).  
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At the interface between the slabs, different situations were created (Figure 48 

(b)). To perform tests with an air layer of variable thickness, an air gap was 

introduced through the use of plastic or wooden spacers of different thicknesses 

(ranging from 1 to 96 mm). Those spacers were placed between the two casted 

faces, so that the horizontal thickness variation of the layer was as small as 

possible.  

The direct wave was obtained by performing the measurement without any 

spacer, on a double slab. The two very smooth formed surfaces were then in 

contact and we considered that the reflection at the interface (caused by 

surface imperfections) could be neglected. This direct wave was then subtracted 

from all the other signals. The measurements on a perfect reflector were 

performed by placing an aluminium foil between the slabs.  

        

 

Figure 48 : (a) Experimental setup for the determination of the reflection coefficient. 

(b) Specific configurations for the measurement of the perfect reflection, the air thin layer 

and the direct wave. 

For specific tests, we also measured the reflection of a slab suspended over the 

void, to measure the concrete-air reflection coefficient (§ 3.3.2.3), and we 

placed a bituminous layer between the slabs, to evaluate its permittivity and test 

another material than air (§ 5.2.3.3).  

3.1.2.3 Specific problem of the post-critical incidence 

If the incident angle is too large, and especially if it is larger than the critical 

angle, the method described in § 3.1.2.1 will not be totally valid anymore. Indeed, 

in addition to the reflected wave, a lateral wave with a critical incidence into the 

matrix will propagate into the layer (Figure 49, wave  ). A similar wave, with a 

critical incidence as well, will be reflected on the layer or on the metallic reflector, 

and be refracted at the surface to propagate as a surface wave (wave  ). 

Another one will propagate at the surface before propagating into the matrix 

and reflecting into the layer (wave  ). We believe that it should be possible to 

develop equations describing the propagation of those waves, just as it was done 

for the lateral wave propagation in § 2.1.7.3). Nevertheless, their radiation pattern 
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coefficients      in (114) is different than for the reflected wave   because their 

incident angle is different. If this phenomenon is not taken into account, it will 

decrease the precision in the reflection coefficient determination.  

 

 

Figure 49 : Waves measured in a GPR reflection test with a post-critical incidence: 

(a) direct wave, (b) reflected wave, (c) lateral wave and (d) (e) surface-lateral waves.  

When performing numerical simulations, this problem can be easily avoided by 

modelling antennas embedded into concrete (Figure 50). This method will be 

used in § 4.1 to compare the different analytical expressions for the reflection on 

thin layers.  

 

Figure 50 : Waves measured in a GPR reflection test with a post-critical incidence and 

embedded antennas: (a) direct wave, (b) reflected wave and (c) lateral wave. 

Embedding the antennas is obviously not an option in the case of experimental 

tests. This problem will be discussed in § 4.2. 

3.1.3 Tests configurations 

In this section, the different acquisition configurations that will be used in this thesis 

are described. The results of the tests will be described in the next chapters. 

3.1.3.1 Static tests 

The static tests refer to all tests for which antennas are stationary. Their objective 

can be to characterize the direct wave or to investigate a structure offering low 

variations in the lateral directions. The advantage of static tests is that each 
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measurement can be reproduced several times in order to increase the number 

of stacks and decrease the noise.  

The static tests can be performed with one antenna (monostatic) or two 

antennas (bistatic). A monostatic measurement can be automatically performed 

simultaneously to any bistatic measurement. When a static test is performed with 

two antennas, we always placed the two antennas front faces in contact (see 

Figure 52 (a)). In this configuration, both emitter-receiver offsets are perfectly 

known and determined by the antennas geometry (Figure 45 (b)). 

We especially distinguish: 

- the direct wave in the air: the antennas are lifted in the air in a direction 

insuring that the wave would not encounter reflectors before several 

meters. If the test is bistatic, the second antenna is pressed against the first 

one, recreating in air the initial position of a CMP test (Figure 51 (a)).  

- direct wave on the material surface: designates a test in which the 

antenna is placed on the surface of a material, which is sufficiently thick 

to observe the propagation between the two antennas without 

interaction with deeper reflections. In the tests on concrete, the direct 

wave was often obtained by superposing two smooth slabs. This method is 

not perfect because the roughness of the slabs is not zero, but it gives a 

good approximation of the direct waves. The bistatic version of this test 

corresponds to the first trace of a CMP, but with multiple measurements to 

decrease the noise through stacking (§ 3.2.3.1). 

- surface reflection test (Figure 51 (b)): the radar is placed parallel to the 

surface at a distance of about 20 to 40 cm (if the sample size is limited, the 

antenna should not be too far from the surface otherwise the edges 

would appear in the radargram). A second measurement should be 

performed from the same distance with a metallic sheet covering the 

surface. With this method, the reflection coefficient can be directly 

determined by dividing the reflected amplitudes. The distance from the 

antenna to the surface does not have to be precisely controlled if the two 

measurements are performed from the exact same position. 

 

Figure 51 : (a) Antennas configurations for a bistatic measurement of the direct air wave;  

(b) Configuration for surface reflection measurements. 
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3.1.3.2 Profile tests 

The profiles acquisition is the fastest and most common test configuration used 

with GPR. It is monostatic and a wheel is used to estimate the antenna 

displacement. In the framework of this thesis, measurements are performed every 

2 to 5 millimetres, depending on the required precision and on the possibility to 

slow down the acquisition.  

3.1.3.3 Common mid-point tests 

A regular CMP is performed by moving the two antennas away from a central 

initial point at the same speed (see Figure 23). In reality, if the test is performed 

manually without specific equipment, there will always remain speed differences 

between the two antennas: it will create imprecisions in the radargram. For this 

reason, if the medium is not too laterally variable, it is often preferable to move 

only the antenna equipped with a wheel. This is the equivalent of a “walk away” 

test in seismics. It is not rigorously a Common Mid Point measurement, but the 

higher precision in the radargram allows a better parameters determination. For 

this reason, all CMPs in this work are performed with one antenna remaining still. 

This antenna should be placed sufficiently far from the edges of the structure (at 

minimum 10 cm from the antenna extremity) in order to avoid complex side 

reflection in the radargram (Figure 52 (a)). 

3.1.3.4 Attenuation tests 

To measure the attenuation of the radar wave as a function of the distance of 

the reflector (see section 3.2.4), the radar is fixed on a rolling trolley (Figure 52 (b)). 

As the wave speed in air is perfectly known, there is no need to use the measuring 

wheel and the distance from the reflector can be exactly determined from the 

time shift in the radargram between the direct wave and the reflection. During 

the test, the radar is slowly moved away from the object whose reflection is 

studied. 
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Figure 52 : (a) Configuration for the measurement of a CMP; (b) Configuration  

for signal attenuation in air measurements. 

3.1.4 Finite differences modelling program  

The numerical simulations were performed with the program GprMax (version 2.0), 

designed by Giannopoulos [75]. In this section, we determine all the numerical 

parameters that will be used in the simulations throughout this work.  

3.1.4.1 Incident signal 

In three dimensions, different signal sources are available in GprMax. Among 

others, the emitted signal can be a hertzian dipole, a plane wave or a line 

source. In two dimensions, the only possible source is a line source (corresponding 

to a point in the 2D model). In 2D and 3D, different excitation signals are 

available, as the sine wave or a Ricker pulse, and the user can also introduce a 

personalized signal.   

We designed an excitation file allowing to obtain a modelled direct wave in air 

(with the antennas 4 cm spaced) similar to the direct wave measured by our 

radar. The excitation signal was adapted from the direct wave measured in air 

with a trial-and-error approach. The initial temporal signal was inverted, 

resampled, scaled, time-shifted, low-passed and multiplied by an adequate 

Gaussian curve to obtain the personalized excitation file. As it can be observed in 

Figure 53, the direct wave in air measured with the antennas and obtained after 

modelling are similar. This allows a good qualitative visual comparison of the 

results.  
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Figure 53 : Comparison of the measured direct wave in air and the modelled direct wave in 

air obtained with a realistic excitation signal. 

3.1.4.2 Boundary conditions 

Two different limit conditions are available in GprMax to make the model 

boundaries permeable to the radar waves: the PML (Perfectly Matched Layers) 

and the ABC (Absorbing Boundary Conditions) (see § 2.3.4). Both methods were 

applied to a simple case in order to evaluate their efficiency. We kept the default 

parameters of the program for these limit conditions. The ABC order is then equal 

to 3 (the highest) and the PML are constituted of 8 layers. 

The model is a profile performed over a thin layer of air embedded into concrete, 

with an infinite lateral extensions. The modelling properties are described in Table 

2, the geometry is detailed in Figure 54 and the radargrams obtained with the 

two types of boundary conditions are displayed in Figure 55. 

Table 2 : Modelling properties for the boundary condition comparison test 

Pulse Ricker 

Spatial step 0.125 cm 

ABC order 3 (default value) 

PML number of layers 8 (default value) 
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Figure 54 : Geometry of the 2D FDTD simulation performed to compare the ABC and PML 

boundary conditions. 

 

 

Figure 55 : Profiles measured on a thin layer embedded into concrete (Table 2) with  

(a) ABC and (b) PML as boundary conditions. The white arrows designate artificial 

reflections on the model boundaries. 

When ABC are used as boundary conditions (Figure 55 (a)), artificial reflections 

are observable. They are especially visible when the border crosses the thin layer 

(white arrows). Those artificial reflections have a hyperbolic shape, similar to the 

reflections that would appear at the boundaries of a slab of limited dimensions. 

With the PML (Figure 55 (b)), no reflections are visible in the radargram, because 

the amplitude of the artificial reflections is three orders of magnitude lower than 

with ABC.  For this reason, we will only use PML in this thesis, despite the fact that 

they require a larger computation time. 

3.1.4.3 Spatial and temporal discretization 

If the spatial step selected for a simulation is too large, it is susceptible to 

decrease the results accuracy. In particular, a large spatial step will increase the 

numerical dispersion, which will affect the propagation in slanted directions 

(§ 2.3.3). For this reason, it is important to test a model with a multidirectional 

propagation to validate the selected spatial step.   
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To minimize the numerical dispersion, it is suggested [94] (§ 2.3.3) to limit the 

spatial step as function of the minimum wavelength     :  

    
    

  
 (117) 

If we perform simulations using the nominal frequency of our antenna, 2.3 GHz, 

the minimum wavelength (in water) is equal to             , so a spatial step of 

           should be appropriate.  

We tested this step in a simple configuration described in Figure 56 (a), in which 

the amplitude transmitted horizontally is compared to the amplitude transmitted 

with a variable angle. 

 

 

Figure 56 : FDTD simulation for the comparison of horizontal and slanted transmitted 

amplitude: (a)  test configuration and (b) measured amplitude. 

The amplitude transmitted with a slanted incidence is slightly higher than with the 

horizontal incidence, but the difference is really small (less than 1%). For the 

numerical dispersion concerns, the spatial step            is then acceptable.  

But for this work focused on the reflection coefficient, we also need the 

simulations to be able to reproduce the wave reflections. To assess that the 

model is sufficiently refined for this application, we performed the same test 

comparing the amplitude reflected on a perfect reflector to the amplitude that 

would be obtained at the same total distance into concrete, without reflection 

(Figure 57). With this method, the influence of the numerical dispersion of the 

propagation is suppressed because the wave inclination is the same in both 

cases. 
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 (a)   (b) 

Figure 57 : (a) Configuration of the simulations to estimate the reflection coefficient  

on a perfect reflector; (b) Comparative simulations carried out to estimate  

the reference amplitude. 

Results are displayed in Figure 58, for the step            and for a refined step 

           . 

 

 

Figure 58 : Comparison of the amplitude reflected on a perfect reflector to the amplitude 

transmitted at the same distance (a) with a step of 1,25 mm; (b) with a step of 0.625 mm. 

We observe that a refined step is necessary to obtain a good precision for the 

reflection coefficient. With this step, the maximum error is equal to 0.6% and 

observed for the smallest incident angle (5.7°).  We used this refined step    

         for all the 2D simulations in the thesis. In three dimensions, the step had 

sometimes to be increased to 1 mm in order to satisfy the maximum memory 

allowance criterion necessary to launch simulations.  

Using the spatial step selected by the user, the time step is automatically 

calculated by the program using Courant’s number [87] (§ 2.3.2) multiplied by a 

time stability factor of 0.97.  
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3.1.4.4 Determination of the reflection coefficient 

The reflection coefficient of an interface can be estimated by comparing the 

amplitude measured over the interface to the amplitude measured on a perfect 

reflector, from the same position (see § 3.1.2.1). We applied this principle to 

numerical simulations with embedded antennas (Figure 59).  

 

(a)   (b) 

Figure 59 : (a) Configuration of the simulations to estimate the reflection coefficient on 

interfaces; (b) Comparative simulation carried out to estimate the reference amplitude. 

In Figure 60, the evolution of the reflection coefficients with the incident angle   is 

traced for embedded materials with different permittivities    
 . For each incident 

angle, the reflected amplitudes measured on those various interfaces are 

determined using equation (116). The reflection coefficients obtained by this 

method for a continuous sine wave are compared to the reflection coefficients 

estimated by the Fresnel equations (49) (which corresponds to a plane wave 

approximation) and to the coefficients estimated with the equations taking into 

account the spherical reflection (§ 2.1.7.3). 
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Figure 60 : Numerical estimation of the reflection coefficient on interfaces between 

concrete (   
    ) and different materials, and comparison (in dotted lines) with the 

Fresnel and spherical waves reflection coefficients. 

We observe that, for the materials presenting a lower speed than concrete (for 

example water), the results are very well predicted by both the plane and 

spherical waves reflection coefficients (which are quasi identical). This is logical, 

as there is no critical angle when the speed of the deeper material is lower, and 

no lateral wave either. In this case, the Fresnel equations are totally accurate. 

When the lower material has a higher speed than concrete (for example air), we 

observe a large discrepancy between the plane wave prediction and the 

numerical reflection coefficients. As the reflection interface is situated at only 

5 cm from the source, the wave front curvature is important and the assimilation 

to a plane wave gives results very far from the reality. In addition, when the 

incident angle is larger than the critical angle, the lateral wave is transmitted 

through the second medium (§ 2.1.7.3) and interferes with the reflected wave, 

creating an apparent reflection coefficient larger than one. 

Those phenomena (circular wave front and lateral wave interferences) are taken 

into account by the equations of the spherical reflection coefficient, which gives 

a better prediction of the numerical result. The estimation of the reflection 

coefficient at the critical angle and the prediction of the interference peaks 

position are fairly good. The method still presents some discrepancies: the peaks 

amplitude is underestimated and the amplitude for angles just greater than the 

critical angle is overestimated. This is due to some approximations in the method, 

which are accentuated by the fact that the distance source-interface is very 

small (§ 2.1.7.3). 

When the incident signal is a pulse and not a sine wave, the same method can 

be applied to determine the reflection coefficient, using the peak-to-peak 

amplitude of the reflected wavelet (see § 5.1). The wavelets corresponding to the 

reflection on the interface and to the critically refracted wave rapidly separate 
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after the critical angle, and their interaction is limited. The numerical reflection 

coefficients are compared to the plane waves and spherical waves predictions in 

Figure 61. 

  

Figure 61 : Reflection coefficient amplitude for a concrete (   
     )- air interface, 

measured from a distance of 10 cm. Comparison of the theoretical estimations for plane 

and spherical waves to numerical results obtained with a realistic pulse and a sine wave. 

The replacement of the sine wave by a pulse limits the oscillations to incident 

angles under 55°. The peak of maximum amplitude is comprised into this zone 

and is still important even if its amplitude is lower than for the sine wave 

(                 while               ). For incident angles larger than 55°, the 

reflected and refracted waves arrive with a sufficient time interval to stop 

interacting into the radargram (see Figure 24). The fact that the reflection 

coefficient with the pulse is not exactly equal to one after wavelet separation is 

probably due to the change of phase of the reflected wave (Figure 29).  

From these observations, we conclude that the plane wave approximation 

should only be used to approximates angles close to zero if the lower medium has 

a higher permittivity. For larger angles, the spherical approximation is more 

appropriate, but the approximation is valid only for limited angles when the 

incident wave is a pulse.  

3.1.4.5 Comparison of the 2D and 3D modelling 

Finally, we tested for possible 2D/3D artefacts, by performing identical tests in 

GprMax 2D and GprMax 3D. The spatial step and model dimension had to be 

adapted to be run in three dimensions. The modelling parameters are 

summarized in Table 3, and the modelling results are represented in Figure 62, in 

which they are compared to the Fresnel equations (49), as well as to the spherical 

equations (§ 2.1.7.3) and spherical equations adapted in two dimensions 

(Appendix 4). 
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Table 3: Modelling parameters for the estimation of 2D/3D artefacts 

 2D 3D 

Spatial step 1 mm 1 mm 

Pulse Ricker Ricker 

Nominal frequency 2.3 GHz 2.3 GHz 

Source type Line source Dipole 

Model dimensions 0.7 * 0.25 m² 0.7 * 0.25 * 0.1 m² 

Approximate computation time  20 s 2h30 

   

 

 

Figure 62 : (a) Amplitude and (b) phase of the reflection coefficients measured through 2D 

and 3D modelling and estimated with the spherical waves formula. 

In the numerical simulations as well as in the spherical equations, the oscillations 

measured in two dimensions have higher amplitude than in the 3D simulation. In 

both cases, the equations overestimate slightly the amplitude of the oscillations 

and present a slope discontinuity at the critical point. The precision of the 

equations in 2D and 3D seems to be comparable, even if the slope discontinuity is 

less visible in two dimensions.  

Concerning the phase, the reflection coefficients estimated from 3D modelling 

results tend to underestimate the phase analytical values, while the 2D simulation 

tends to overestimate them. The phase shift of   at a vertical incidence was well 

predicted in 3D but not in 2D.  

3.1.4.6 Dispersion of the dielectric properties 

The program allows using the Debye dispersive law (Appendix 2) for the evolution 

of the permittivity in the material as a function of the frequency. This function was 

not used in the framework of this thesis, assuming an invariable dielectric 

permittivity in the considered frequency range. 
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3.2 Study of the radar direct wave 

The radar direct wave is a complex entity which depends on many parameters. 

The antenna model, with its specific geometry and nominal frequency is a key 

factor, but the test conditions (presence of a surface, distance of the target) will 

influence the measured amplitude. The acquisition parameters selected for the 

radar (warming up time, automatic stacking) will also have an influence on the 

measured signal.  

It is important to have a good knowledge of the direct wave for two reasons. The 

first one is to optimize the acquisition parameters, so that the signal is as stable 

and noise-free as possible. The other reason is to be able to take into account a 

maximum of parameters when comparing experimental results to numerical or 

analytical data.  

In this section, we performed different tests to characterize the radar direct wave 

and its interaction with the medium or with a reflector. First, we determined the 

frequency content of the direct signal. We evaluated its temporal instability and 

its noise, and the methods to decrease those problems. We also measured the 

geometric attenuation of the waves as well as the influence of the target shape 

on the backscattered amplitude. Finally, the radiation pattern of the antenna 

was measured on sand. 

3.2.1 Radar direct air signal 

3.2.1.1 Time-domain signal 

The direct monostatic wave in the air was measured and traced in the time 

domain (Figure 63). 

 

Figure 63 : Radar direct air signal in the time domain. 
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The direct signal is constituted of different lobes. If only the five first lobes, which 

present the largest amplitude, are considered, the pulse duration is about 1.2 ns. If 

we consider the ten first lobes, containing almost all the pulse energy, the pulse 

duration is about 2.1 ns. 

3.2.1.2 Frequency content of the direct air signal 

In Figure 64 (a), the frequency content of the signal, obtained through a fast 

Fourier transform (FFT) is represented. The constant component of the signal, 

appearing in the frequency spectrum as the amplitude at a null frequency, is 

important. It can be simply removed from the signal by subtracting its mean value 

in the time domain. The resulting spectrum is represented in Figure 64 (b). 

 

 (a)  (b) 

Figure 64 : Amplitude Spectrum of the direct signal in air (a) rough signal; (b) after 

subtraction of the mean signal value. 

The frequencies contained in the signal range from 0.5 to 4.5 GHz, with a 

maximum occurring at 2.8 GHz. This frequency is higher than the nominal 

frequency of the antenna (2.3 GHz). This spectrum appeared to be dependent 

on the antenna and the acquisition conditions (see Figure 69).  

3.2.2 Signal time stability 

The radar direct wave is often considered as the sum of an invariant signal and 

some noise, whose amplitude can be reduced through the use of signal 

treatment procedures. For example, if the noise may be assimilated to white 

noise, stacking the signal will ensure a reduction of the signal random noise. If the 

noise is due to strong background reflections, the visibility of local defects can be 

enhanced by removing the mean trace from the whole profile. 

In practice, the signal emitted by commercial antennas is evolving with time, at 

least during the first minutes after the antenna has been switched on. The 

operator should then wait during a warming up time before making any 

measurement. In case no indication is given by the antenna manufacturer, the 

ASTM standard [95] suggests a heating time of 20 minutes. In this section, we will 
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observe the signal after ignition, in order to determine if this recommendation is 

adapted to guarantee a stable signal for our antenna.  

3.2.2.1 Description of the signal stability problem 

If we trace monostatic air direct wave measurements performed at different 

times after the antenna has been switched on, we observe that this direct trace 

highly changes within the first minutes up to one hour after starting up the system.  

The mean signal amplitude increases, the wave arrives earlier and the wavelet 

shape changes as well. All those changes weaken the efficiency of all the 

background removal methods. 

 

Figure 65 : Evolution with operating time of the direct signal in the air. 

Evolution of the mean amplitude 

We measured the evolution of the mean amplitude of the wave with time in 

order to evaluate the time required for the device to warm up. 
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Figure 66 : Evolution of the direct signal mean amplitude in the first minutes after ignition. 

The mean signal amplitude mainly changes during the first 60 minutes and can be 

considered as stabilized after 80 minutes. If the antenna is switched off for a short 

time after having been completely warmed up, its warming time was highly 

reduced (about 30 minutes if the antenna has been turned off for 10 minutes). 

The re-heating time is comparable if only the antenna is unplugged or if the 

control unit is turned off as well. This confirms that it is the antennas and not the 

control unit that require to be warmed up. 

If the antennas are insufficiently warmed up, the use of signal processing routines, 

like the mean trace removal, can be compromised, especially for profiles 

needing a long measurement time. An example of bad imaging resulting from 

insufficient warm-up is given in Figure 67: it, corresponds to a CMP measured on a 

concrete slab just a few seconds after the antenna had been switched on. The 

background colour is visibly changing with time. 

 

Figure 67 : CMP performed on a concrete slab after insufficient pre-heating time. 
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The mean signal change can be corrected by removing the mean value of each 

trace, which is not the case for the other parameters presented hereafter. 

Evolution of the time of first arrival 

A static surface reflection test was performed with a metallic reflector. The 

measurement times of the maximum and minimum signal peaks were then 

evaluated. They are represented in Figure 68. 

 

Figure 68 : Time of occurrence of the minimum and the maximum of the reflection. 

The time at which the reflection is measured changes up to 0.4 ns while the 

antenna is warming up. If all reflection times are compared to a same time zero, 

this could lead to an error in the estimation of the depth of the detected 

interface. In this case, the error would be of 6 cm in air and about 2 cm in 

concrete. This error is divided by four if the reference time zero is estimated after 

10 minutes of warming up. 

Evolution of the frequency content 

The amplitude spectra of the traces presented in Figure 65 are represented in 

Figure 69. 
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Figure 69 : Direct air waves frequency content evolution with the operating duration. 

The amplitude peak decreases with time and the peak maximum seems to be 

shifted to slightly higher frequencies. If this evolution is present in a radargram, it 

can induce large errors when calculating amplitude ratios (for example when 

calculating a reflection coefficient). 

Signal performance compliance 

Different tests can be performed on the signal in order to insure the signal quality. 

We evaluated the system performances in different configurations, with a 

procedure inspired from the ASTM D 6087 – 05 standard, concerning the 

evaluation of asphalt-covered bridge decks [95]. The details of the tests are given 

in Appendix 5.  

We showed that both the long-time and short-time stability criteria of the 

standard are not fulfilled by our antenna, even by increasing the stacks number. 

We conclude that the stability of our antenna signal is poorer that the stability 

that can be reached with horn antennas (for which the standard was initially 

written). 

3.2.3 Signal noise 

The noise in radar measurements is due to many factors. A distinction is often 

made between the background, or clutter, noise, and the white noise. Daniels 

[96] defines the clutter as “signals that are unrelated to the target scattering 

characteristics, but occur in the same sample time window and have similar 

spectral characteristics to the target wavelet”. The clutter, often resulting from the 

antenna ringing, the non-target echoes or the target multiple echoes [67], should 
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be repeatable for two identical measurements. This is not the case of the additive 

white noise.  

The additive white noise is due to the imprecision in the signal acquisition by the 

radar. Sources for this noise can be thermal electronic agitation or errors 

introduced by the analog to digital signal conversion [67]. Because the causes of 

this white noise are multiple, it is likely that its distribution function would be close 

to a Gaussian curve [97]. This is a consequence of the central limit theorem, 

stating that, under certain (fairly common) conditions, the sum of a large number 

of random variables, with unknown probability functions, will have an 

approximately normal distribution. One easy way to estimate the white noise level 

is to evaluate the standard deviation of the measurement, for each sample. 

3.2.3.1 White noise reduction through signal stacking 

The white noise can be lowered by using the stacking method, in which several 

identical measurements are performed at each point and then averaged. The 

useful signal is supposed to be the same in each signal; it will be visible in the 

average signal, while the white noise is supposed to be random and its average 

should then decrease with the number of stacks.  This can be explained by the 

expression of the standard deviation of the sum of two random variables   and   : 

 
     √  

    
        (  ) 

(118) 

Where  (  ) is the correlation coefficient of the two variables x and y. If the 

variables are independent, which is the case for a normally distributed white 

noise, the correlation coefficient is zero. If, moreover, the standard deviation of 

the two sets of data x and y is random (which is the case here because we 

suppose that both data sets were measured in identical conditions and have thus 

identical properties), (118) becomes: 

      √    
  √     (119) 

The standard deviation of a signal is proportional to the signal itself. The mean of 

two signals is thus: 

     
 

 √  
  

 
  

  

√  
 (120) 

The same analysis can, of course, be performed for more than two signals. 

            
               

√  
 (121) 

To illustrate this stacking property, we can compare the noise measured in static 

surface reflection measurements in function of the number of signals used in each 
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stack (Figure 70). The noise is estimated as the standard deviation of the Hilbert 

envelope of the signal amplitude. 

 

Figure 70 : Decrease of the signal envelope standard deviation due to numerical stacking. 

As expected, the noise is reduced when the stacking number increases. The 

peaks noise amplitude is inversely proportional to the root square of the stacks 

numbers, as predicted by (121). This observation is not valid anymore for the parts 

of the signal presenting lower amplitude. For those parts, the noise does not tend 

to zero when the number of stacks increases. This is due to the fact that the noise, 

for those samples, is largely due to the time drift of the antenna. The same test 

realized with a shorter time between measurements should show a clearer 

tendency to zero.  

The same test was performed using the automatic stacking option of our control 

unit. The results are compared to the post-processing numerical stacking in Figure 

71. 
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Figure 71 : Comparison of the white noise amplitude decrease  

obtained by numerical and automatic stackings. 

The effect of automatic stacking seems to be similar to that of a numerical 

stacking. Actually, it is very interesting to use the automatic stacking function 

because all the measurements are performed in a very short time: this is very 

important in dynamic measurements, because it ensures that the stacked 

samples are measured in a quasi-identical position.  

In addition to the time duration and the spatial distance between samples 

measurements, the automatic stack number is one of the factors that will limit the 

speed of measurement for profiles or CMPs. A stack value higher than 8 generally 

induces a very slow measurement. 

3.2.3.2 Signal-to-noise ratio test 

The signal-to-noise ratio was estimated for the direct wave as well as for the first 

and second reflection on a metallic plate, for seven different automatic stack 

values (1, 2, 4, 8, 16, 32 and 64). For each stack value, 125 measurements were 

performed with a time interval of two seconds. All those measurements were 

performed after a long warming up time of the antenna (more than 4 hours). 

To estimate the signal, we calculated the mean signal for each stack value and 

we measured the peak-to-peak amplitude for each event. The noise is obtained 

by estimating the standard deviation of each sample and then picking its 

maximum for each event. 

The signal-to-noise ratio was estimated by dividing each signal amplitude by 

twice the corresponding standard deviation (to correspond to the 62.8% interval 

of variation). 
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Figure 72 : Signal, standard deviation and signal-to-noise ratio. 

We observe that the measured amplitude increases with the number of stacks, 

especially until 8 stacks, and then tends to stabilize. On the opposite, the 

measured standard deviation, representing the noise, decreases with the number 

of stacks, except for a very small number of stacks.  

The signal-to-noise ratio seems to be relatively constant for the different parts of 

the signal and to evolve as an affine relationship of the number of stacks. The 

initial increase of the noise is indeed compensated by the increase of the signal 

amplitude. When 64 stacks were used, the signal-to-noise ratio seems to be higher 

for the direct wave than for the reflection events, but this trend has not been 

confirmed by other measurements. 

3.2.4 Signal geometric attenuation 

In addition to the ohmic and scattering attenuation described by Annan [70] 

(§ 2.1.4), the radar waves also undergo geometric attenuation due to their 

spreading into space.  

Indeed, the wave power is preserved during its propagation. The power density is 

thus decreasing when the propagation surface increases. In three dimensions, 

with a spherical propagation, the energy decreases proportionally to the inverse 

of the squared radius. 
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Figure 73 : Spherical spreading of the waves. The power received on the two sphere 

portions S1 and S2 is equal. The power density decreases thus proportionally to the 

propagation surface.  

For this reason, in 3D propagation, we should observe: 

   
 

    
 (122) 

In (122),   is the power density and   is the sphere radius. If the wave is submitted 

to intrinsic attenuation as well, the power remaining at a distance   from the 

emitter is given by [98]:  

          

     

    
    (123) 

In (123),     is the power emitted by the antenna,     is the gain of the 

transmitting antenna and reflects the antenna radiation directivity,     is the 

transmitter efficiency,   is the attenuation coefficient in the medium and   is the 

distance covered by the wave.  

The wave amplitude is proportional to the square root of the power. The 

amplitude will decrease proportionally to the inverse of the radius. [99, 100] 

 
 

  

 
    

 
 (124) 

In two dimensions, the emitter is virtually a line source and the propagation 

surface is a cylinder, with a surface proportional to the radius. The propagated 

amplitude will decrease proportionally to the inverse of the radius square root. 

 
   

  

 
    

√ 
 (125) 

The results simulated in two dimensions should be corrected before comparison to 

laboratory experiments. 
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When the wave is reflected on an object, only a portion of the energy is sent 

back towards the antenna, depending on the target reflection coefficient (that 

has been studied in § 2.1.7) but also on its geometry. We will consider here simple 

geometries and perfect reflectors only. 

If the reflector is localized and sufficiently far from the antenna, the radar range 

equation (126) can be applied [98, 101]. The range (  ) is the target distance 

from the antenna. The total back and forward path length of the wave is thus 

approximately equal to      if the emitting and receiving antennas are close. This 

equation considers that the reflector acts like a secondary source, generating a 

secondary spherical spreading of the wave energy.  

 

   

   

    

      

(  )   
     

(126) 

 

 

  

 
    

  
 (127) 

The reflected power depends on the target radar cross section  .  This parameter 

is linked to the target projected cross section; but it also depends on its reflectivity 

(its reflection coefficient) and on its directivity (convex shapes will increase the 

geometric spreading). For most geometries, it is frequency dependant [102]. One 

exception is the sphere, when its radius is larger than    ⁄ , which corresponds to 

the optical region. In this case, we have: 

       (128) 

With   the radius of the sphere. When its radius is less than     , the sphere is 

sufficiently small to be considered as being in the Rayleigh region. Its cross section 

can be evaluated by the formula [103]: 

   
    

  
 (129) 

For spheres of intermediate radius (i.e. when    ), the scattering behaviour is 

submitted to Mie resonance and oscillates between         and     [102]. 

Anyway, for all spheres, regardless their dimension, the received power     

remains proportional to the inverse of   
 .  

If the reflector is an infinite plane perpendicular to the antenna, the wave is 

simply reflected symmetrically to the propagation that would have occurred 

without the presence of the plane reflector. If the antenna is shielded and only 

emits in one hemisphere, the infinite plane can virtually reflect all the energy; 

equation (124) can thus be directly used, with considering   as the total roundtrip 

distance to the plane target.  Equation (126) can also be used by considering 

      .  Different values have been proposed in [103] for initial spherical waves, 
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namely       or        , when considering the first Fresnel zone of reflection 

only. 

When the wave is reflected on a rebar, the secondary source acts like a line 

source, presenting cylindrical wave propagation. We should then have:  

 

 

  

 
    

√  
 (130) 

These equations are necessary for the inversion of measured amplitudes, in order 

to recover the parameters of the target. In the two next paragraphs, we tried to 

develop numerical and experimental tests to check their applicability in the case 

of shielded radar and targets whose dimensions could not be considered as 

negligible regarding the wavelength.  

3.2.4.1 Estimation of the geometric attenuation in numerical 

simulations 

2D and 3D simulations have been performed with GprMax to assess the influence 

of the geometric attenuation. It confirmed the equation (125) in two dimensions, 

and equation (124) in three dimensions, when the measured field has the same 

polarization as the emitting dipole (Figure 74 (a)). On the opposite, the electric 

field measured in the other direction (Ex if the dipole is oriented in the y direction), 

is not equal to zero but very low and the amplitude decreases then proportionally 

to the inverse of the squared distance (Figure 74 (b)).  

 

 

Figure 74 : Geometric attenuation of the (a) Ey and (b) Ex electromagnetic fields in a 3D 

simulation in which the emitting dipole has a y orientation. 

3.2.4.2 Measurement of the geometric attenuation 

We performed some laboratory measurements to confront the theoretical 

relationships to real laboratory conditions. Indeed, different papers [101, 104] 

have shown that measurements did not perfectly fit the theoretical relationships. 

One reason for this discrepancy is that, in the range equation, the source is 

                                        (a) (b)     
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supposed to be punctual. With a bow-tie antenna, this only can be observed in 

the far field. 

Measurement on a plane reflector 

A large plane metallic reflector has been used for testing. The antenna was fixed 

on a movable support and initially placed close to the surface; it was moved 

away until reaching a large distance (4.3 m) from the surface and then moved 

back to its initial position (Figure 52 (b) p 80). 

In order to achieve a precise estimation of the distance covered by the wave, it 

was evaluated from the time interval in the radargram between the 

measurements of the direct wave and of the reflection, rather than from 

measurements on the experimental setup. The time at which the direct wave 

could be observed was supposed to correspond to the time for which the wave 

has covered the four centimetres separating the two antennas. The speed of the 

waves in air being equal to 30 cm/ns, the distance estimated by this method, with 

   the sampling frequency, is directly given by (131): 

 
              

                        

       
      

(131) 

In Figure 75, the different reflected peak-to-peak amplitudes are plotted as 

functions of the distance at which they have been observed (for distances above 

8 cm). 

 

Figure 75 : Geometric attenuation in air. 

The correlation with a curve evolving with an inverse distance relationship is very 

good even in the near-field. Numeric fitting details are given in Table 4. This 

correlation is even better when only the furthest measurements are considered. 
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This means that in this case, the theoretical equation with an inverse distance 

relationship can be used with a very good precision. 

Influence of the reflector geometry on the geometric attenuation 

As explained in § 3.2.4, the shape of the reflector has a large influence on the 

backscattered (reflected) amplitude. The projected cross section is important, 

but also the global shape, influencing the directivity. For GPR concrete 

inspection, non-planar features are relatively common. The most obvious 

examples are of course the metallic rebars, constituting cylindrical targets. 

In this section, we performed tests on a very long steel rebar. In a first 

experimental configuration, it was placed parallel to the bowties, which 

corresponds to the case of a rebar perpendicular to the radar profile direction 

during a classic concrete inspection. This is the configuration in which the rebars 

are easily recognized, because they appear as hyperbolas into the radargram. 

Moreover, as it will be detailed in the chapter 3.2.5.1, it is the configuration in 

which a metallic rebar is susceptible to receive and reflect the most energy, due 

to the donut-shaped radiation pattern of the antenna [105].  

In a second experimental configuration, the rebar was placed perpendicularly to 

the bowtie antennas. Due to polarization concerns, this configuration is 

susceptible to generate a very low reflection, especially if the radius of the rebar 

is small compared to the wavelength [105]. Finally, we performed the same test 

on a small steel ball of 22.99 mm diameter. 

According to the theoretical considerations described in § 3.2.4, which do not 

take into account the polarization concerns nor the near-field bowtie specificities, 

we would expect to have an attenuation proportional to     for the steel ball 

and proportional to       for the rebars. Detailed results are listed in Table 4, while 

all the measurements and their best exponent approximations (with the least 

square criterion) are drawn in Figure 76. 
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Table 4 : Regression properties for the curves obtained in air for geometric attenuation. 

Reflector 

type 

Considered 

distance 
Equation A b R² 

Mean 

deviation of 

the 

prediction 

Plane 

reflector 

L > 8 cm 

      18.29 E+04 0.9261 0.9906 1.47E+02 

      22.51 E+04 1 0.9809 3.09E+02 

L > 100 cm 

      19.06 E+04 0.9332 0.9552 6.66E+01 

      26.84 E+04 1 0.9949 7.82E+01 

Bar 

(parallel) 
L > 5 cm 

      19.30 E+04 1.3295 0.9797 1.06E+02 

        30.91 E+04 3/2 0.9894 1.75E+02 

Bar 

(perpen-

dicular) 

L > 9 cm 

      84.86 E+04 2.0914 0.9775 2.73E+02 

        20.59 E+04 3/2 0.9370 6.78E+02 

      71.05 E+04 2 0.9686 3.08E+02 

Steel ball L > 5 cm 

      6.43 E+04 1.3496 0.9546 2.00E+02 

        6.49 E+04 3/2 0.7966 3.58E+02 

      9.40 E+04 2 0.5274 6.74E+02 

 

 

Figure 76 : Attenuation in air of the measured peak-to-peak amplitude as a function of the 

total distance covered by the wave and comparison with the power curves presenting the 

best correlation coefficients. 
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When the rebar is parallel to the antennas, we observe that the best correlation is 

obtained for an exponent of -1.33, while we would have expected -1.5. Anyway, 

the correlation coefficient R² is not bad at all for -1.5 (0.98); we also observe that 

the mean deviation of the results is lower. The Ax-1.5 seems then perfectly 

acceptable.  

When the rebar is placed perpendicularly to the antennas, the reflection 

amplitude is, as expected, smaller than for the parallel orientation. For this reason, 

amplitudes for offsets larger than 75 cm could not be evaluated, because they 

are less than the noise level. The best fit was obtained for an exponent -2.09, 

smaller than expected -1.5. This could be due to some polarization effects. We 

have indeed observed in the numerical simulations (§ 3.2.4.1) that the electric 

field in the direction perpendicular to the main electric field could be decreasing 

proportionally to the inverse squared distance. This approximation gives an 

acceptable correlation coefficient R²=0.969. 

In the case of a steel ball, we considered distances up to 130 cm. At small 

distances from the antenna, the amplitudes are very low, even lower than for the 

perpendicular rebar. It means that, at larger distances, the measured amplitudes 

are slightly larger. Indeed, in this case, the best fit for the attenuation factor 

exponent is obtained for -1.353, while we expected -2 for a local defect. This 

could be due to some radiation pattern effects, which will be studied in the next 

paragraph. 

3.2.5 Antenna radiation pattern 

The radiation pattern describes the influence of the emission direction on the 

amplitude of the waves emitted by the GPR antenna. In the first part of this 

section, the different factors influencing the radiation pattern of bowtie antennas 

are described. In the second part, we intended to measure the radiation pattern 

of our device when placed on sand. 

3.2.5.1 Theoretical considerations 

High frequency contact antennas are constituted by two bowtie antennas. Those 

antennas are similar to dipole antennas and have a comparable donut-shaped 

radiation pattern, corresponding to a perfect circle in the transverse electric (TE) 

mode (Figure 77) [54, 104]. 
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 (a)   (b) 

Figure 77 : (a) Schematic position of the two bowties antennas into the shielding box; 

(b) radiation pattern of a bowtie antenna [104]. 

If an emitting dipole antenna is placed close or in contact with the inspected 

surface, its radiation pattern greatly changes. In the TE mode, a peak of 

maximum amplitude appears for a wave inclination equal to the critical angle 

(Figure 78). 

 

Figure 78 : Radiation pattern of a bowtie antenna when placed against the surface of a 

different medium [54]. 

This ground radiation pattern depends on the dielectric permittivity contrast 

between the two materials, but also on the height of the antenna above the 

surface. Equations describing those radiation patterns on a surface have been 

established by different authors [106-108]. Those equations are valid for far-field 

radiations, i.e. sufficiently far from the antenna to neglect the terms in the Maxwell 

propagation equation that decay faster than    . According to Millard [104], an 

equation permitting to describe the far field limit distance     is: 
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     (132) 

In (132),    is the characteristic antenna length (i.e. the distance between two 

opposite apexes of each bowtie) and   is the wavelength in the medium. In 

simple terms of wavelengths, authors generally estimate that the far-field limit is 

between    [104] and    [108], possibly up to     according to some papers [109, 

110]. 

Those distances are seldom reached in the measurements performed with 

contact high frequency GPR antennas. For this reason, it is difficult to rely on 

theoretical equations in order to take into account the radiation pattern of the 

antenna. Another discrepancy between those equations and real antennas is the 

presence of the metallic shield, which tends to increase the directivity of the 

antenna and thus to change its radiation pattern [104]. 

A promising method for radiation pattern determination is the complete 

modelling of the antenna into a 3D FDTD code [111]. The drawback of this 

technique is that the inner geometry and composition of the antenna have to be 

perfectly known.  

For a given material, it is also possible to experimentally measure the radiation 

pattern. This can be performed directly using a second antenna to measure the 

radiation pattern of the first one or, indirectly, measuring the signal reflected on a 

metallic target (monostatic method).  

3.2.5.2 Experimental measurement of the radiation pattern on sand 

We measured the radiation pattern of our antenna by using a small steel ball 

buried at different depths (from 0 to 20 cm) in a sand box. 70 cm long profiles 

were performed with 2.3 GHz antenna on the sand surface, just above the ball 

((Fig. 7). Those tests were performed on sand rather than concrete because loose 

materials allow placing the reflector at any depth. 

 

Figure 79 : Schematic principle of the radiation pattern experimental measurement. 

From measurements in air on the same steel ball, we estimated the geometric 

attenuation factor from the steel ball to the distance exponent 1.353 (§3.2.4.2). 
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The raw results in sand were thus multiplied by this factor; they were also divided 

by the attenuation factor, estimated from all the measurements performed just 

above the ball, for the different depths. To lower the noise of the signals, the 

profiles performed at the same depth (two or three) were averaged, before to be 

smoothed by a moving average of five elements. Finally, all the amplitudes were 

normalized to the mean amplitude observed at 0° (Figure 80).  

 

Figure 80 : Dependence of the wave inclination angle on the reflection amplitude. Those 

results were deduced from monostatic measurements on a ball buried in sand at different 

depths. 

We observe that the radiation pattern is highly dependent on the depth, 

especially within the first 15 cm, corresponding to about 2 . Features detected by 

high frequency GPR are often situated at lower depths.  

The radiation pattern is dependent on the antenna model, as well as on the 

surface condition, on the mode (monostatic or bistatic) and on the ground 

permittivity [12]. A rigorous analytical expression of the radiation pattern (of    

and    in (114) for example) in the near field should then be a function of all those 

different parameters. Such an analytical function would be necessary for the 

parameters determination when no normalization with a reflection on a metallic 

reflector is possible (see § 3.1.2.1).  
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3.2.6 Conclusions 

From all the observations made in this section, we drew a few conclusions that 

influenced all the subsequent signal acquisition and treatment (in § 3.3 but also in 

Chapter 4 and Chapter 5).  

During the acquisition, it is important to warm up the antenna during a minimum 

of 60 minutes before performing any measurement, in order to minimize the time 

drift effect. For a very good precision, the heating duration should be extended 

to 80 minutes. Then, the automatic stack function of the radar has the same 

effect than a post-processing stack and divides the white noise by the square 

root of the stacks number. For this reason, the automatic stacking number should 

be kept relatively high (8 is a good compromise between noise reduction and 

acquisition speed). 

As a first step of the data processing, it is always interesting to subtract the mean 

amplitude of each signal. It will suppress the uninteresting constant component of 

the frequency spectrum and it will decrease the time drift effect. 

We also measured the geometric attenuation undergone by waves reflected on 

objects with different geometries. The analysis of the amplitude decrease 

confirmed the dependence in     for a large reflection plane. In two dimensions, 

the dependence is in    , so the data should be corrected to fit the real results.   

When the waves are reflected on objects that are not planes, their geometric 

attenuation factor will be affected. For a rebar parallel to the dipole, the 

expected dependence in       was observed. When the rebar is perpendicular 

to the antenna, the expected       attenuation may underestimate the actual 

attenuation, which seems closer to    . On the other hand, for the steel ball, the 

expected     attenuation could not be observed. The results suggested a weaker 

attenuation with a       dependence, 

Finally, the analysis of the radiation pattern measured on sand showed its 

important evolution in the near field. An approximation based on far-field 

equations will then be insufficient to predict the angle-dependant amplitude. 

Such prediction should take into account the target distance in addition to the 

antenna geometry, the surface condition, the mode (monostatic or bistatic) and 

the ground permittivity. The method developed for extracting the reflection 

coefficient (§ 3.1.2.1) frees us from the necessity to determine precisely the 

radiation pattern. But, as it will be demonstrated in § 4.2.3, it will introduce some 

imprecisions in some configurations. For this reason, the development of a 

method for the near field radiation pattern estimation is one of the most promising 

field of research to improve the thin layer characterization technique in the 

future.  
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3.3 Determination of concrete electromagnetic 

parameters with GPR 

The accuracy of radar survey results is directly linked to the precision of the 

electromagnetic parameters of the concrete. Firstly, because in lossless media, 

the dielectric permittivity is directly linked to the wave speed (25) and is therefore 

used to estimate the depth of the detected features. Secondly, concrete 

dielectric permittivity can also be an indicator of the concrete water content, 

which can be controlled by this method. 

Different techniques are especially dedicated to the measurement of the relative 

permittivity. In laboratory, the measurement can be directly performed by using a 

coaxial transmission line [68]. On site, TDR (Time Domain Reflectometer) 

measurements  can be performed. The TDR probe consists in long metallic sensors 

that are embedded into the ground and allow a direct evaluation of the material 

permittivity. This method is frequently used for loose materials like sand or soil, but, 

in the case of concrete, the necessity of embedding the sensors into the material 

is a severe drawback. For this reason, they are seldom used for concrete 

evaluation, except for big civil works (dams, bridges), which require a high 

evaluation and maintenance level during their whole lifetime; in this case, the 

probes are embedded into the fresh concrete. Another disadvantage of the TDR 

is that every measurement only gives information about a few cm³ of material. As 

it is a destructive method in concrete, in may not be sufficient to evaluate a 

whole structure [112]. 

As an alternative to these direct methods, the dielectric permittivity can be 

estimated from measurements performed with the radar. In addition to the fact 

that they do not require additional equipment than the radar needed for the 

inspection, these methods also have the advantage to be totally non-invasive, 

even for concrete inspection. Different techniques are presented in this section, 

before to be tested on the measurement of a concrete slab permittivity. 

3.3.1 Methods description 

To estimate the surface concrete permittivity with GPR, specific tests can be 

performed. With the surface reflection test, the estimation is based on the 

evaluation of the surface reflection coefficient. When CMPs are measured, the 

estimation can be based of the direct wave or on the time of arrival of an 

embedded reflection. If reflectors are present, the estimation can also be derived 

from the profile measurements. All these methods will be described in the next 

sections. 

3.3.1.1 Surface reflection measurements 

This method consists in comparing the surface reflection measured at a distance 

of a few decimetres to the reflection obtained from the same distance on a 
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perfect reflector (§ 3.1.3.1). The ratio between those two amplitudes corresponds 

to the reflection coefficient of the interface between air and the surface 

concrete. 

If we consider that the incident wave is perpendicular to the interface (which is a 

valid assumption if the antenna is placed sufficiently far from the surface), the 

reflection coefficient is given by (51), in which material 1 is air and material 2 is the 

surface concrete. We have thus: 

          
  √        

  √        

 (133) 

             (
          

          

)
 

 (134) 

From (134), the dielectric permittivity of the surface is thus univocally determined 

by the reflection coefficient measured from the surface. 

The drawback of this method is the fact that it only reveals the permittivity of the 

surface. If a gradient is present into the concrete, the mean permittivity will be 

different from the surface permittivity, and the depth of the detected features 

could be misevaluated. 

3.3.1.2 Permittivity evaluation from radar direct wave  

Dielectric properties of concrete can be evaluated by measurement of the 

propagation speed of the direct wave in the material. Two different techniques 

are described by Klysz & al. [113]. 

The first one is a direct measurement of the propagation speed of the wave 

maximum energy, estimated from eleven different receiver positions (CMP). This 

could approach real velocity even if dispersion and attenuation can modify the 

shape of the wave and thus the velocity measurement. 

The second one is based on the spectral analysis of the radar surface wave. The 

use of a Fourier transform frees calculations from changes in the shape of this 

wave during its propagation. However, this technique is more complicated and is 

submitted to more noise because only one pair of receivers can be taken into 

account after each measurement [114]. 

It was shown that both methods tended to underestimate the permittivity value 

for the lowest water content (i.e. for low permittivity values and high wave 

speed), because it is difficult to separate contributions of direct wave in the 

material from direct wave in the air. 
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3.3.1.3 Speed evaluation using a buried reflector 

The speed of the wave is directly linked to the dielectric permittivity in the 

material (25). If the depth of a reflector is known, the speed can easily be 

determined, as well as the permittivity. If the depth of the reflector is unknown, the 

permittivity determination using the speed will require the analysis of a 

measurement containing more information. If a local reflector (as a rebar, for 

example) has been detected in the radargram, the whole hyperbola reflected 

from the rebar can be used to estimate the speed. Indeed, the shape and 

position of the hyperbola permit to univocally determinate the speed in the 

material. In CMP measurements, the planar reflectors appear as hyperbolas as 

well. The permittivity and the depth can thus be simultaneously determined from 

the reflection time. 

To use all the information contained into the radargram, the reflection amplitude 

can be inverted as well. The parameters are adjusted to generate an analytical 

or modelling solution that would fit the measurements. Ferrieres & Klysz [115] 

showed that numerical simulation results obtained with a 2D FDTD model could 

be in good accordance with experimentally measured dielectric properties. 

3.3.2 Comparison between indirect methods for the 

determination of the permittivity of concrete  

All the methods listed here are theoretically valid for estimating the concrete 

permittivity. Nevertheless, some methods are more affected by the noise or by 

measurement imprecisions. For this reason, we decided to test a smooth concrete 

slab with different methods in order to determine a measurement and analysis 

procedure for the future tests. On this test sample, we performed various tests and 

analysis: 

- surface reflection analysis; 

- static and dynamic tests reflection analysis, based on reflection time; 

- static reflection analysis, based on reflected amplitude. 

All tests were performed on the same day and on the same slab. The 10 cm thick 

slab had been realized by the company Ronveaux with self-compacting 

concrete in order to present a perfectly smooth, almost bubble free, formed 

surface and a relatively smooth troweled surface. All measurements were 

performed with the antenna on the free surface, so that the bottom reflection 

took place on the smooth casted surface. A second identical slab was used to 

obtain the direct wave, using the good contact between the formed surfaces. 

Both slabs had been stored during 4 months in a climate room with HR=60%: we 

can reasonably assume that there is virtually no humidity gradient. 



   

113 

 

3.3.2.1 Surface reflection analysis 

For this test, we compared the reflection on the concrete to a reflection on an 

aluminium sheet, after subtraction of the direct wave in air (see § 3.1.3.1). Results 

are presented in Figure 81 (a). 

 

 

Figure 81 : Determination of the surface reflection coefficient (a) raw measurements; 

(b) after direct wave suppression. 

Because of the relatively long duration of the radar pulse, it is important to 

subtract the direct wave to obtain a good precision. The reflection is evaluated 

from the peak-to-peak amplitudes ratio. In this case, we have: 

 
    

         

      

         
(135) 

Using equation (134), we deduce   
        and, with (25),                . 

3.3.2.2 Permittivity determination based on the reflection time 

Because the dielectric permittivity is directly linked to the velocity, it can be 

deduced from the propagation time, if the time zero and the geometry are 

known. If the geometry is unknown, a dynamic measurement is necessary to 

determine simultaneously the thickness and the permittivity. The time of 

observation of every event is the maximum of the Hilbert envelope of the 

amplitude, so that the measurements are not affected by the phase change. 

Time zero determination 

In a GPR radargram, only the waves measured by the receiving antenna appear. 

The exact emission time of the pulse is unknown and has to be determined from 

the measurements. Any error on the time zero will directly impact on the 

calculated travel time, so it is important to achieve a good precision in the time 

zero determination. 
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The most rigorous method to determine the time zero is to perform a static 

measurement in air with the same configuration as used on concrete (monostatic 

or bistatic)(see § 3.1.3.1). In the corresponding profiles, the distances between 

antennas are known, as well as the wave speed (30 cm/ns). The time zero is then 

obtained by subtracting the corresponding propagation time from the time of 

direct wave observation. 

 
        

         

        
 

(136) 

If we have measured a direct wave in the air, time zero is 4/30=0.133 ns and 

13/30=0.433 ns, respectively, before the recording times of the monostatic and 

bistatic measurements. 

If no record of the direct wave in the air is available, the direct wave on the 

medium can be used to estimate the time zero. This direct wave is a complex 

combination of the direct wave in the air, the direct wave in the medium and the 

wave reflected on the medium surface. For this reason, the peak of maximum 

energy cannot be directly related to the time zero.  

Nevertheless, the time zero can be estimated with a limited error by considering 

that the maximum energy peak travels at the speed of air. The maximum error 

committed with this approximation can be calculated for the different antennas 

distances. If the medium is not water, the theoretical maximum error that could 

be committed with this method is 0.533 ns (which is the time difference for a wave 

covering 4 cm at 30 cm/ns and 6 cm/ns, respectively) for a monostatic 

measurement and 1.73 ns for a bistatic measurement.   

We can compare the direct waves and the peaks of maximum energy measured 

on different media to the peak of maximum energy measured in the air, for the 

two configurations (Figure 82): 
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Figure 82 : Comparison of the direct waves (left) and the amplitude envelopes (right) for 

the direct wave in a monostatic (up) and bistatic (bottom) measurement. 

The time shifts observed on these different materials and the corresponding 

apparent speed for the peak of maximum energy are gathered in Table 5.  

Table 5 : Direct wave envelope amplitude peak time shift and corresponding apparent 

speeds. 

Material 

Approximate 

material 

speed 

(cm/ns) 

Monostatic  

(antennas distance =4 cm) 

Bistatic 

(antennas distance =13 cm) 

Delay 

observed with 

direct wave 

in air (ns) 

Apparent 

speed 

(cm/ns) 

Delay 

observed with 

direct wave 

in air (ns) 

Apparent 

speed 

(cm/ns) 

Concrete 10 0.0361 23.608 0.0794 25.35 

Polystyrene 25 -0.0216 35.800 -0.0144 31.031 

Sand 20 0.0144 27.076 0.0577 26.477 

Wood 26 -0.0144 33.632 0.0505 26.869 

Water 3.3 0.3103 9.016 -0.0433 33.330 
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In Table 5, we observe that, as expected, the direct waves travel at an 

intermediate speed between the material speed and the speed of light. For this 

reason, the direct waves in these configurations cannot be directly used for the 

material speed determination. 

For monostatic measurements, except in the case of water, the method let us to 

estimate the time zero with a relatively good precision: the error is less than 0.04 ns 

if we consider that the direct wave always travels at the speed of light. 

Nevertheless, we observe some negative errors, which are incompatible with the 

theory and are due to method or measurements imprecisions. For this reason, it 

still can be useful to systematically measure a direct wave in air to obtain an 

accurate value for the initial time.  

In bistatic measurements, the direct wave energy on water is highly attenuated 

and no real peak can be observed, inducing corruption of any analysis based on 

this method. The speed of light can be a satisfactory approximation for most 

materials, but the error increases with the material impedance and is totally 

unacceptable when the material contains a high percentage of water. For this 

reason, it will be very useful to perform a bistatic measurement in air (Figure 51 

(a)) in order to obtain a reliable time zero. If a preliminary determination of time 

zero is not possible, a better option than the approximation with the speed of light 

could simply be the inclusion of the time zero as a parameter of the curves fitting. 

Static measurement 

If a ray propagation is considered and   is the distance between the antennas, 

the speed in the first material    and the thickness   are linked by the relation: 

        
√  

 
   

     

 (137) 

The dielectric permittivity can be determined using relation (25). If the nominal 

thickness of the slab         is introduced into the equation, we find from the 

monostatic measurement that           and, with the bistatic measurement, 

         . The difference between both measurements is relatively important. If 

we perform the same analysis to the second reflection on the slab bottom in the 

monostatic measurement, we find          . It seems that the analysis of the first 

reflection from a monostatic measurement tends to underestimate the concrete 

permittivity. This could be due to the thin plastic and air layer between the 

antennas and the concrete surface (of 2 mm), which is susceptible to modify the 

wave path. 

Dynamic measurement 

To determine the permittivity of concrete if the geometry is unknown, the best 

solution is to use a dynamic measurement (CMP). In the radargram, the two first 
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reflections are automatically detected using the envelope peaks. Depending on 

the noise, the first 10-15 cm of the CMP test can be selected with this method. 

 

Figure 83 : Automatic detection of the 33 first samples of the first and second reflection  

of a CMP, based on the maximum of the amplitude envelope. 

When the second reflection is too weak to be identified, the analysis should only 

be based on the first reflection. The parameters are determined by a minimization 

of the error between the synthetic curve generated for a set of parameters and 

those automatically detected samples. The inversion can be performed using the 

thickness as a data, which should improve the results. It can be based on a 

combination of the samples picked for the first and the second reflection, or it 

can be based on one reflection only. The results are displayed in Table 6 for a 

selection of the 33 first samples. 

Table 6 : slabs parameters determined from the analysis of the CMP measurements.  

 1st reflection 2nd reflection Both reflections 

h=10 cm                            

h unknown 
    8.83 

         

         

        

         

          

 

When h is known, the analysis is very precise and the results do not depend on the 

reflection event that is studied. When   is unknown, however, we observe that a 

study based on both reflections is highly preferable to the analysis of only one 

reflection, which can give a truncated result. The resulting curves for only the 

second reflection and for both reflections are displayed in Figure 84. 
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Figure 84 : Best approximation of the CMP reflections (represented by the dashed line) with 

h unknown (a) based on the second reflection only; (b) based on the two first reflections. 

Measurements without preliminary estimation of    

We performed the same dynamic measurements using    as an unknown value to 

determine from the curves shapes, in addition to   and    
 . This analysis was 

performed using the two first reflections.  

Table 7 : Parameters    
 ,  , and    determined from CMP first and second reflection curves. 

 Both reflections,  

   unknown 

h=10 cm 
         

             

h unknown 

         

           

             

  

The values of    are relatively close to the value estimated from the direct wave in 

the air:          . The results are relatively precise, with a fair estimation of all 

parameters. In the absence of a measurement of a direct wave (or if the 

measurement is not precise enough, due to the time shift for example), this 

method is a good alternative. 

3.3.2.3 Permittivity determination based on the reflected amplitude 

We performed static measurements from the surface of the concrete slab, which 

was first hung in the air and then placed on a metallic sheet. As the reflected 

waves are not totally separated from the direct wave (Figure 85 (a)), the 

amplitude ratio estimation is more precise after subtraction of the direct wave 

(Figure 85 (b)). 
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Figure 85 : Determination of the permittivity through bottom reflection amplitude:  

(a) raw measurements; (b) after direct wave suppression. 

In this case, the amplitude ratio gives R=0.4865 (positive because the reflection 

coefficient of the metallic sheet is -1). To increase the precision, we took into 

account the inclination for the calculation of the permittivity (equation (54)): 
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(138) 

This value is very low and can be explained by the imperfection of the direct 

wave measurement. 

The same analysis has been performed with the bistatic measurement; the 

reflection coefficient was then equal to 1. This implies that the incident angle (33°) 

is larger than the critical angle, but does not give additional information. 

3.3.2.4 Conclusions 

From the tests that were carried on in this chapter, we drawn different 

observations, that we took into account to determine a measurement routine for 

the parameters determination. 

The surface reflection test is a simple method to estimate the material permittivity. 

It allows repetitive measurements on any surface. The drawbacks of the method 

are the fact that it requires a suspension frame on site, and that it is only 

representative of the surface properties. 

The time zero has to be estimated in order to determine the time of occurrence of 

every reflection event into the radargram. It should always be determined from 

an air measurement (which is quick and easy to perform). If it is not the case, a 

good alternative for static tests is to suppose that the direct wave measured on 

the material has the speed of light. This approximation is not valid for bistatic 

measurements, for which it is better to invert the time zero from the measured 

curves. 
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After determining the time zero, the reflection time analysis gives relatively 

different values for monostatic and dynamic measurements (with an error larger 

than 20%). In particular, the analysis based on the first reflection of the monostatic 

measurement seems to lead to an underestimation of the permittivity.  

The CMP measurements analysis gives very good results if the thickness is known 

and the results are the same if the first and/or the second reflection is studied. 

However, if both   and   
  have to be determined, the best results are obtained if 

both reflections are used. The analysis of the second reflection only should be 

avoided. 

The analysis based on the reflection amplitude rather than on the reflection time 

revealed to be less reliable, due to the difficulty to suppress a direct wave and 

the necessity to know the thickness for estimating the incidence angle. As long as 

other methods are available for the surface parameters estimation, this method 

will not be used anymore. 

On the basis of those results, we determined our procedure for the determination 

of the surface concrete permittivity. We decided to measure a CMP on concrete 

and analyse the two first reflections (when the second reflection is sufficiently 

visible). For the time zero determination, we used as often as possible the bistatic 

direct wave in air. For the results assessment, we used additional surface reflection 

tests whenever possible. 
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Chapter 4: Analysis of the 

APVO curves reflection 

coefficient 

As seen in § 2.2, thin layers generate reflections whose amplitudes will depend on 

the dielectric properties of the materials, the incident angle and the thickness-to-

wavelength ratio. The amplitude and phase of the reflections may be analytically 

described through equations (102) and (112). In this chapter, those analytical 

formulations are confronted to amplitude and phase versus offset (APVO) curves 

obtained through numerical modelling.  

In the first section (§ 4.1), we will determine which one of these methods is the 

most suitable to approximate the amplitude and phase of the reflection. Different 

variations of these methods will be tested and compared to amplitude and 

phase versus offset (APVO) curves determined from FDTD simulations. The method 

will then be optimized to provide a good analytical prediction of the reflection 

coefficient for each configuration. 

In the second section of this chapter (§ 4.2), these analytical APVO curves of the 

reflection coefficient will be compared to numerical and experimental curves 

obtained in realistic conditions. Indeed, the fact that the measurements are 

performed from the surface will induce additional phenomena that are not taken 

into account by the equations (see § 3.1.2.3). We will try to evaluate the influence 

of these phenomena on the curves and the possibility to estimate nevertheless 

the layer parameters.  
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4.1 Optimization of the APVO curves analytical 

formulation  

When high frequency GPR tests are performed, the incident angle it frequently 

too large to be assimilated to zero. This situation occurs when CMP tests are 

performed (§ 2.1.3.2), but also for many static tests, in which the antennas offset 

cannot be neglected regarding the target depth. 

The CMP measurements contain more information, which is susceptible to allow 

the determination of a higher number of parameters, or reaching a higher 

precision in the parameters determination. When CMP tests are performed, we 

obtain the variations of the amplitude and phase of the measured wave as a 

function of the offset for each frequency. These variations are referred to as 

APVO curves (for Amplitude and Phase Versus Offset). If the measurements are 

corrected for all the other parameters (as described in Figure 50), the APVO 

curves reflect the variations of the reflection coefficient. 

Two methods were described in § 2.2.2 to estimate analytically the reflection 

coefficient amplitude and phase for a thin layer as a function of the incident 

angle:  the plane wave approximation (equation (102)) and the first terms exact 

evaluation equation (112). 

Those methods, based on a ray propagation of radar waves, only give 

approximations of the real behaviour, in which intervene other phenomena, such 

as evanescent waves, spherical reflection of the waves (with the lateral wave) 

(§ 2.1.7.3) or other nonlinear near-field effect.  

In the first section of this chapter, the propagation of the wave when 

encountering a thin layer will be analysed through forward FDTD modelling, and 

the corresponding APVO curves will be extracted and analysed. 

In the second section, we will compare the APVO curves obtained through 

numerical modelling to the curves calculated by analytical methods. The two 

methods presented in § 2.2.2 will be tested, but also derived methods obtained 

after introduction of specific phenomena which are not taken into account but 

are not negligible.  

In the third section, we will try to improve and combine the analytical methods in 

order to obtain a hybrid method able to predict the APVO curves in a maximum 

of cases. This development will finally be extended to fit 3D results.  

4.1.1 Observation of wave propagation in 2D FDTD 

simulations 

In order to select the best analytical method to characterize thin layers, we 

performed FDTD simulations in two dimensions. The aim was twofold: to observe 
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the wave propagation in order to understand the phenomena that are 

predominant in the physics of wave propagation and to extract APVO curves 

that will be used as a reference to evaluate the estimations obtained by the 

different analytical methods. 

To observe the physical behaviour of the wave when reflecting on a thin layer, 2D 

modelling snapshots of the wave propagation are taken. The simulation describes 

the reflection of a 2.3 GHz realistic pulse (§ 3.1.4.1) emitted by embedded 

antennas (Figure 50) into homogeneous concrete (        ) over a simple air 

interface and over air layers of 1, 5 and 10 cm. The snapshots are taken 4 ns after 

the beginning of the simulation (Figure 86).  

 

Figure 86 : 2D snapshots of the 2.3 GHz wave propagation from concrete (  
     ) to an air 

layer of variable thicknesses, and comparison with a simple interface. D, S, L, Ri and E are 

the direct wave, the source, the lateral wave, the secondary reflections and the 

evanescent wave, respectively. 

On the simple interface, we can observe the direct wave (D), spreading 

cylindrically away from the source (S). We can also observe the simple reflection 

(R0) generated by the interface. The lateral wave (L), moving upward, is 

generated at the interface by the wave front in the second medium. When the 

layer is sufficiently thick (10 cm), it travels along with the secondary reflections (R1, 
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R2,…) into the layer. The evanescent wave (E) appears in the snapshot as a fast 

but progressive decrease of the amplitude in the second medium just below the 

total reflection point. 

When the wave encounters a layer instead of a single interface, the behaviour 

depends on the layer thickness. When the layer is very thin (1 cm here), no wave 

front can develop into the layer. This means that no multiple reflection (the waves 

I1 and I2 in Figure 43) propagates into the layer, and that even the lateral wave is 

not observed. On the other hand, the bottom of the layer is situated at a depth 

at which the evanescent wave amplitude has not decreased to zero yet. This 

wave is then reflected by the interface and propagates to the receivers.  

When the layer has an intermediate thickness (5 cm), the evanescent wave is 

negligible when reaching the bottom of the layer and will not influence the 

results. But the wave front in the layer, corresponding to the lateral wave and the 

multiple reflections, is also hardly visible. 

Finally, for larger layers (10 cm), the wave front can develop into the layer. The 

multiples appear simultaneously with the lateral wave and can be clearly 

observed. 

The radargrams obtained for the same simulations can be observed in Figure 87.  
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Figure 87 : Numerical CMP radargrams obtained for a single concrete-air interface and for 

1, 5 and 10 cm air layers embedded into concrete. 

When the receiver is placed sufficiently far from the emitter, the waves arrive in 

two different time windows, due to the fact that the wave is travelling faster into 

the layer than into the matrix. In Figure 87, those time windows are represented for 

a distance emitter-receiver of 125 cm, which was selected in order to have a 

good separation between the different wavelets. 

The first time window (A) corresponds to the arrival of the lateral wave, which is 

closely followed by the multiple reflections; those waves are travelling almost 

horizontally into the layer. We observe that their amplitudes are very low for the 

layers of 1 cm and 5 cm. The lateral wave and the multiple reflections cannot be 

distinguished in the radargram, except for very thick layers (   ). 

In the second time window (B) of Figure 87, we can observe the simply reflected 

wave. This wave is closely followed by the evanescent wave, even if it is not 

evidently visible from the radargram because the evanescent wave amplitude is 

much lower than the reflected amplitude.  

To observe more clearly the measured waves in the time windows of Figure 87, 

the measured waves in those intervals are plotted for different thicknesses in 

Figure 88. For a better visibility of the evanescent wave (whose amplitude is very 
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small compared to the reflected amplitude), the reflection time window (B) is 

represented after subtraction of the simple reflection on an interface. 

 

Figure 88 : Traces obtained at 125 cm over an air thin layer of variable thickness 

embedded into concrete. (a) Lateral wave and multiples; (b) Evanescent wave, obtained 

by subtracting the reflection on a simple interface from the whole radargram. 

When the layer is thin (1 cm, 3 cm and even 5 cm), no reflection is visible at the 

time at which we should expect lateral wave (Figure 88 (a)). This is coherent with 

the observation of the snapshots of Figure 86: no wave front can develop into the 

thinnest air layers. Even for larger layers, we remark that the amplitude of the 

waves into this time window increases with the layer thickness. 

On the opposite, the evanescent wave (Figure 88 (b)) does not appear for layers 

with a thickness larger than 3 cm. This is due to the fast decay of the evanescent 

wave amplitude in the second medium (§ 2.1.7.1). 

APVO curves were extracted from 2D FDTD simulations realised with the same 

parameters as for the snapshots of Figure 86. Air layers of thicknesses ranging from 

1 to 11 cm were embedded into concrete (        ) in ten different models. This 

thickness range covers the thin layers domain, but also thicknesses approaching 

the wavelength (~13 cm in air at 2.3 GHz). As explained in § 3.1.2.1, the reflection 

coefficient was isolated by suppressing the direct wave and comparing the 

reflected amplitude to the amplitude measured on a perfect reflector. The AVO 

and PVO curves are displayed in Figure 89. 
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Figure 89 : Amplitude versus offset (a) and phase versus offset (b) curves obtained from  

2D FDTD simulations of air thin layers of different thicknesses into concrete. 

The curves behaviour depends on the layer thickness: when less than 5 cm, the 

curve is smooth and the reflection amplitude less than 1; over 5 cm, the 

amplitude oscillates around 1 for the larger offsets. When the thickness is equal to 

5 cm, the curve shape seems intermediate, with only one peak visible before 

attenuation to 1. This thickness dependence seems to be similar in the amplitude 

curves and in the phase curves. 

4.1.2 Comparison of the analytical methods for APVO 

curves estimation  

In § 2.2.2, the complete expression for the APVO curves of a thin layer reflection 

coefficient was developed. In the case of a normal incidence, or when the wave 

is plane, the addition of all the multiples can be transformed into a simple 

expression using the geometric series formula (neglecting only the geometric 

attenuation within the thin layer). When the incidence angle is not zero, the 

formulation of the APVO requires further approximation. Two options were then 

suggested: 

- to truncate the series to its   first terms; 

- to neglect the angle variation between the different multiples. With this  

plane wave approximation, the sum can be approximated by a simple 

geometric series. 

In § 2.2.2.3, the two methods were compared, and it appeared that the first one 

completely neglects the evanescent wave while the second one neglects the 

reflection multiples. In addition, neither takes into account the spherical reflection 

and the presence of the lateral wave. Introducing those phenomena into the 

equations could be a mean to improve the methods.   

In this chapter, the objective is to determine which one of the two above 

methods should be preferred to predict the reflection coefficient of a thin layer, 

and to see if an equation modification could improve those results. To achieve 
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this goal, the APVO curves of the reflection coefficients determined by the 

different methods will be compared with the curves determined by numerical 

simulations (Figure 89).  

The analytical APVO curves are calculated with the same configurations as in the 

numerical simulations models: thin layers of various thicknesses (1-11 cm) 

embedded into concrete (        ) (§ 4.1.1). Five different methods were tested:  

1. Plane wave approximation 

The formula (102) is applied. 

2. Exact first terms estimation 

The formula (112) is applied, calculating the first 30 terms. 

3. Plane wave approximation with spherical waves formula 

The spherical reflection of the waves (§ 2.1.7.3) only has a large influence 

on the first reflection   . Indeed, the reflections inside the layer occur from 

a high permittivity medium to a low permittivity medium, and no other 

critical wave is generated. For this reason, we calculated all the terms of 

the reflection using the plane wave approximation (102), and then 

replaced the first reflection by the reflection calculated with the spherical 

waves formula (72). 

4. Exact first terms estimation and spherical waves 

Just as the second method, the global reflection can be calculated by 

the formula (112), calculating the 30 first terms. Then, from this global 

reflection coefficient, the Fresnel reflection coefficient from the first 

reflection (54) is subtracted and replaced by the addition of the spherical 

reflection coefficient (72). 

5. Exact first terms estimation with spherical waves and evanescent waves 

This method combines the replacement of the first reflection by the 

spherical formula (72) and the addition of the evanescent waves for 

angles larger than the critical angle. 

 

We must note that none of those methods is susceptible to represent exactly the 

complex phenomenon of the reflection on a high frequency pulse in the near 

field. The objective is to estimate the reflected amplitude, not to predict it 

exactly, which can only be performed with a high precision full waveform 

modelling approach. 

The AVO and PVO curves obtained by those methods for the frequency of 2.3 

GHz are respectively represented in Figure 90 and Figure 91, in which they are 

compared to the curves of Figure 89 obtained by 2D numerical modelling, for the 

same frequency.  
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Figure 90 : Amplitude versus offset curves obtained for air thin layers of different thicknesses 

into concrete. The first diagram is obtained from 2D numerical modelling and the 5 others 

are analytical approximations obtained with the methods described above. 
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Figure 91 : Phase versus offset curves obtained for air thin layers of different thicknesses into 

concrete. The first diagram is obtained from numerical modelling and the 5 others are 

analytical approximations obtained with the methods described above. 

From the APVO curves of Figure 90 and Figure 91, we observe that the thinnest 

layers (1 cm and 3 cm) are very well described by the plane waves 

approximation, while the thickest layers (7 cm to 11 cm) are better described by 

the first terms with spherical method. This method predicts well the presence and 

location of the peaks, but, however, it fails to describe the progressive decrease 

of the oscillations amplitude (observable on the original radargram).  
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The methods 3 and 5, introducing evanescent waves into first terms or spherical 

waves into plane waves approximation, do not improve the basic methods and 

will thus be abandoned. 

The good performance of the plane waves approximation for the description of 

the reflection on thin layers under 5 cm can be explained by the physical 

behaviour observed in the snapshots in section 4.1.1: the real multiples of the 

reflection and the lateral wave were completely invisible into the layer, so the 

model can totally neglect them. On the opposite, for layers thicker than 5 cm, the 

evanescent wave amplitude is almost zero and can be neglected (the reflected 

wave is the same as on a simple interface), while the lateral wave and multiples 

reflections are present and cause oscillations. For this reason, they are better 

predicted by the first terms spherical method. 

4.1.3 Derivation of a hybrid model for the estimation of 

APVO curves 

In the previous section, we observed that the best analytical method to 

approach numerical APVO curves depended on the thickness-to-wavelength 

ratio. For low thicknesses, the plane wave approximations gives good results, 

while for large thicknesses, the best method is the first term approximation, with 

introduction of the spherical reflection. In this last case, the method could be 

improved by the introduction of an attenuation parameter.  

To approach the APVO curves in any situations, the forward model should then 

be hybrid, using one formulation or the other, depending on the thickness-to-

wavelength ratio. As a transitional behaviour is observed for intermediate 

thicknesses, an interpolation method will be selected. 

This section will be divided into three parts. Firstly, we will try to determine an 

analytical formulation for the attenuation of the oscillations. This formulation will 

be developed for the specific case of air layers. Secondly, the global hybrid 

model will be implemented and compared to the numerical results. Finally, the 

same procedure will be applied in order to create a hybrid model to approach 

the APVO curves obtained from 3D tests.  

4.1.3.1 Estimation of the thickness-induced attenuation of the 

oscillations in the APVO curves 

The presence of oscillations in the APVO curves obtained from numerical 

modelling (Figure 90) is well predicted by the first terms method but, for large 

offsets, the results do not converge. The equations do not lead to a significant 

attenuation of the oscillations with the distance while their amplitude rapidly 

decreases in the curves derived from the numerical tests. Moreover, the 

attenuation seems to depend on the layer thickness: in the thinner layers, the 

lateral wave and the multiples are attenuated very rapidly. 
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To assess those results, we performed a frequency analysis for the radargrams 

obtained on different thicknesses. For large offsets, the contributions of the 

lateral/multiples and of the reflected/evanescent waves can be separated. In 

Figure 92, the radargram is represented for the CMP measured over a simple 

concrete-air interface. The radargram is cut after total separation of the reflected 

and the lateral wave. The zone in which the two waves interact is then entirely 

comprised into the reflected wave radargram. 

 

 

Figure 92 : Radargrams for the detection of a simple interface into concrete. (a) Global 

radargram; (b) Selection of the reflected wave; (c) Selection of the lateral wave.  

By means of this selection, the lateral wave can only be isolated when the 

antennas are distant of about 60 cm, and we can consider that the 

corresponding wavelet is completely included in the lateral wave radargram (c) 

from a distance of about 80 cm. For each offset, a Fourier frequency analysis was 

carried on. The amplitude determined by this analysis for the three radargrams of 

Figure 92 are displayed in Figure 93. 

 

 

Figure 93 : Frequency-dependant amplitude of the radargrams measured over a simple air 

interface into concrete (Figure 92). (a) Global radargram; (b) Selection of the reflected 

wave; (c) Selection of the lateral wave. 

In the global radargram (a), the amplitude peak is situated at 2.3 GHz for every 

antenna offset, but presents oscillations in the frequency domain. When the 

lateral wave is extracted from the radargram (Figure 93 (b), after 60 cm), the 

oscillations in the frequency domain disappear, confirming that they are due to 

the interaction of the reflected wave and the lateral wave. 
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When only the lateral wave is studied (c), the amplitude is much lower. The 

amplitude peak is not so clear, presenting also several peaks at lower amplitudes. 

We can use this method for checking the theoretical formulas with regard to the 

amplitude decrease due to geometric attenuation. In 2D, the reflected 

amplitude is supposed to decrease with the square root of the distance covered 

by the wave (125). If we multiply by this value each trace of the reflected wave 

radargram and perform a Fourier analysis, we should then observe a constant 

amplitude with the distance. This test is performed in Figure 94. 

 

 

Figure 94 : (a) Radargram and (b) frequency amplitude of the reflection measured over a 

simple concrete-air interface, after correction of the geometric attenuation. 

In Figure 94, we observe that we have a stabilization of the reflected amplitude as 

soon as the reflected amplitude is completely separated from the lateral wave 

(around 60 cm). Then, the amplitude is constant until about 125 cm, when the last 

oscillations of the wavelet begin to disappear out of the time window of the 

radargram. 

The same analysis can be performed with the lateral wave. According to 

equation (167), the lateral wave amplitude decreases in two dimensions with the 

1.5th power of the distance in the layer       . The amplitude can thus be 

corrected by multiplying the measured amplitude by this value: 

                               
         (139) 

The radargrams after this amplitude correction (a) and the amplitude after Fourier 

analysis (b) are visible in Figure 95. 
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Figure 95 : (a) Radargram and (b) frequency amplitude of the lateral wave measured over 

a simple concrete-air interface, after correction of the geometric attenuation. 

If the frequency amplitude after geometric correction (b) seems more stable with 

the distance than without correction (Figure 93 (c)), oscillations and low 

frequency peaks can still be observed. In the radargram (Figure 95 (a)), some 

oscillations after the wave front of the lateral wave can be observed as well. 

Those oscillations are not directly part of the lateral wave, and can be cut from 

the radargram to isolate the lateral wave main wavelet. This analysis has been 

performed in Figure 96, only differing from Figure 95 by the removal of the triangle 

under the lateral wave. 

 

 

Figure 96 : (a) Radargram and (b) frequency amplitude of the lateral wave principal 

wavelet measured over a simple concrete-air interface, after correction of the  

geometric attenuation. 

After removal of the secondary oscillations, the frequency amplitude (b) 

becomes invariant with the distance, confirming the attenuation factor of (139). 

The oscillations observed in Figure 95 will be present in reality, but are not 

predicted by the equations. They will thus be a source of error and induce a 

difference with the simulation results. Fortunately, the geometric attenuation of 

those waves is strong, so the error should be limited. 
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If we compare the amplitudes after geometry attenuation correction of the 

reflected wave (Figure 94 (b)) and the lateral wave (Figure 96 (b)), after 

separation of the wavelets (at 1 m), we observe that the frequency of the peak is 

lower for the lateral wave. This is illustrated in Figure 97. This frequency shift of the 

wave amplitude when propagating laterally was predicted by the lateral wave 

equation (67), in which appears the frequency-dependant propagation constant 

  . 

 

Figure 97 : Geometry-corrected frequency-dependant amplitudes of the lateral and 

reflected waves, measured for antennas distant of 1 m. 

In order to quantify the attenuation of the lateral wave (and the multiple 

reflections) into thin layers, a similar analysis can be performed. For each thickness 

(1-11 cm), we performed a Fourier analysis on the complete radargram (Figure 98 

(a)), of the reflected wave radargram (Figure 98 (b)) and on the lateral wave 

radargram (Figure 98 (c)), which will also enclose the multiple reflections into the 

layer. The results are displayed in Figure 99. 

 

 

Figure 98 : Radargrams for the detection of a 11 cm thick layer of into concrete. (a) Global 

radargram; (b) Selection of the reflected wave; (c) Selection of the refracted wave. 
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Figure 99 : Frequency-dependant amplitudes for different layer thicknesses:  

(a) complete radargram, (b) reflected wave and (c) lateral wave and multiples.  

 Global radargram Reflected wave Lateral wave + multiples  
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We observe that the presence of the oscillations depends on the layer thickness 

but also on the frequency. In the reflection amplitude diagram for the 5 cm layer,  

oscillations are present at the frequency of 3 GHz, but not at 2 GHz. In order to 

visualise the presence of the oscillations for all the frequencies (and not only the 

frequencies presenting a large amplitude in the selected pulse), we can evaluate 

the reflection coefficient by using the amplitudes measured with the same 

configuration on a perfect reflector instead of the air layer. The corresponding 

radargram (a) and frequency amplitude (b) are displayed in Figure 100. 

 

 

Figure 100 : (a) Radargram and (b) frequency amplitude of wave reflected on a perfect 

reflector. 

To be able to compare the amplitude and the phase of the reflections to 

numerical equations without having a perfect knowledge of the matrix 

parameters and of the incident wavelet, it is very interesting to compare the 

reflected wavelet to a wavelet reflected on a perfect reflector. The reflection 

coefficient amplitude is obtained by dividing the frequency amplitudes of the 

global radargrams for all thicknesses (Figure 99 (a)) by the frequency amplitudes 

of the perfect reflector (Figure 100 (b)). Another advantage of this method is that 

all the frequencies present in the initial wavelet appear then with an amplitude 

independent from the initial wavelet. For each layer thickness, the offset and 

frequency dependant reflection coefficients are presented in Figure 101, along 

with the reflection coefficient measured on a simple interface.  
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Figure 101 : Reflection coefficients presented as functions of frequency and antennas 

offsets, for different thicknesses of air layers into concrete (  
     ). 

The reflection coefficient behaviour evolves with the frequency as a continuum. 

Even for a 3 cm layer, for the highest frequencies, oscillations due to the lateral 

wave and/or the multiples reflected into the layer can be observed. Those waves 

are not visible after separation of the lateral and reflected wave (Figure 99 (c)), 

because they are very rapidly attenuated. 
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The next step of the analysis is to find the law guiding the amplitude decrease of 

the reflection coefficient oscillations, which corresponds to the amplitude 

decrease of the wave front into the layer. As a first step, we can represent the 

reflection coefficient as a function of the dimensionless parameter thickness-to-

wavelength ratio (   ) (Figure 102). For the 3 cm and 1 cm layers, a wavelength 

equal to the thickness (when   ⁄   ) corresponds to frequencies of respectively 

10 and 30 GHz. Those frequencies are very scarcely represented in the spectrum 

of our incident wavelet (Figure 136), which can lead to numerical instabilities. 

 

Figure 102 : Reflection coefficients determined as functions of the thickness-to-wavelength 

ratio and of the antennas offsets for a simple interface and different thicknesses of air 

layers into concrete. 

In Figure 102, we have the confirmation that the layer attenuation is a function of 

the ratio    . Indeed, thanks to the use of this dimensionless parameter, a general 

trend appears for all the layer thicknesses: no oscillation is present when the ratio 

    is less than 0.3. For higher    , oscillations are present but decrease with the 

antennas offset. This decrease appears to be much faster for the thin layers. 

Consequently, the attenuation into the layer must be a function of the antennas 

offset, of the thickness   and of the     ratio. 
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To identify a global trend, we represented, in Figure 103 (a), the reflection 

coefficients for each layer thickness at the thickness-to-wavelength ratio of 0.7. In 

order to remove from the graph the numerical instabilities appearing for 1 cm 

and 3 cm, the reflection coefficients for those thicknesses were set equal to 1 for 

antennas offsets larger than 60 cm.  

In Figure 103 (b), the oscillations are isolated: the amplitude of the reflected 

wave, equal to 1 after the critical angle, was subtracted from all curves from (a), 

and the absolute value of the oscillations was considered, in order to take into 

account the negative interferences as well as the positive ones. They are traced 

as functions of the distance covered by the wave into the layer, corresponding to 

   in Figure 33 and simply obtained by subtracting the offset at critical incidence 

(7.9 cm) from the antenna offsets. The values of all peaks maxima were then 

reported in order to extract the amplitude envelope (Figure 103 (c)). In this 

analysis, we only considered the peaks measured for offsets of more than 10 cm.  

 

Figure 103 : Estimation of the amplitude of the lateral wave and the multiples traveling into 

the layer on the basis of the amplitude of their interferences with the perfect post-critical 

reflection on the first interface, for a thickness-to-wavelength ratio (t/w) of 0.7 and five 

different thicknesses. (a) Reflection coefficient amplitudes; (b) Absolute amplitude of the 

interferences; (c) Maximum amplitude of the interferences and (d) Maximum amplitude of 

the interference, with the horizontal distance normalized with the corresponding 

wavelength. 
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But the most interesting result is obtained when dividing the abscissas axis by the 

wavelength into the layer (Figure 103 (d)). The wavelength is different for every 

curve, and can be simply obtained by dividing the layer thickness by the studied 

thickness-to-wavelength ratio (here equal to 0.7). With such normalization, all the 

curve, even the 1 cm one, are well aligned. Their decrease has an exponential 

behaviour. If        is the horizontal distance into the layer (the difference 

between the current antennas offset and the offset for a critical incidence), the 

amplitude of the oscillations for a thickness-to-wavelength ratio of 0.7 (  

 
    

) can 

be estimated by: 

 
    

 
    

            
      

  
(140) 

If the same analysis is performed for different thickness-to-wavelength ratios, the 

exponential behaviour appears as well, but with different coefficients. The 

coefficients, estimated with a precision of about 10%, are listed in Table 8. The 

evolution of the coefficients with the ratio     is also represented in Figure 104. 

Table 8 : Coefficients of the normalized amplitude decrease  

of the waves traveling into the thin layer. 

  
 

       
      

  

    0.5 0.6 0.7 0.8 0.9 1 

  1.1 0.87 0.62 0.43 0.31 0.24 

  2.5 1.15 0.62 0.37 0.22 0.15 

 

 

 

Figure 104 : Representation of the best approximations of the coefficients a (a) and b (b) 

detailed in Table 8 for the estimation of the amplitude decrease of the waves traveling into 

the thin layer as functions of the thickness-to-wavelength ratio. The best fit curves are also 

represented. 
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We observe that, despite the low precision in the curves parameters estimation, 

the exponential parameters (Figure 104 (b)) are very well approximated by a 

power function. The approximation of the amplitude coefficient (a) has a lowest 

correlation with the data. In particular, the point at   ⁄      is not well aligned 

with the other ones. Nevertheless, using those relationships, we can deduce an 

equation allowing to estimate the global attenuation of the waves travelling into 

the layer (lateral and multiples) due to the layer thickness: 

   (
 

 
)              

 
          (

 
 
)
  

  
      

 
 
 (141) 

This equation could be introduced into the first terms spherical model, in order to 

improve the results from Figure 90, by introducing the layer attenuation into the 

calculation for incident angles larger than the critical incidence.  

But the reflection coefficients calculated by the first terms method already take 

into account the geometric attenuation of every multiple into the layer. For this 

reason, the amplitude factor               ⁄  may have to be adapted in order not 

to take twice the same attenuation into account. The reflection coefficient 

amplitude and phase obtained with the first terms spherical method, with 

introduction of the attenuation (141) is represented in Figure 105, in which they 

are compared to the numerical modelling results. 
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Figure 105 : Amplitude and phase of the reflection obtained with the model using the first 

terms method, with spherical equation and introduction of the attenuation (141) induced 

by the layer thickness. The curves (b) are compared to the APVO curves obtained by 

numerical simulations (a).  

As expected, the oscillations amplitude is too attenuated. A discontinuity of the 

amplitudes at the critical angle can also be observed, due to the fact that the 

attenuation term, as proposed in (141), is not continuous at this point. It is equal to 

one for lower incidence (the distance into the layer is equal to zero), but is only 

equal to 1 for higher incidence when    ⁄      . 

This is not incompatible with the observations made from numerical tests. Indeed, 

in the graphs representing the oscillations amplitudes as functions of the distance 

into the layer (Figure 103 (b)), the exponential amplitude decrease could not be 

observed starting from the critical angle. From the observation of similar graphs 

for different     ratios, the distance from which this attenuation could be 

observed seems to be comparable to the layer thickness.  

The attenuation is then equal to 1 at the critical distance and can be described 

by the attenuation function (141) when the distance between the antennas is 

equal to the sum of the critical distance and the layer thickness. Between those 

points, we decided to use a sinusoidal (between 0 and pi/2) interpolation, in 

order to have a smooth variation at the limits (null derivative). 
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The other issue of the attenuation function (141), identified in Figure 105, is the fact 

that the geometric attenuation is taken into account while it was already 

considered in the spherical equation. To solve this problem, we decided to 

improve the amplitude coefficients of the attenuation function. Their global 

formulation         ⁄  was kept and we determined the optimum values of   and   

to minimize the error between the analytical curves and the curves obtained from 

numerical simulations. The curves for thicknesses of 1 cm and 3 cm were excluded 

from the optimization, as they are mostly influenced by the evanescent wave 

which does not appear in the calculations. The error estimation was performed for 

values of   ranging from 1 to 25 and values of   ranging from 0 to 5. Results are 

represented in Figure 106. 

 

Figure 106 : Optimization function for the coefficient c and d of the amplitude function of 

the first terms with spherical formula. The theoretical reflection coefficient curves obtained 

for 5, 7, 9 and 11 cm with this formula are compared to the reflection coefficients measured 

in 2D numerical simulations. 

It appeared that the minimum was obtained for       and      . There is a 

high correlation between the optimum values of the coefficients, with a low 

difference in the error of the different optimum values. The attenuation function 

to apply to the lateral wave and the multiples is then given by (142): 
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The corresponding curves are compared to the 2D numerical modelling results in 

Figure 107. 
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Figure 107 : Amplitude and phase of the reflection obtained with the model using the first 

terms method, with spherical equation and introduction of attenuation induced by layer 

thickness. The attenuation function is interpolated between 1 at the critical distance and 

equation (142) when the distance into the layer is equal to the thickness. The curves (b) are 

compared to the APVO curves obtained by numerical simulations (a).  

The correspondence between APVO curves obtained by the improved method 

(Figure 107 (b)) and the curves derived from numerical tests (Figure 107 (a)) is 

excellent for the thicker layers. It will be used to estimate the APVO curves for 

those layers into the hybrid model that will be developed in the next chapter. 

4.1.3.2 Generation and validation of the hybrid model 

As the different models are efficient in different situations, we can build a hybrid 

model that would give good results for every thickness. In this model: 

- for thin layers (under 0.3 λ), or for layers presenting a higher permittivity 

than the matrix, the plane waves approximation is used; 

- for thick layers (above 0.5 λ), the first terms methods with spherical 

reflection is used, with the introduction of the thickness-dependent 

attenuation function (142); 
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- for the intermediate layers (0.3 λ - 0.5 λ), the reflection coefficient is 

calculated by a linear interpolation between the two previous methods. 

The three thickness-to-wavelength zones for the reflection coefficient are 

represented in Figure 108 for the case of a 9 cm layer.  

 

Figure 108 : Representation of the three zones of the hybrid model reflection coefficient.  

In Figure 109, the APVO curves obtained by this hybrid method are compared to 

the curves derived from numerical tests.  
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Figure 109 : Amplitude and phase obtained with the hybrid model compared to the APVO 

curves obtained by numerical simulations. (a) Curves derived from numerical simulations; 

(b) Analytical hybrid model. 

All the curves are relatively well represented, even if the representation of the 

layers of intermediate thicknesses is less accurate.  

As all the phenomena occurring in the reflection of a near-field spherical wave 

into a thin layer cannot be taken into account by a simple ray method, this 

method is an approximation; it can however be used to estimate the reflection 

coefficient of a wave for any thickness. If the user is sure to investigate a layer 

thinner than     , the plane wave model remains an effective alternative, as it will 

display the same curves, but with a slightly shorter calculation time. 

The codes of the different Matlab functions involved in the calculation of the 

hybrid model are detailed in Appendix 7. These equations have been developed 

after observation of the reflections on air layers. For other materials, the numerical 

values may need to be adapted.  

4.1.3.3 Hybrid model in three dimensions 

The model developed in the previous paragraph can be directly applied to 3D 

data. The only difference in the analytical calculation is then the 3D evaluation of 
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the spherical reflection coefficient (72) instead of the 2D. The results are displayed 

in Figure 110. 

 

 

Figure 110 : Comparison of the APVO curves (a) measured from 3D numerical modelling 

and (b) estimated with the hybrid model determined from 2D measurements in § 4.1.3.2. 

The correspondence is acceptable, but the interferences amplitude is 

overestimated by the model. As the 2D attenuation equation (142) was derived 

from numerical 2D simulations, we can try to derive similarly a 3D attenuation 

equation.  

The disadvantage of 3D simulations is that the model size has to be reduced and 

the spatial step increased in order to maintain the required memory under the 

maximum allocation. This also leads to a lower number of frequencies evaluated 

by the Fourier analysis and thus to a lower resolution. The incident wavelet was 

changed to a Ricker wavelet, whose shorter duration allows a faster separation. 

Finally, due to the increase of spatial step, layers with thicknesses of 11 cm could 

not be observed in our 3D model, because they interfered with the PML layers 

(see § 2.3.4). Therefore, they will be replaced in the analysis by 10 cm layers. 

To have an idea of the difference of the refracted wave behaviour in 3D, 

compared to the 2D, we can trace the equivalent of Figure 88 (a) for the 3D 

model and its equivalent in 2D.  
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Figure 111 : Critical wave and multiples estimated from 2D and 3D modelling for a 50 cm 

antennas offset on air layers of different thicknesses, and comparison with a simple 

interface reflection.  

As in 2D, the refracted wave amplitude is almost zero for thicknesses lower than 

7 cm. Similarly to the Figure 101 in 2D, the frequency reflection coefficient can be 

drawn for each thickness and compared to the reflection coefficient for a simple 

interface.  
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Figure 112 : Reflection coefficient determined from 3D modelling in function of the 

frequency and of the antennas offsets for different thicknesses of air layers into concrete. 

Due to the smaller model dimensions and larger step, the precision in the graphs is 

lower than in two dimensions. In particular, instabilities are observed for low 

frequencies (until   ⁄      for the thickness of 10 cm).  
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But we can also observe another phenomenon that was not visible in 2D: the 

lateral wave seems to influence the results for every     at frequencies around 

1 GHz. To assess this difference between 2D and 3D tests, the reflection 

coefficients for the 10 cm layer are traced in Figure 113, both in 3D and 2D (with 

the same parameters). 

 

 

Figure 113 : Comparison between the reflection coefficients for the simple interface and for 

the 10 cm layer, both in 2D and 3D. The white circle designates the low-frequency peak 

detected in 3D. 

While all simulations parameters are identical in both cases, the lateral wave is 

present in 3D while it was not in 2D. The maximum of the peak is situated at low 

frequencies (~1 GHz) and may influence the APVO curves that would be 

estimated for those frequencies in 3D. 

The graphs of Figure 113 can be retraced using the thickness-to-wavelength ratio 

instead of the frequency as the y axis. Results are represented in Figure 114.  
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Figure 114 :  Reflection coefficient measured from 3D modelling for different thicknesses of 

air layers into concrete, as a function of the thickness-to-wavelength ratio. 

Due to the smaller model dimensions, the reflection coefficient for 1 cm thickness 

cannot be evaluated for     larger than 0.3; moreover, some numerical 

instabilities appear for the thickness of 3 cm when   ⁄     .  The same analysis as 

in 2D can be performed to estimate the attenuation curve for a given thickness-

to-wavelength ratio (as in Figure 103 (d)). The example for   ⁄      is given in 

Figure 115. 

 

T
h

ic
k
n

e
s
s
/W

a
v
e

le
n

g
th

distance between antennas (cm)

Reflection coefficient amplitude (10 cm)

 

 

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

T
h

ic
k
n

e
s
s
/W

a
v
e

le
n

g
th

distance between antennas (cm)

Reflection coefficient amplitude (9 cm)

 

 

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

T
h

ic
k
n

e
s
s
/W

a
v
e

le
n

g
th

distance between antennas (cm)

Reflection coefficient amplitude (9 cm)

 

 

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

T
h

ic
k
n

e
s
s
/W

a
v
e

le
n

g
th

distance between antennas (cm)

Reflection coefficient amplitude (9 cm)

 

 

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

T
h

ic
k
n

e
s
s
/W

a
v
e

le
n

g
th

distance between antennas (cm)

Reflection coefficient amplitude (7 cm)

 

 

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

T
h

ic
k
n

e
s
s
/W

a
v
e

le
n

g
th

distance between antennas (cm)

Reflection coefficient amplitude (5 cm)

 

 

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

T
h

ic
k
n

e
s
s
/W

a
v
e

le
n

g
th

distance between antennas (cm)

Reflection coefficient amplitude (9 cm)

 

 

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

T
h

ic
k
n

e
s
s
/W

a
v
e

le
n

g
th

distance between antennas (cm)

Reflection coefficient amplitude (9 cm)

 

 

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

T
h

ic
k
n

e
s
s
/W

a
v
e

le
n

g
th

distance between antennas (cm)

Reflection coefficient amplitude (3 cm)

 

 

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

T
h

ic
k
n

e
s
s
/W

a
v
e

le
n

g
th

distance between antennas (cm)

Reflection coefficient amplitude (1 cm)

 

 

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

T
h

ic
k
n

e
s
s
/W

a
v
e

le
n

g
th

distance between antennas (cm)

Reflection coefficient amplitude (9 cm)

 

 

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

T
h

ic
k
n

e
s
s
/W

a
v
e

le
n

g
th

distance between antennas (cm)

Reflection coefficient amplitude (9 cm)

 

 

10 20 30 40 50

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

10 cm 9 cm 

7 cm 5 cm 

3 cm 1 cm. 



   

153 

 

 

 

Figure 115 : Maximum amplitude of the interferences, as a function of the horizontal 

distance normalized with the corresponding wavelength. The 2D attenuation equation does 

not describe accurately the attenuation measured in 3D. A similar equation in 3D is then 

introduced. 

The 2D attenuation equation (142) developed in the previous chapter fits 

perfectly the 2D amplitude measurements of Figure 115, even if the modelling has 

been performed with a greater spatial step to match the 3D model (1 mm 

instead of 0.625 mm). This confirms that the attenuation is not produced by 

numerical artefacts.  

On the other hand, the amplitudes of the oscillations observed in 3D are lower 

than estimated by the 2D equation. The superposition of the different curves after 

normalization appears less clearly than in 2D; the results will consequently suffer 

from more imprecision, but the parameters describing the 3D attenuation curves 

can be estimated for different    . They are listed in Table 9 and displayed in 

Figure 116. The results obtained by modelling a 1 cm curve had to be removed 

from the calculation because of the noise predominance for that thickness (see 

Figure 114). The results obtained for         had to be removed as well, because 

of the lack of points for the attenuation, and because of secondary oscillations, 

probably due to the presence of the lateral wave that could be observed for the 

larger layer thicknesses. 

Table 9 : Coefficient of the normalized amplitude decrease  

of the waves traveling into the thin layer in 3D 
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  0.6 0.5 0.31 0.25 0.2 

  1.1 0.67 0.44 0.27 0.22 
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Figure 116 : Representation of the best approximations of the coefficients a (a) and b (b) 

detailed in Table 8 for the estimation of the amplitude decrease of the waves traveling into 

the thin layer as a function of the thickness-to-wavelength in 3D. The best fit curves are also 

represented. 

The amplitude of the interferences observed from numerical modelling in three 

dimensions can then be approached by the formula:  
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 (143) 

As in two dimensions, the amplitude coefficient            
 

   will be inaccurate for 

describing the attenuation of the theoretical equation, because those equations 

already take into account some sources of attenuation. As in two dimensions, the 

parameters will have to be optimized. The attenuation equation will thus have the 

form:  
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The optimization function of the distance independent coefficients   and   is 

displayed in Figure 117.  
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Figure 117 : Optimization function for the attenuation parameters in 3D. (a) First estimation; 

(b) refined analysis, with calculation of the optimum only in the minimum neighbourhood. 

In a first step (Figure 117 (a)), the space of parameters was poorly sampled in 

order to determine an optimum zone. As in the 2D case, we observed a high 

correlation between the two parameters: all the optima are situated along the 

curve          . Using this property, we refined the parameters estimation into 

that domain (Figure 117 (b)). This method allowed to drastically reduce the 

computational time. The overall minimum was obtained for        and       . 

The overall attenuation function is then equal to:  
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)              
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 (145) 

As in the 2D case, this attenuation function was limited to 1 and only applied to 

the multiples and the critical wave for distances in the layer larger than the layer 

thickness. For distances into the layer less than the layer thickness, the same 

sinusoidal approximation as in two dimensions was applied.  

As in two dimensions, the plane waves spherical model, improved with the 

attenuation function (145), was introduced into a hybrid model, in combination 

with the plane waves method. The same limits and interpolations methods as in 

2D were kept (Figure 108). The comparison between numerical modelling results 

and results obtained with the 3D hybrid model are presented in Figure 118. 
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Figure 118 : Comparison of the APVO curves measured from 3D numerical modelling and 

estimated with the hybrid model determined from 3D measurements. 

The correspondence is slightly less good than in two dimensions. One of the 

reasons of this difference is the presence of the lateral wave, which does not 

disappear for thin layers as in 2D; on the opposite, it seems to keep a significant 

amplitude for the low frequencies (see Figure 113). This is visible on the curves of 

Figure 118. The first peaks of 9 cm and 10 cm are a bit underestimated by the 

model, the first peak for the 7 cm curve appears later in the modelling. It is more 

visible for the 5 cm curve, whose peak of maximum amplitude appears much 

later than in the prediction (and also than in the 2D model). The 3 cm curve 

displays a small peak as well, followed by low amplitude oscillations. Even the 1 

cm curve presents a slight upward inflection for the angle of 40° due to the lateral 

wave.  

As an alternative to this 3D hybrid model, we tested a substitute model in which 

the attenuation function is not applied to the lateral wave but only to the multiple 

reflections. This model, described in Appendix 6, did not reveal to improve the 

results, which proves that the lateral wave is submitted to attenuation as well. A 

mean of improving the results could then be the development of a 3D hybrid 

model with a specific attenuation term for the lateral wave. This attenuated 

lateral wave should be introduced for layers with a low thickness-to wavength 

ratio as well.  
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4.2 Comparison of the analytical APVO curves to 

experimental measurements 

The analytical APVO curves developed in § 4.1 allow estimating the reflection 

coefficient of a thin layer embedded into a matrix. But the fact that the antennas 

are not embedded into the first medium but placed at the concrete surface will 

induce the presence of additional phenomena:  

- multiple reflections between the surface and the thin layers will appear; 

- lateral waves will travel along the surface, after and before reflecting on 

the thin layer with a critical incidence; 

- the radiation pattern of the wave in the semi-infinite medium is not circular 

anymore and will influence the results (§ 3.2.5.1). 

In this chapter, we study -numerically and experimentally- the influence of these 

phenomena on the APVO radargrams. Our goal is to determine to which extent 

they can affect the precision in the parameters determination and which method 

could be developed in the future to limit or take into account their influence. 

4.2.1 Influence of the multiple reflections 

The presence of the reflection multiples (the waves reflecting alternately on the 

interface or the thin layer and on the surface, see wave   in Figure 24) is the most 

visible effect of the surface testing on the radargram. To illustrate its influence, the 

numerical radargrams and the reflection coefficient frequency amplitude 

(obtained with a method similar to that of § 4.1.3.1) are compared in Figure 119, 

for surface and embedded testing. The medium properties are selected for 

corresponding to the experimental setup that will be tested later:    
     , 

          ,          and        . 
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Figure 119 : Comparison of the FDTD radargrams and the corresponding frequency 

amplitude of the reflection coefficient, for surface and embedded numerical testing of a 

1.2 cm air layer embedded into concrete. 

Due to the presence of the multiple reflections between the surface and the 

layer, the reflection coefficient frequency changes drastically. To be able to 

exploit it when the measurement is performed from the surface, it will be 

necessary to cut the radargram before the occurrence of the first multiples of the 

reflection and of the lateral wave. In Figure 120, the shortened radargram and 

the corresponding reflection coefficient amplitudes are displayed for the same 

configuration as in Figure 119, in the case of surface testing.  

 

 

Figure 120 : (a) FDTD Radargram and (b) frequency amplitude of the reflection coefficient 

for a 1.2 cm air layer embedded into concrete measured by surface testing, after isolation 

of the first reflection. 

The time filtering of radargram (Figure 120 (a)) allows the reflection coefficient for 

the small offsets to get closer to the reflection coefficient for an embedded layer 
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(Figure 119, bottom right). The correspondence is however not perfect: the time 

filtering of the radargram also suppresses the end of the first reflection wavelet, 

which slightly disturbs the frequency amplitude. In addition, some important 

oscillations, due to the interaction with the different surface-lateral waves, are 

visible in the frequency amplitude. The influence of these waves will be detailed 

in the next paragraph. 

4.2.2 Influence of the surface-lateral waves 

In addition to the presence of the multiple reflections, another important 

difference between the radargrams obtained through surface and embedded 

testing on the 1.2 cm layer  is the presence of a reflection appearing in the time 

window of the lateral wave for surface testing (A interval in Figure 119). For 

embedded testing, no reflection is visible in this time window because the layer is 

so thin that the lateral wave (  in Figure 121) is totally attenuated (see § 4.1.1). But 

for surface testing (Figure 121), additional surface-lateral waves travelling along 

the surface before or after reflecting on the layer with a critical incidence are 

present as well (waves   and  ).  

 

Figure 121 : Representation of the different waves travelling between the antennas for a 

post-critical incidence, on a low permittivity thin layer and on a perfect reflector. 

For assessing the presence of the wave   in Figure 121, travelling along the 

surface before reflecting on the layer, we performed a simulation without any 

reflector. In this simulation, the receiver antenna is buried into the concrete at 

different lateral positions (Figure 122 (a)), but at a constant depth ( ) equal to 30 

cm. The resulting radargram is displayed in Figure 122 (b). 
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Figure 122 : FDTD test performed to assess the presence of a surface-lateral wave:  

(a) test configuration and (b) resulting radargram. 

A wave travelling at the speed of light is present in the radargram of Figure 122. 

The path of this wave is without any doubt the path   in Figure 121. The amplitude 

is not important, but sufficient to influence the CMP radargrams, especially when 

the reflection coefficient on the buried interface or layer is important.  

Consequently, the amplitude observed in the lateral wave time window (interval 

A in Figure 119) corresponds to the interaction of the waves  ,   and   in Figure 

121. In the case of a perfect reflector or of an interface with a high permittivity 

material, only the waves   and   are present (Figure 121 (b)), because no lateral 

wave can travel in the second medium.  

The “reflection coefficient” of these lateral and surface-lateral waves is obtained 

by comparing the amplitudes on a thin layer and on a metallic reflector (see 

§ 3.1.2). This calculation has already been performed in Figure 120 (b) for the 

large offsets. Indeed, the time filtering of the radargram leads to a quick isolation 

of the lateral wave. We observe that the amplitude of the reflection coefficient is 

frequency dependant (with the presence of sharp peaks), but is not much 

influenced by the offset. This means that the attenuation of the surface-lateral 

wave is similar in the cases of the thin layer and of the metallic reflector. 

In Figure 123, the amplitudes in the lateral wave time window (A in Figure 119) are 

drawn for the 1.2 cm air layer, but also for a perfect reflector and a simple 

concrete-air interface. The amplitudes obtained in a similar configuration with 

embedded antennas are drawn as well. 

 

T 

R 

   

  

  

  

  

   

 

T 

R 

   

  

  

  

  

 
  

Distance between antennas (cm) 

T
im

e
 (

n
s
) 

20 40 60 80 100 120 140 

0 

2 

4 

6 

8 

10 

12 

14 

 (a) (b) 



   

161 

 

 

 

Figure 123 : Amplitudes measured in the lateral wave time window over a 1.2 cm air layer, 

a perfect reflector and a simple air interface, for surface and embedded numerical testing. 

The lateral wave obtained on an air interface with surface testing appears earlier 

than for embedded testing. This could be due to the presence of a fast thin air 

layer between the antennas and the surface (of 2.5 mm). The amplitude for 

surface testing is also much higher, but the general shape of the wavelet is similar. 

The wavelets measured with surface testing on air and on metal also present a 

similar shape, but with opposite phases. The shape of the wavelet measured on 

the thin layer is similar to the derivative of the air interface reflection. 

This suggests that some information could be extracted from the phase and 

amplitude of the “lateral waves”: for achieving this, the mathematical expressions 

of the different events should be determined, similarly to the expression of the 

lateral wave (67). 

4.2.3 Influence of the radiation pattern 

To precisely take into account the radiation pattern is very important for a deep 

analysis of the APVO curves. Indeed, the different waves measured 

simultaneously propagate initially with different angles (Figure 121). They have 

thus a different initial amplitude that should be taken into account when 

calculating the analytical formulation of their sum (see § 3.2.5.1).  

From the numerical test of Figure 122, in which the receiver antenna is embedded 

into concrete, we can also estimate the combined influence of the radiation 

pattern and the wave   of Figure 121. In Figure 124, the wave measured by the 

embedded antennas is compared to a wave that would be only affected by the 

intrinsic and geometric attenuations. The relative amplitudes are obtained by 

respect to the amplitude at a vertical incidence. 
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Figure 124 : Amplitude transmitted to an antenna buried into concrete  

as a function of the incident angle. 

We observe some oscillations in the measured amplitude, due to the interaction 

between the reflected wave and the wave  . As those waves appear almost 

simultaneously for incident angles less than 40°, it is not possible to separate their 

influence for the small angles. This explains why the numerically determined 

radiation patterns in the literature sometimes present some oscillations [58].  

Nevertheless, if we disregard the oscillations due to the surface-lateral wave, the 

effect of the radiation pattern is important as well: the amplitude decreases 

much faster than a wave that would be just affected from the intrinsic and 

geometric attenuation. 

The radiation pattern precise determination is likely to be one of the most difficult 

challenge for the future improvement of our thin layers determination method. 

Indeed, it depends on the material properties, on the distance with the antennas, 

on the frequency and on the antennas themselves (§ 3.2.5). With the method 

developed in this thesis to estimate the reflection coefficient using the 

comparison with a perfect reflection (§ 3.1.2.1), the problem is probably less 

acute. Nevertheless, if we want to extend the present method to the cases in 

which a perfect reflector cannot be buried at the same depth as the thin layer, 

we will have to base the analysis on the relative amplitude and phase change 

compared to a vertical incidence. In this configuration, the specific inclination of 

each offset will have to be taken into account with a good precision. 

4.2.4 Comparison of APVO curves obtained through 

surface and embedded testing 

In the previous sections (§§ 4.2.1-4.2.3), the different phenomena appearing in 

surface testing and that are not present in embedded testing have been 

described. In this section, the feasibility of the determination of thin layers from 

their measured APVO curves using the equations derived in § 4.1.3, despite all 

those phenomena, is investigated. We want to determine if the analysis could 

lead to a rough estimation of the parameters, and if this concordance could be 

improved by considering a reduced section of the curves.  
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For this analysis, we first consider the APVO curves obtained numerically on an air 

interface embedded at a depth of 10 cm into concrete (   
     ). The curves 

obtained by surface and embedded testing are compared in Figure 125.  

 

Figure 125 : (a) Amplitude and (b) phase versus offset curves obtained numerically on an 

air interface embedded at a depth of 10 cm into concrete (   
     ): comparison of the 

results for surface and embedded testing. 

The curves are very similar for the small incidences (up to the critical angle). For 

higher incidences, the amplitude of the oscillations observed for surface testing 

are much more important than for embedded testing (up to a factor 10). To be 

able to approach the first curves by expressions describing the second ones, we 

should limit the analysis to the small offsets. For the considered geometry and 

frequencies, an analysis limited to the first 40° could possibly lead to an 

acceptable estimation of the parameters.  

In Figure 126, the APVO curves obtained by experimental measurements for the 

same configuration are represented. In order to limit the oscillations due to the 

measurement noise, the signals are treated with a mobile mean filter before 

representation.  
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Figure 126 : (a) Amplitude and (b) phase versus offset curves obtained experimentally on 

an air interface embedded at a depth of 10 cm into concrete (   
     ). 

The concordance with the numerical predictions (Figure 125) is relatively good. 

This means that numerical simulations are able to approach experimental data, 

even if they are performed in 2D, and do not consider any antenna shielding or 

material dispersion. However, only the angles larger than 32° are available in 

experimental data. This is due to the fact that the smallest antennas offset for 

CMP is 13 cm (Figure 45). If we limit the analysis to the first 40°, this will strongly limit 

the exploitable angle range (32°-40° instead of 0°-40°). Moreover, by comparison 

to smaller incidence angles, this part of the signal is more affected by surface 

effects and by noise, due to the longer ray path. 

The most interesting part of the curves are thus unavailable because of the 

antennas dimensions. A mean that could improve the feasibility of parameters 

determination using the APVO curves, even without equations improvement, 

would be to modify the geometry of one antenna so that the angle at the initial 

position is decreased. A simple inversion of the antennas position into one of the 

two shielded boxes (Figure 45) would reduce the initial offset from 13 to 9 cm. The 

initial angle would then be 24°, which would double the total angle range to be 

investigated. 

The same analysis can be performed for the reflection on thin layers. In Figure 127, 

the APVO curves for surface and embedded testing are compared for a 1.2 cm 

air layer embedded into concrete. 
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Figure 127 : (a) Amplitude and (b) phase versus offset curves obtained numerically on a 

1.2 cm air layer embedded at a depth of 10 cm into concrete (   
     ): comparison of 

the results for surface and embedded testing. 

The oscillations in surface testing have a smaller amplitude, which increases 

slightly the angle range in which the different curves could be compared. The 

experimental APVO curves for the same 1.2 cm air layer are drawn in Figure 128.  

 

 

Figure 128 : (a) Amplitude and (b) phase versus offset curves obtained experimentally on a 

1.2 cm air layer embedded at a depth of 10 cm into concrete (   
     ). 

The real curves are affected by an important noise, even after the use of the 

mobile mean filter. Nevertheless, the global shape of the curves in the interval 

32°-42° is not drastically different from their equivalents in the embedded testing 

(Figure 127). A parameters determination using those curves may then be 

attempted, but the precision of the results is not expected to be very high. 
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As an alternative to the determination of the parameters using the whole curves, 

we will also consider the possibility to test only one offset. Indeed, this method 

would allow using the static measurements, in which the offset is 4 cm and the 

surface-lateral waves are not present. Such tests will be performed in §§ 5.1 and 

5.2. 

4.3 Conclusions 

We developed a 2D and 3D hybrid model able to estimate the reflection 

coefficient of  a thin layer for any thickness-to-wavelength ratio. This model uses 

the most appropriate of the methods described in § 2.2.2 depending on the layer 

properties. For the very thin layers (       ), the reflection coefficient is 

calculated using the plane wave approximation. On the opposite, for thick layers 

(       ), it is calculated using the first terms method, with introduction of the 

spherical waves formula for the first reflection and of an attenuation term for the 

propagation into the layer. This term was derived from FDTD simulations 

performed on air layers. The reflection coefficient for intermediate layers is 

calculated through an interpolation between the results of the two methods. 

This hybrid method allows calculating the APVO curves of the reflection 

coefficient, taking into account the lateral wave. But when the tests are 

performed from the surface, additional phenomena will develop and influence 

the measured amplitude: the multiple reflections, the surface-lateral waves and 

the radiation pattern.  

The effect of the multiple reflections on the measured reflection coefficient is 

important, but it can be limited through a time-filtering of the radargram. The 

large oscillations caused by the surface-lateral wave only affect the large offsets, 

so a limitation of the offset range can reduce its influence. The radiation pattern 

has a limited influence on the amplitudes as long as the reflection coefficient is 

determined by using a perfect reflection comparison.  

With these restrictions, the analytical APVO curves for the reflection coefficient 

should then be able to approach measured APVO curves, but only after time 

filtering and limiting the considered range. The main difficulty is then the 

important initial offset, preventing the measurement for the smallest angles, which 

were the most promising for the parameters determination. A first method for 

improving the layer determination method for surface measurements would then 

be a modification of the antenna geometry, in order to reduce the CMP initial 

offset.  

Another method would consist in an analytical characterization of the behaviour 

of the surface-lateral waves, similar to the lateral wave equations developed in 

§ 2.1.7.2. After consequent mathematical developments, this would allow to use 

a wider offset range for the layer characterization. In particular, the very specific 

frequency content of the lateral and surface-lateral waves could be used to 



   

167 

 

determine the layer properties. This method could allow to exploit the part of the 

APVO curves measured with larger offsets.  

If the APVO curves cannot be approached analytically for the considered angle 

range, another solution would be to estimate them through FDTD simulations. This 

method is much slower, but we have shown in this chapter that the numerical 

data were able to predict with a good accuracy the experimental 

measurements, even if they do not take into account some factors as the 

antennas shielding or the concrete dispersive properties. 

As an alternative to the analysis of APVO curves, the layer determination can also 

be based on static measurements. Indeed, the monostatic offset (4 cm) is 

sufficiently small to prevent the appearance of the surface effects.  For this 

reason, in addition to the APVO curves, we will also attempt in the next chapters 

to characterize the layers using static measurements. 
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Chapter 5: Numerical and 

experimental thin layers 

characterization 

This fifth and last chapter is dedicated to the determination of thin layers, using 

the results of 2D simulations and measured datasets. We will compare the results 

to different analytical curves studied in the previous chapter, in order to see if this 

comparison can lead to a reliable estimation of the layer parameters.  

In § 4.2.4, it was suggested that the layer parameters could be advantageously 

determined from static measurements instead of CMPs. Indeed, with this method, 

the antennas offset is sufficiently small to avoid the post-critical surface effects, 

which could compensate for the lower information content. This method will be 

investigated in the two first sections of this chapter. The simplest method (§ 5.1) is 

based on the evaluation of the  peak-to-peak amplitude in static measurements. 

The signal treatment is then limited to a minimum and the equations can be 

simplified due to the small incident angles. 

The analysis of static measurements can also be refined by the use of a spectral 

analysis of the wavelet (§ 5.2). This method is supposed to increase the 

concordance with the analytical formulation and to maximize the possibilities for 

the layer determination. We will determine the best analytical formulation in 

function of the parameters, as well as the influence of surface measurements. 

Finally, we will try to use the CMP curves for the layers determination. We have 

shown in § 4.2 that this method would be subject to uncertainties due to the post 

critical incidence, but that an analysis of only the smallest angles of the CMP was 

still susceptible to give a fair estimation of the parameters. This will be tested on a 

set of experimental CMPs in § 5.3. 
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5.1 Static measurements with peak-to-peak 

analysis 

This method is the most basic for the thin layers analysis. It is based on the study of 

a single trace: it can be applied to various points of a profile if the layer has a 

variable thickness with the location. As suggested by its name, the peak-to-peak 

amplitude is the difference between the maximum value of the reflected wavelet 

and its minimum value. In addition to the tests on the thin layer, tests were 

performed on a perfect reflector. The direct wave was measured as well, in order 

to isolate the reflection event (Figure 129). 

 

 

Figure 129 : Experimental peak-to-peak amplitude evaluation over a 0.5 cm air layer 

embedded at a depth of 10 cm into concrete: (a) Raw data; (b) After direct wave 

subtraction. 

In the methods based on the peak-to-peak amplitude, the phase variation of the 

reflection is not considered. All the frequency components of the wave are also 

supposed to travel at the same speed and to be attenuated with the same 

factors. The dispersion of the properties with the frequency (§ 2.1.6) is thus 

neglected, but this approximation is valid for dry concrete at frequencies ranging 

from 0.5 to 3 GHz [44].   

In this chapter, the objective is to determine the limits of this simple method for the 

determination of thin layers. In order to achieve this, we will determine 

numerically and experimentally the peak-to-peak reflection coefficient on 

different interfaces and thin layers. We will then compare the results to the 

reflection coefficient predicted by the different analytical expressions developed 

in § 4.1.  
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5.1.1 Estimation of the peak-to-peak reflection 

coefficient through 2D simulations 

Two different sets of simulations were run in GprMax 2D. In the first set, the incident 

wave was a continuous sine, in order to match the analytical results and estimate 

the influence of the geometric attenuation into the layer, which is not taken into 

account by the geometric series equations (102). Then, in the second set, we 

introduced a realistic pulse (Figure 53) to predict experimental results. Those results 

were published in [116, 117]. 

5.1.1.1 Numerical evaluation of the thin layers reflection coefficient for 

a sine wave 

The first simulations, performed with a continuous sinusoidal incident wave 

(2.3 GHz), were carried out for a layer placed at a depth of 10 cm into concrete 

and for a quasi-vertical incidence (antenna separation of 0.5 cm), both for an air  

layer (   
     

    ) and a saturated layer (   
     

      ). The reflection coefficient 

was obtained from numerical simulations by comparing the maximum peak-to-

peak amplitude (after suppression of the direct wave) to the amplitude of a 

wave reflected on a perfect reflector at the same depth (§ 3.1.2.1).  

Figure 130 enables us to compare the numerical results obtained for the layers of 

both materials to analytical equations for the static detection of thin layers: the 

plane wave approximation (102) and the first terms estimation (112). The two 

methods are expected to give the same results for a vertical incidence, except 

that the plane wave approximation does not take into account the geometric 

attenuation into the thin layer (which is different for each ray, depending on the 

number of reflections). 

 

Figure 130 : Reflection coefficient amplitude of a thin (a) air and (b) saturated layer 

(𝛆’r2=40) into concrete as a function of the thickness-to-wavelength ratio, and comparison 

with the theoretical estimations. 

In Figure 130 (a), we observe that the concordance between numerical results 

and analytical predictions is excellent for the saturated layer (   
    ). The large 
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permittivity of the thin layer induces a very small wavelength so that, for a given 

thickness-to-wavelength ratio, the layer thickness is small, which limits the 

geometric attenuation.  

When the layer material is air (Figure 130 (b)), the layers are thicker and the 

oscillations of the amplitude are decreased by the geometric attenuation into 

the layer. This attenuation is different for each reflection multiple; the complete 

destructive interferences, producing a reflection coefficient equal to zero, is not 

observable. The geometric attenuation is supposed to be predicted by the first 

terms estimation method, but the attenuation observed in the numerical results is 

even stronger.  

Nevertheless, in both cases, the amplitude of the reflection coefficient generated 

by very thin layers (      ) can be approximated by the linear approximation 

(86) that was proposed in § 2.2.1. 

Those results were obtained for a vertical incidence but, when static tests are 

performed experimentally, the antennas offset of 4 cm is not always negligible 

regarding the depth of the thin layer. For example, when the layer is situated 

10 cm below the surface, the incidence angle is equal to 11.3°. The difference 

between the different analytical methods can then become more visible. 

To observe the influence of a small but non negligible incident angle (11.3°), we 

performed the same simulations as in Figure 130, changing only this parameter. 

The results are compared to the analytical results obtained with the methods of 

plane wave approximation, first terms estimation, and also the first terms 

estimation with spherical wave reflection. This last method was added, because it 

was shown in section 4.1.2 that it generates the best results for thick layers (the 

different methods accuracy can be estimated from Figure 90, considering only 

the incident angle of 11,3°). The results are displayed in Figure 131. 

 

Figure 131 : Reflection coefficient amplitude of a thin air layer into concrete (𝛆’r1=10) as a 

function of the thickness-to-wavelength ratio, and comparison with the theoretical 

estimations, for an incident angle of 11.3°. 
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In Figure 131, we observe that the plane wave approximation overestimates the 

reflection coefficients for all the thicknesses, while the firsts terms estimation 

predicts very well the reflection coefficient for the thinner layer and gives a good 

estimation for thicker layers. The linear approximation presented in Figure 130 is 

not represented on this graph. Nevertheless, it is based on the plane wave 

approximation, so it introduces a similar significant error when the angle is not 

negligible. 

The introduction of the spherical equation into the first terms estimations does not 

improve the results: the prediction is only slightly better for the thicker layers, but it 

is totally incoherent for the very thin layers. It is due to the fact that the spherical 

equation is introduced quite abruptly as a replacement of the first reflection of 

the series. This approximation is valid for thick layers but leads to significant errors 

for very thin layers. 

5.1.1.2 Numerical evaluation of the peak-to-peak reflection 

coefficient for realistic conditions 

In the previous section, it was shown that the reflection amplitude of radar waves 

into a thin layer can be predicted by analytical expressions, and that the first 

terms estimation method was preferable when the incident angle could not be 

neglected. But this analysis differs from real GPR measurements in two points. First, 

the most frequent incident signal for GPR is a short electromagnetic pulse and not 

a continuous sine. Then, the antennas are placed on the surface and not into the 

concrete: this will induce surface-related effects (see § 4.2). In this section, we will 

test the influence of those parameters on the measured peak-to-peak reflection 

coefficient.  

First, we introduced into our simulation the realistic incident pulse described in 

§ 3.1.4.1. The results are displayed in Figure 132 for the case of the air layer. On the 

same diagram, we have redrawn as well the analytical prediction obtained with 

the first terms method and the numerical results that were obtained for a sine 

wave (Figure 131).   
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Figure 132 : Reflection coefficient for an air thin layer embedded at a depth of 10 cm into 

concrete (𝛆’r1=10), depending on the thickness-to-wavelength ratio. The theoretical 

estimation for a sine wave is compared to the modelled results obtained with a continuous 

sine wave and with a realistic short pulse. 

The reflection coefficient of the realistic pulse stabilizes for the large thickness-to 

wavelength ratios, because the two wavelets get separated from each other 

(see Figure 38). Nevertheless, for the very thin layers, the reflection coefficients 

measured with a pulse are almost identical to the reflection coefficients 

measured with a sine wave. For those very thin layers, the first terms estimation 

method can predict very well the reflection coefficient. We estimate the limit to  

λ/11, which corresponds to an air thickness of a bit more than 1 cm into a wet 

concrete (   
     ). 

For layers with a larger thickness, the thickness cannot be estimated by this 

analytical method. The FDTD simulations with realistic wavelet are then of a 

particular interest, because they allow a direct comparison to the experimental 

measurements.  

After introducing a realistic wavelet, we introduced another important factor: the 

surface effects. As explained in § 3.1.2.1, the surface effects are supposed to be 

suppressed when dividing the amplitude measured on the thin layer by the 

amplitude measured on a perfect reflector, because they are identical in both 

cases. Before comparing the analytical expressions to the experimental data, we 

have to prove, at least for numerical simulations, that this assessment was correct. 

To achieve this goal, we performed the same simulations as in Figure 132, but with 

the radar placed on the concrete surface (   
     ) instead of being embedded 

into concrete. The results are visible in Figure 133. 

 

10 
-3 

10 
-2 

10 
-1 

10 
0 10 

-2 

10 
-1 

10 
0 

Thickness/wavelength 

R
e

fl
e

c
ti
o
n

 c
o

e
ff
ic

ie
n
t 

a
m

p
lit

u
d
e

 

  

  

First terms estimation 

2D FDTD simulations with sine wave 

2D FDTD simulations with pulse 



   

175 

 

 

Figure 133 : Reflection coefficient for an air thin layer embedded at a depth of 10 cm into 

concrete (𝛆’r1=7.7), as a function of the thickness-to-wavelength ratio. The theoretical 

estimation (with first terms estimation) for a sine wave is compared to the modelled results 

obtained with a realistic short pulse, for an embedded and surface testing. 

The presence of the surface does not influence the measure of the reflection 

coefficient. This validates our experimental procedure (§ 3.1.2) for the 

determination of the reflection coefficient in static tests. 

5.1.2 Comparison of the numerical and experimental  

peak-to-peak reflection coefficients  

The experimental study was performed with the procedure described in § 3.1.2.2, 

on two 10 cm thick concrete slabs enclosing an air layer. The concrete dielectric 

permittivity was deduced from measurements on the slab: with a surface 

reflection test (Figure 51 (b)), we measured an air-concrete reflection coefficient 

    of 0.47, corresponding to a permittivity     
     . (134). This permittivity was 

confirmed by the analysis of the reflection time (§ 113). 

This permittivity was introduced into the FDTD model. The simulation was realised 

in realistic conditions (with surface testing and a realistic pulse) (§ 5.1.1.2) in order 

to obtain the best concordance between the experimental and numerical 

results. The reflection coefficients obtained by these methods are traced in Figure 

134, in which they are compared to the curve obtained by the analytical method 

of the first terms estimations (§ 2.2.2.2). 
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Figure 134 : Comparison between the peak-to-peak amplitudes measured by 

experimental measurements, estimated by 2D FDTD numerical simulations and calculated 

through analytical expressions. 

With these tests, we show that layers with a thickness as thin as 1 mm, which 

corresponds to a thickness less than λ/100, can be visible with GPR. The 

concordance between experimental and numerical results is relatively good, and 

proves the efficiency of numerical modelling to predict the global results.  

Nevertheless, discrepancies are observed, especially for the very thin layers. This 

difference is probably due to the lower signal-to-noise ratio, and maybe to the 

fact that the slabs were smooth but not polished, limiting the precision of the 

determination of the direct wave. As an illustration of the noise that can affect 

the measurements, it is visible on the graph that the measurements were 

performed in two different sets (with   ⁄        and   ⁄       ), resulting on an 

amplitude gap on the graph. Realised at an interval of only a few days, the 

measured amplitudes are visibly higher for the second set.  

Because of this relatively important noise affecting the results, it will be very 

difficult to directly use the linear dependence of the reflection coefficient on the 

thickness-to-wavelength ratio to estimate the thickness of the layer. This difficulty 

adds up to the other drawbacks inherent to the method. First, the amplitude has 

to be compared to the amplitude on a perfect reflector, which is not always 

possible in reality. Second, the layer thickness and its permittivity cannot be 

determined simultaneously, as they both influence the thickness-to-wavelength 

ratio. This last limitation will be overpassed in the next section, through the spectral 

analysis of the reflected wavelet. 
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5.2 Static measurements with frequency analysis 

In the previous chapter, it was shown that the peak-to-peak reflection coefficient 

obtained on thin layers was dependant on the thickness-to-wavelength ratio and 

could be evaluated by analytical estimations or numerical simulations. In addition 

to the relatively low precision of the predictions and to the important noise that 

was observed, the main problem of that method is that, for each measurement, 

only one point is determined: this means that it will be impossible to estimate the 

layer thickness if the dielectric permittivity is unknown and vice-versa. 

A solution to this problem is to use all the frequency components present into the 

incident wavelet. Indeed, the pulse created by the GPR covers a range of 

different frequencies, approximately up to twice the nominal frequency of the 

antenna (see § 3.2.1.2). With this method, different points of the reflection 

coefficient amplitude and phase versus thickness-to-wavelength ratio can be 

obtained from a single static measurement. A similar approach was considered 

by Gregoire [56] and Jeannin [57]. They showed that it was possible to determine 

the layer parameters using the reflection spectral content, and that the 

simultaneous analysis of the amplitude and the phase increased the thickness 

range that could be characterized.    

As an example, we can model the presence of a 1 cm saturated layer (  
    ) 

embedded into concrete (  
     ) at a depth of 10 cm (Figure 135 (a)). After 

direct wave removal (Figure 135 (b)) and application of a fast Fourier transform 

(FFT), we can compare the frequency spectrum of the reflection on the thin layer 

to the spectrum of the reflection obtained on a perfect reflector (Figure 136). 

 

(a)   (b) 

Figure 135 : FDTD simulations of static measurements over a 1 cm wet layer embedded at a 

depth of 10 cm into concrete: (a) initial data; (b) after direct wave subtraction. 
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Figure 136 : Frequency spectra of the signals shown in Figure 135 (b) for a thin layer and a 

perfect reflector. 

Those spectra, that can be obtained from numerical simulations or from actual 

measurements, can be compared to analytical curves generated for different 

parameters sets with the methods described in § 4.1.2. Minimizing the difference 

between the curves can lead to an estimation of the actual layer parameters.  

In this chapter, the method is first validated by comparing the measurements 

obtained with only one frequency for various thicknesses to the analytical curves 

(§ 5.2.1). It is then applied to numerical measurements performed on thin layers 

(§ 5.2.2) in order to evaluate the precision of the parameters estimation. The same 

methodology is finally used for the analysis of experimental measurements 

(§ 5.2.3). 

5.2.1 Comparison of numerical and experimental data to 

the analytical predictions 

In this section, we performed numerical simulations and experimental 

measurements on thin layers of various thicknesses embedded into concrete. In 

the amplitude and phase spectra of these measurements, we will only consider a 

single reference frequency: the frequency      of the maximum amplitude for the 

metallic reflection. The amplitude and phase at this frequency are extracted from 

each measurement, for the perfect reflector and the thin layers (Figure 136).  

The same frequency is also used for the determination of the theoretical curves, 

to which the results will be compared. Those curves are calculated with the 

analytical methods which revealed to be the most promising in § 4.1.2:  

- the plane waves approximation (§ 2.2.2.1); 

- the first terms estimation, which uses only the 30 first terms of the sum, but 

takes into account the geometric attenuation (§ 2.2.2.2); 
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- the hybrid model, developped in § 4.1.3.2, which uses the plane wave 

approximation for the thinnest layers and a model derived from the first 

terms estimation for the thicker layers. 

This last analytical method will only be used when the layer permittivity is lower 

than the matrix permittivity (it was shown in Figure 60 that it did not bring any 

improvement otherwise). The goal is to determine which method could be the 

most adapted for the analysis of real datasets. 

5.2.1.1 Modelling of a saturated thin layer into concrete 

The first analysis is performed on a saturated layer (  
    ) of variable thickness 

embedded into concrete (  
     ). The layer is located at a depth of 10 cm and 

the antennas are separated by 4 cm in order to correspond to the experimental 

setup of monostatic tests. They are also compared to the raw peak-to-peak 

measurements. 

 

 

Figure 137 : (a) Amplitude and (b) phase of wet thin layers reflection coefficients, 

depending on the thickness-to-wavelength ratio. Comparison of numerical test results with 

peak-to-peak and frequency spectrum analyses and analytical curves. 
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Firstly, we observe that the frequency analysis of the reflected pulse allows 

obtaining amplitude and phase curves following very well the theoretical 

predictions. Indeed, the separation of the wavelets does not limit anymore the 

maximum thickness-to-wavelength ratio that can be studied. Those results are 

very similar to the data obtained with a continuous sine wave (Figure 130 (a)).  

The FDTD amplitudes are better predicted by the plane wave approximation than 

by the first terms estimation. This is surprising, as the first terms estimation is 

supposed to take into account the geometric attenuation into the layer. 

Nevertheless, the first terms estimation method gives a better prediction of the 

phase changes, especially for discontinuities observable when      is a multiple of 

0.5. 

5.2.1.2 Modelling of a thin air layer embedded into concrete 

A similar analysis was then performed with an air layer of variable thickness into 

concrete (       ). Because the layer permittivity is lower than the matrix 

permittivity, the hybrid model will be compared to the results as well. To simplify 

the graph, the peak-to-peak amplitude will not be represented anymore. The 

results are presented in Figure 138. 
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Figure 138 : (a) Amplitude and (b) phase of air thin layers reflection coefficients, 

depending on the thickness-to-wavelength ratio. Comparison of numerical test results  

and analytical curves. 

If we compare the analytical predictions to the numerical results, we observe that 

the hybrid method gives the best prediction of the curves amplitude. Indeed, it 

uses the plane wave approximation for the very thin layers, and then a variation 

of the first terms methods which is far more accurate for large    . The 

modifications applied to the first terms methods in the hybrid model (see § 4.1.3) 

seem to improve slightly the amplitude and phase prediction, especially for the 

thicker layers. 

On the contrary to the observations made for an embedded wet layer in 

§ 5.2.1.1, the geometric attenuation (visible in the graph as a decrease of the 

peaks amplitude) is very strong. This is due to the fact that the wavelength in air is 

relatively large (~13 cm), which means that the geometric attenuation into the 

layer plays a real role in the amplitude attenuation. Even for the first terms 

estimation and the hybrid methods, taking into account the geometric 

attenuation, the peaks amplitudes are always 10% overestimated by the 

analytical formulas. 
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5.2.1.3 Validity of the method for larger offsets and surface 

measurements 

Before applying this method to the determination of the parameters of 

embedded layers, for numerical or experimental datasets, we want to estimate 

the influence of two additional factors: the surface testing and the post-critical 

incidence. Those parameters, especially when they are combined, are 

susceptible to decrease the precision of the method (§ 4.2). 

In a first step, we modelled the same air thin layers into concrete as in the 

previous paragraph, but with an initial offset of 13 cm instead of 4 cm. This offset 

corresponds to the initial offset of CMP tests and the incident angle is equal to 

33°, which is larger than the critical angle (21°). The results are visible in Figure 139. 

 

 

Figure 139 : (a) Amplitude and (b) phase of air thin layers reflection coefficients, 

depending on the thickness-to-wavelength ratio, for a post-critical incidence.  

Comparison of numerical test results and analytical curves. 

The evolution of the amplitude with a post-critical incidence is very different from 

for a small incidence (Figure 138). In this case, the hybrid model reveals to be far 

more accurate than the two other approximations. 
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The issue of the surface testing has been studied on CMP radargrams in § 4.2.1, in 

which it was concluded that the part of the radargram after the first reflection 

had to be removed. Under this condition, the presence of the surface should not 

have an important influence on the APVO curves for the small offsets. For static 

measurements, we chose to set the limit to 5 lobes after the midpoint between 

the main maximum and the main minimum of the reflection on the metallic plate. 

The time truncation and its influence on the frequency spectrum are represented 

in Figure 140.  

 

 

 

Figure 140 : Influence of the signal time truncation on the frequency spectrum for signals 

measured from the surface. The radargram has been obtained from FDTD simulations over 

a 1 cm air layer embedded into concrete. 

In Figure 140, the benefit of the time signal truncation on the frequency spectrum 

is evident. Without this filtering, the spectra present interference lobes from the 

different reflections that will influence the apparent reflection coefficient. After 

this signal truncation, the results obtained for a low incident angle do not change 

if the results are obtained with surface measurements (Figure 141) instead of 

embedded antennas (Figure 138). 
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Figure 141 : (a) Amplitude and (b) phase of air thin layers reflection coefficients, 

depending on the thickness-to-wavelength ratio, for a surface measurement and 

truncated signal. Comparison of numerical test results and analytical curves. 

When the measurement is performed from the surface with a post-critical angle, 

the signal has to be truncated as well to remove the second reflections. But the 

surface-lateral wave (§ 4.2.2) will also influence the results and will not be 

removable from the radargram. They appear both for thin layers and for the 

perfect reflector.  

The results obtained in this situation for an offset of 13 cm are compared to the 

analytical curves obtained for the embedded layers in Figure 142.  
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Figure 142 : (a) Amplitude and (b) phase of air thin layers reflection coefficients, 

depending on the thickness-to-wavelength ratio, for a post-critical incidence: comparison 

of numerical test results and analytical curves. 

As expected, the results are affected by the presence of the surface. Only the 

very thin layers (   <0.1) are still well predicted by the analytical curves. As a 

consequence, for large incident angles and layers with a thickness larger than 

    , the estimation of the parameters using the analytical expressions is not 

expected to give reliable results. This will be tested on numerical results in § 5.2.2.3 

and on experimental results in § 5.2.3.2. 

5.2.1.4 Comparison of the analytical curves to experimental results 

The previous section proved with numerical results that the analytical expressions 

could be used to predict the evolution of the amplitude and phase of the 

reflection coefficient as a function of the thickness-to-wavelength ratio. In 

particular, the hybrid model developed in § 4.1.3 revealed to give the most 

accurate prediction in almost all the configurations. 

In this section, the objective is to extend those conclusions to experimental 

measurements. Instead of numerical simulations, we will use the experimental 

dataset already studied in § 5.1.2 (in which only the peak-to-peak amplitude was 
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extracted). Those experimental tests were performed statically over air layers of 

various thicknesses, ranging from 1 mm to 9.6 cm. The 3D hybrid equations, 

developed in § 4.1.3.3, will be used instead of the 2D model. 

A difference between numerical and experimental results is the presence of 

noise. An important source of noise is the insufficient stabilization of the signal (see 

§ 3.2.2) between the measurements of direct wave, wave on metal and wave on 

thin layer. The noise is generally described by the signal-to-noise ratio (see § 3.2.3). 

It will be stronger in the parts of the signal presenting the largest amplitude: the 

strong reflections and the direct wave. The amplitude of the noise remaining after 

suppression of the direct wave is thus important.  

An easy solution to reduce the noise related to the direct wave is to filter this part 

of the radargram in the time domain, just as the radargram was filtered after the 

first reflection in Figure 140. In Figure 143, the frequency amplitudes of the wavelet 

are represented, before (a) and after (b) suppression of the amplitudes before 

the first reflection. 

 

 

 

 Figure 143 : Influence of the signal time truncation on the frequency spectrum for signals 

measured from the surface. The radargram has been obtained from experimental tests 

over a 1 cm air layer embedded into concrete. 
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Figure 143 confirms that the removal of the second reflection is not sufficient to 

obtain a smooth frequency spectrum. Even after the direct wave removal, the 

signal noise in this part of the radargram considerably influences the frequency 

spectrum. When this part of the signal is set equal to zero, the spectrum is much 

smoother, even if two peaks are visible for the perfect reflector. We also remark 

that the frequency of the transmitted peak can be very different from the 

nominal frequency of 2.3 GHz, which had been confirmed by direct air signals 

(§ 3.2.1.2 ). After propagation into concrete, the frequeny peak of the measured 

reflection can rise up to 3 GHz. In our developements, it is this real, measured, 

peak frequency that has been used, instead of the nominal frequency. 

In Figure 144, the amplitude (a) and phase (b) of the experimental measurements 

are compared to the values obtained with the different analytical formulations  

 

 

Figure 144 : (a) Amplitude and (b) phase of air thin layers reflection coefficients, 

depending on the thickness-to-wavelength ratio: comparison of experimental 

measurements and analytical curves. 

The experimental results are in an acceptable concordance with the numerical 

predictions. The amplitude seems better predicted for the very thin layers, while 

the phase prediction for these layers is poorer. The amplitude peaks are 

overestimated by the analytical curves, but correspond relatively well to the 
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amplitudes of the numerical curves that were presented in Figure 141 for the 

same configuration. The main difference is that the curves seem to be submitted 

to an expansion to the right direction, which would correspond to an 

overestimation of the     ratio.  

5.2.2 Application to the determination of thin layers 

properties from numerical static measurements 

In the previous chapter, we have compared the analytical curves to the 

reflection coefficient amplitude and phase at a reference frequency estimated 

for different layer thicknesses. In this chapter, we will try to use the concordance 

with the analytical curves to determine the layers properties from numerical 

radargrams. Instead of extracting the amplitude and phase for a reference 

frequency (Figure 136), we will extract a set of points, obtained with a set of 

frequencies well represented into the spectrum. The range of thickness-to-

wavelength ratios that will be usable for this analysis will depend on the frequency 

content of the wavelet and on the wavelength into the layer.  

We want to use the analytical curves to determine the layer properties. In this 

section, we will first describe this method using the simple case of a thin saturated 

layer embedded into concrete. We will then test the method on different 

numerical models of increasing complexity: air layers with embedded antennas, 

but also air layers with surface antennas and post-critical incidence. 

5.2.2.1 Determination of wet layers into concrete 

The layer determination method will be detailed on the example illustrated in 

Figure 135: a 1 cm wet layer (  
    ) embedded into concrete (  

     ) at a 

depth of 10 cm (Figure 135 (a)). After suppression of the direct wave (Figure 135 

(b)), the frequency spectrum of the reflection is calculated (Figure 136) for the 

thin layer and the direct wave. The amplitudes ratio gives the reflection 

coefficient of the thin layer and the phase shift can be evaluated as well. The 

results are displayed in Figure 145. 
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 (a)   (b) 

Figure 145 : (a) Frequency dependant amplitude obtained through the FDTD simulation of a 

1 cm wet layer into concrete; (b) Phase difference obtained on the thin layer compared to 

the perfect reflector. 

Those curves look similar to the theoretical curves that have been drawn in the 

previous chapter. Given the large number of frequencies resulting from the FFT 

analysis and the limited frequency content of the wavelet, the whole curves will 

not be considered to determine the layers properties, but only the values for a set 

of representative frequencies. This will reduce the computation time for the 

parameters determination and limit the noise due to insufficient amplitude.  

In the example of Figure 146, we select the frequencies ranging from 0.5 to 3.5, 

which do not seem to be affected by any noise. If we set the frequency interval 

to 0.25 GHz, 13 different frequencies will be considered. In Figure 146, the values 

of the amplitude and phase of the reflection coefficient for those frequencies are 

compared to the analytical curve  for the real parameters. This curve is obtained 

by the plane wave method, as we consider a high permittivity layer (see 

§ 4.1.3.2). 

 

 (a)   (b) 

Figure 146 : Comparison between the reflection coefficient amplitude (a) and phase (b) 

curves obtained from a static measurement and values obtained from analytical curve 

(plane wave approximation), for a 1 cm wet thin layer. 

The correspondence is very good and only limited by the frequency content of 

the wavelet. The next step of the analysis consists in comparing the experimental 

or numerical curves (whose initial parameters are supposed to be unknown) to 
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analytical curves determined for different sets of parameters. The estimated layer 

parameters are the parameters giving the minimum difference between 

theoretical curve and the experimental or numerical data. In this process, 

different steps have to be selected: 

- the determination of the parameters sets (range and interval); 

- the forward model, used to determine the theoretical curves; 

- the method to estimate the error of each theoretical curve regarding the 

experimental results; 

- the weighting associated to the different parameters. 

In this work, the parameters to be determined are the layer thickness and its 

dielectric permittivity. We would like to determine the thickness with a precision of 

1 mm and the relative permittivity with a unitary precision. The dielectric 

permittivity values range from 1 to 81 (see Table 1). If we assume that the layer 

thickness falls in the interval 1 mm to 10 cm, the number of possibilities to 

investigate is equal to 8100. Given the low number of parameters (2) to retrieve 

and the low CPU cost of a forward model (about 0.1 second on a 2.5 GHz 4-core 

processor), we will investigate the whole parameter space. 

In situations where the number of parameters or the required precision on their 

values are higher, or where the forward model requires more CPU time, search 

algorithms should be used such as the neighbourhood algorithm [118, 119]. This 

approach would allow us to consider a limited number of parameter sets, 

iteratively selected to refine the zones of interest in the parameters space. 

As a forward model, we will compare the results obtained with the plane wave 

approximation and the hybrid model (see § 4.1). 

The error is calculated with a L2 norm (minimization of the sum of the squared 

errors). For each     
   combination, the squared errors are calculated for both 

the amplitude curve and the phase curve. Before being summed up to obtain a 

global optimum, the two errors have to be weighted, because the reflection 

coefficient amplitude is falls in the range 0 to 1, while the phase values range 

from –   to  . For this reason, the phase error will be divided by    before to be 

summed up with the amplitude error to obtain the global error.  

                               
           

  
 (146) 

Another method that could have been used for the inversion of the complex 

reflection coefficient is to invert the amplitude first, then fix it and invert for the 

phase (see [120]). In Figure 147, the amplitude (a), the phase (b) and their 

weighted sum (c) are represented, for the simulation performed on the 1 cm wet 

layer. The real parameters are marked by small white crosses. 
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Figure 147 : Mean error between the reflection coefficient numerically estimated on a 1 cm 

saturated layer into concrete and forward calculations using plane wave:  

(a) amplitude, (b) phase and (c) weighted sum of the amplitude and phase.  

The minimum of the weighted residuals designates, for dielectric permittivity and 

thickness,         and       , which are the real parameters of the layer. We 

observe a disruption of the error values when the permittivity is equal to 10, which 

corresponds to the value of the matrix permittivity. Both the amplitude and phase 

present characteristics that could have corrupted the results. The amplitude 

presents a local minimum for       , while the minimum appears as a line in the 

phase error function, which could easily lead to a strong error on the permittivity. 

Summing up the amplitude and phase creates a minimum in a reduced zone, 

without any significant other minimum. The comparison between the numerical 

values and the curves obtained from real and from estimated parameters are 

presented in Figure 148.  
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Figure 148: (a) Amplitude and (b) phase comparison of the points obtained from the 

analysis of the radargram for representative frequencies to the theoretical curves 

calculated for the real value (which are merged as the parameters are perfectly 

determined). 

In this very simple case, the correspondence is perfect, because the layer 

parameters are well determined by the method. In Table 10, the parameters are 

determined for wet layers of different thicknesses using the plane wave method 

and the hybrid model. 

Table 10 : Parameters of the minimum of the error function  

for the determination of a wet layer (   
    ) into concrete (   

    ). 

 Plane wave Hybrid model 

                

   
     

       

   
     

             

   
     

       

   
     

             

   
      

       

   
     

                

   
     

         

   
     

                

   
     

         

   
     

 

The error is less than 10% in every case, except for the thinnest layer. The hybrid 

model gives the same results as the plane wave method, due to the fact that the 

hybrid model uses the plane wave approximation for high permittivity layers. A 

detailed analysis shows that the main source of error is the phase determination. 

To improve the results for the thinnest layers, it would be useful to use an incident 

pulse containing higher frequencies in order to extend the thickness-to-

wavelength range (Figure 149 (a)).  
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Figure 149 : Phase comparison of the points obtained from the analysis of the radargram for 

representative frequencies to the theoretical curves calculated for the real value.  

(a) t=2.5 mm: the precision is limited by the limited range of  t/λ values; 

(b) t=5 cm: the precision is limited by the samples down sampling. 

For the thickest layers, this range is more than sufficient, but relatively down 

sampled (Figure 149 (b)). In this case, a good method for decreasing the error 

would be to consider more points in the frequency range. Of course, if one of the 

parameters   or    
  is known, the errors are dramatically reduced. 

5.2.2.2 Determination of air layers into concrete 

The same analysis is performed, replacing the wet layer by a 1 cm air layer, with 

the same reference frequencies. The estimated amplitude and phase are 

compared to the different analytical curves in Figure 150. The investigated 

frequencies still range from 0.5 to 3.5 GHz. Because the geometric attenuation is 

important in the case of air layers (Figure 138), we will also compare the results to 

the analytical curve obtained with the first terms estimation method.  

 

Figure 150 : Comparison between the reflection coefficient (a) amplitude and (b) phase 

curves obtained from a static numerical simulation and the theoretical curves,  

for a 1 cm air layer into concrete. 
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The correspondence is less exact than in the case of a wet layer (Figure 146). 

Because the wavelength in air is larger, the thickness-to-wavelength ratios that 

can be observed with the same pulse are smaller. For this reason, only a small 

portion of the curve can be traced, which may lead to the same problem as for 

very thin wet layers (Figure 149 (a)) and reduce the precision of the method. 

Because the thickness is small, the hybrid model is equal to the plane wave 

model, which will be preferred due to its faster computation. The first terms 

method slightly improves the results for the amplitude but is completely wrong for 

the phase: it will not be considered. 

 

 

 

Figure 151 : Mean error between the reflection coefficient numerically estimated on a 1 cm 

air layer into concrete and forward calculations using plane wave: (a) amplitude; 

(b) phase and (c) weighted sum of the amplitude and phase.  

From the last graph, the minimum of the error function is obtained for        and 

        . The thickness is slightly underestimated but the results are good. If only 

the amplitude error is considered, the best fit is obtained for another local 

minimum:         and         . The phase error minimum is less precise (d=0.8 

mm instead of 0.9 mm), but the phase error for the permittivities larger than the 

matrix permittivity is so large that it allows eliminating many local minima. This 

confirms the necessity to combine both data.  

In Figure 152, the amplitude and phase of the reflection obtained from the 

numerical tests are compared to the theoretical curves calculated for the real 
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value (d=1 cm) and for the estimated value (d=0.9 cm). We observe that the 

curve for the estimated values is closer to the numerical values than the curves 

calculated with their actual parameters. To improve the parameters 

determination process, the only method would then be to improve the forward 

model or use an incident signal with higher frequencies. 

 

 

Figure 152: (a) Amplitude and (b) phase comparison of the points obtained from the 

analysis of the FDTD radargram for representative frequencies to the theoretical curves 

calculated for the real value (d=1 cm) and for the estimated values (d=0.9 cm). 

The case of thicker layers is of particular interest when low permittivity materials 

are considered. Indeed, the hybrid model differs then from the plane wave 

approximation. In Figure 153, the amplitude and phase of the reflection obtained 

in the FDTD tests are compared to the curves obtained with the different 

analytical methods (plane wave approximation, first terms method and hybrid 

model) for the case of a 5 cm air layer. 

 

 

Figure 153 : Comparison between the reflection coefficient (a) amplitude and (b) phase  

curves obtained from a static numerical simulation and analytical values,  

for a 5 cm air layer. 

We observe that the plane wave approximation is very poor in this case: the best 

parameter estimation will deduce a thickness of 3,8 cm for a permittivity of 2, 

while the best fit using the hybrid model predicts correctly the permittivity of 1 and 
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estimates the thickness to 5.1 cm. In such cases, the use of the hybrid model, 

despite its increased computation time, is therefore recommended. The results for 

both methods and different thicknesses are summarized in Table 11. 

Table 11 : Parameters of the minimum of the error function  

for the determination of an air layer (   
   ) into concrete (   

    ). 

 Plane wave Hybrid 

model 

                  

   
    

         

   
    

              

   
    

       

   
    

                

   
    

         

   
    

                

   
    

         

   
    

                

   
    

         

   
    

                 

   
    

          

   
    

 

These values confirm the interest to use the hybrid method for the thick layers. 

Even if the prediction of the curves is poorer than for the wet layers, the errors in 

the parameters estimations are not greater.  

5.2.2.3 Influence of the post-critical incidence and surface tests 

The influence of the post-critical incidence will be tested in the problematic case 

that has been determined in § 5.2.1.3: with the test performed from the surface. 

To illustrate the results, we select the intermediate layer thickness of 2 cm, and an 

antennas offset of 13 cm. The numerical reflection amplitude and phase are 

compared to the analytical curves in Figure 154. 
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Figure 154 : Comparison between the reflection coefficient (a) amplitude and (b) phase  

curves obtained from a static numerical simulation and analytical values,  

for a 2 cm air layer and a post-critical incidence. 

We observe that the concordance is not so bad: at least for   ⁄     , the points 

seem to follow the plane wave approximation. The same curve is traced for the 

5 cm layer in Figure 155. 

 

 

Figure 155 : Comparison between the reflection coefficient (a) amplitude and (b) phase  

curves obtained from a static numerical simulation and analytical values,  

for a 5 cm air layer and a post-critical incidence. 

The numerical results still seem acceptable for   ⁄     , even if the amplitude is 

underestimated and the phases overestimated. Only the shape of the curve 

roughly corresponds to the hybrid approximation. This is due to the presence of 

the surface-lateral wave (§ 4.2.2), which is not taken into account by any of our 

models. The best parameters for different thicknesses and both methods are 

detailed in Table 12. 
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Table 12 : Parameters of the minimum of the error function for the determination  

of an air layer (   
   ) into concrete (   

     ) with a post-critical incidence. 

 Plane wave Hybrid 

model 

                  

   
    

         

   
    

              

   
    

       

   
  1 

                

   
    

         

   
    

                

   
    

         

   
    

                

   
    

         

   
    

                 

   
    

         

   
    

 

As we could expect from the observation of Figure 154 and Figure 155, the 

parameters prediction for a post-critical incidence is not reliable, except when an 

important number of the considered     are less than 0.1. In the particular case of 

this incident wavelet and air layer, the maximum thickness that can be 

determined is about 2 cm. For larger thicknesses, the use of monostatic tests (with 

a small incident angle) should be privileged. 

5.2.3 Experimental determination of thin layers 

In this section, the procedure tested in the previous chapter on numerical 

datasets to span the parameter space and determine the layer properties is 

applied on experimental measurements. Considering the experimental frequency 

spectrum (Figure 143), the investigated frequencies will range from 1 to 3 GHz. 

In a first step, we will test the layers using monostatic tests. From §§ 5.2.1.3 and 

5.2.1.4, we know that they should not be affected by surface-lateral waves, due 

to the small offset, but that the results may appear shifted to the right, which can 

lead to a lack of precision. 

Then, some bistatic tests will be performed. For the small thickness-to-wavelength 

ratios, obtained with very thin layers, the results presented in § 5.2.2.3 seemed to 

indicate that the models remained valid, despite the post-critical incidence. 

Finally, the method will be applied to the determination of a bitumen layer, first 

embedded into a matrix of concrete and then suspended into air. 
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5.2.3.1 Monostatic test on air thin layer 

Before applying the method described in § 5.2.2.1 for determining the parameters 

of a layer from experimental static measurements, we compare the experimental 

points to the theoretical curves in Figure 156. The measurements are performed 

on a thin air layer of 6 mm embedded into a concrete whose permittivity is 

estimated to   
     . The test is monostatic (       ). For a 6 mm layer, we 

expect the plane wave method (equal to the hybrid model) to predict the 

reflection coefficient relatively well. 

 

 

Figure 156 : (a) Amplitude and (b) phase comparison of the points obtained from the 

analysis of the experimental radargram  on a 6 mm air layer for representative frequencies 

(1-3.5 GHz) to the theoretical curves calculated for the real values. 

The amplitudes of the experimental reflection coefficients correspond relatively 

well to the analytical curves, but their values are slightly inferior. This  could lead to 

an underestimation of the layer thickness or to an underestimation of the 

permittivity contrast. This underestimation of the amplitude had been predicted 

by the numerical tests (Figure 147). 

The concordance for the phase is much poorer. We observe a strong decrease of 

the reflection coefficient phase, which is not predicted by the plane waves 

method. A decrease was predicted by the first terms method, but the location 

and value of the minimum are poorly predicted. This decrease was not observed 

at all in the numerical tests, which followed accurately the plane wave 

approximation. These observations are valid for most of the tests performed for 

layers less than 1 cm. 

For thicker layers, the behaviour is different. The case of a 6 cm air layer is 

represented in Figure 157. 
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Figure 157 : (a) Amplitude and (b) phase comparison of the points obtained from the 

analysis of the experimental radargram  on a 6 cm air layer for representative frequencies 

(1-3.5 GHz) to the theoretical curves calculated for the real values. 

The same behaviour is observed as when only the amplitude peak was 

considered (Figure 144): the curve of the experimental points seems stretched to 

the right. Nevertheless, the amplitude of the peaks is relatively well predicted by 

the first terms (and hybrid) methods, even if slightly overestimated. We conclude 

that the model that will produce the best thickness prediction for all thicknesses is 

the first terms approximation.  

The errors functions obtained by this method for the layer of 6 mm are displayed 

in Figure 158. 

  

0 0.5 1 1.5 2 0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

Thickness/wavelength 

R
e
fl
e

c
ti
o
n

 c
o

e
ff
ic

ie
n

t 
a

m
p

li
tu

d
e
 

  

  

Plane wave 
First terms 
Hybrid model 
Experimental 

0 0.5 1 1.5 2 -2 

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

2 

Thickness/wavelength 

R
e
fl
e

c
ti
o
n

 c
o

e
ff
ic

ie
n

t 
p

h
a

s
e
 (

ra
d

) 

  

  

Plane wave 
First terms 
Hybrid model 
Experimental tests 



   

201 

 

 

 

Figure 158 : Mean error between the reflection coefficient experimentally estimated on a 

6 mm air layer into concrete and forward calculations using plane wave: (a) amplitude; 

(b) phase and (c) weighted amplitude and phase sum. 

The minimum of the global error function (Figure 158 (c))corresponds to the 

actual parameters of the layer (       and    
   ). This is not the case for the 

separate error functions: the minimum for the amplitude appears for        

and    
   , while the minimum for the phase is obtained for        and    

   .  

If the same analysis is performed on the 6 cm layer curve, the best parameters 

calculated by the same method are          and    
   . The corresponding 

curves are compared to the measurements in Figure 159. 
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Figure 159 : Comparison between the reflection coefficient (a) amplitude and (b) phase 

curves obtained from a static experimental measurement and analytical values,  

for a 6 cm air layer. 

The same method was applied to 23 air layers with thicknesses ranging from 1 mm 

to 9.6 cm. The best parameters determined in each case are summarized in 

Figure 160. 

 

Figure 160 : Experimental estimation of layer thickness and permittivity determined by 

minimization of the global error function. 

The thickness is underestimated of about 20%, except for the very thin layers 

which are well determined. The unitary permittivity is perfectly determined in 

each case. The underestimation of the thickness is partly due to the 

underestimation of the amplitudes, which had already been observed in the 

numerical tests, and partly to the shift of the values to larger    , only visible for 

the experimental measurements. 
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5.2.3.2 Bistatic measurements (with post-critical incidence) 

In § 5.2.2.3, it was shown that the tests with post-critical incidence could be 

predicted by the plane wave approximation if the thickness was less than a tenth 

of the wavelength. With the frequency of our antenna, this will be the case for 

thicknesses less than 1 cm. We only consider here initial offsets of 13 cm, 

corresponding to the offset of the initial measurement of a CMP. This 

measurement can be performed simultaneously to the monostatic measurement 

performed with one antenna. This is the case in the example of Figure 161, which 

corresponds to the bistatic measurement performed on a 6 mm air layer and has 

been measured simultaneously to the monostatic test displayed in Figure 156. 

 

 

Figure 161 : (a) Amplitude and (b) phase comparison of the points obtained from the 

analysis of the experimental bistatic radargram on a 6 mm air layer for representative 

frequencies (1-3.5 GHz) to the theoretical curves calculated for the real values. 

The amplitude of the measured reflection coefficients corresponds quite well to 

the analytical curve obtained with the plane wave approximation for the same 

values. This behaviour had been predicted correctly by the numerical test in 

§ 5.2.2.3. On the opposite, the fitting is poor for the phase, especially for the plane 

wave approximation but also for the first terms model. Indeed, the initial phase 

decrease that had been observed for the monostatic tests in the previous 

chapter is still present. It was not predicted at all by the equations, which will 

reduce the properties determination accuracy. 

To improve the accuracy of the parameters determinations, it would be 

interesting to take mainly the amplitude into account, with the plane wave 

approximation. But it was observed in Figure 151 that it is necessary to combine 

the amplitude and the phase information to eliminate the local minima that can 

appear in the amplitude error function. So the phase error will be taken into 

account, but it will be calculated regarding the first terms method, and its 

weighting factor in the global function will be divided by two. With this improved 

process, the error functions are calculated. The amplitude, phase and global 

error for the 6 mm example are represented in Figure 162. 
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Figure 162 : Mean error between the reflection coefficient estimated from measurements 

on a 6 mm air layer into concrete and forward calculations using plane wave for the 

amplitude and first terms for the phase. (a) Amplitude; (b) phase and (c) weighted sum of 

the amplitude and phase. 

The minimum is observed for        and    
   . The estimated curves are 

compared to the experimental curves in Figure 163. 

 

 

Figure 163 : (a) Amplitude and (b) phase comparison of the points obtained from the 

analysis of the radargram for representative frequencies (1-3.5 GHz) to the theoretical 

curves calculated for the real values. 
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The same test has been performed for thicknesses ranging from 1 to 9 mm. With 

those thicknesses, the investigated range of     remains less than the limit of 0.1 

which had been fixed as a validity limit from the numerical tests (§ 5.2.2.3). The 

estimated parameters are represented in Figure 164. 

 

Figure 164 : Experimental estimation of layer thickness and permittivity determined by 

minimization of the global error function for a bistatic measurement. 

We observe that the layer thickness is relatively well determined, even if the error 

is higher than for monostatic measurements. But the permittivity is overestimated 

in each case, and even reaches 5 for the 2 mm layer. As a conclusion, we can 

say that the use of bistatic mono-offset measurements for the determination of 

thin layers is relatively worthless with the method displayed here: the precision was 

higher for monostatic measurements. 

5.2.3.3 Application to the determination of a bituminous thin layer 

In order to test the method on a thin layer made of another material than air, we 

tested a bitumen thin layer in two different configurations. First, the bitumen was 

embedded into concrete, using the same smooth concrete slabs as in the 

previous paragraphs. In a second configuration, the test was performed on the 

layer directly, using the air as the matrix material. In both configurations, we will try 

to estimate the bitumen permittivity and thickness from the radargrams and we 

will compare these values to the known properties of the material: the measured 

thickness of the layer is equal to 4.5 mm and the relative permittivity of bitumen 

does not vary much and is generally comprised between 2.6 and 2.8 [73]. 

Bitumen embedded into concrete 

To perform this test, the bitumen layer was placed between two smooth concrete 

slabs, whose permittivity had been estimated to   
       (§ 3.3.2). In accordance 

with the observations of § 5.2.1.1, we performed the measurement statically and 

compared the results with the curve obtained with the first terms method.  The 
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error functions of the reflection coefficient amplitude, phase, and of the 

weighted function of amplitude and phase are represented in Figure 165.  

 

 

Figure 165 : Error function of the reflection coefficient on a bitumen layer into concrete for 

different thicknesses and permittivity intervals:  

(a) amplitude, (b) phase and (c) global error function. 

The optimum is found for the permittivity         and thickness         . The relative 

error with the expected values (        and         ) is not negligible, especially 

for the permittivity. The amplitude and phase versus thickness-to-wavelength, for 

the estimated values, for the real values, and for the experimental points are 

represented in Figure 166. 
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Figure 166 : (a) Amplitude and (b) phase of the reflection coefficient for the bitumen layer 

embedded into concrete. Comparison of the experimental values used for the error 

function calculation to the theoretical curves for the estimated parameters. 

The amplitude and phase curves obtained from experimental measurements do 

not present the expected smoothness, and their position is relatively far from the 

expected curves. This explains the lack of precision for parameters determination. 

If the thickness is known and the optimisation only concerns the permittivity, the 

error function is minimum for a permittivity of   
      . The permittivity is thus 

overestimated even when the thickness is precisely known. This lack of accuracy 

can be due to the fact that the bitumen presents a lower contrast with the matrix 

than the air layer.  

Bitumen embedded into air 

In the second configuration, the bitumen layer was placed in front of the 

immobile antenna, at a distance of about 20 cm. The test configuration is similar 

to the surface reflection test depicted in Figure 51 (b) (p 78). The measurement on 

the perfect reflector was performed first, with an aluminium sheet taped on the 

bitumen. This foil was carefully removed for the second test, without moving the 

bitumen. In Figure 167, the radar traces are represented, before (a) and after (b) 

direct wave removal and after selection of the first reflection (c). 
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Figure 167 : Radar traces measured on the bitumen embedded in air. (a) Raw traces;  

(b) after direct wave removal and (c) after isolation of the reflection.  

We observe in Figure 167 (b) that, despite the respect of a long warming up time 

(§ 3.2.2) and the fact that the wave propagates in a totally homogeneous 

medium (air), the suppression of the direct wave is not perfect. Just as when the 

test was performed on concrete (§ 5.2.1.4), the remaining direct wave amplitude 

should be suppressed, as well as the signal after the reflection. This is only possible 

if the antenna is placed sufficiently far from the target, which was the case here 

(Figure 167 (c)). Using the method presented in § 5.2.3.1, the error function is 

calculated for thicknesses ranging from 0.1 to 10 cm and relative permittivities 

ranging from 1 to 80. 11 frequencies, comprised in the interval 2-4 GHz are 

considered in the analysis. The results are displayed in Figure 168. 

(c) 
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Figure 168 : Error function of the reflection coefficient for different thickness and permittivity 

intervals: (a) amplitude, (b) phase and (c) global function. 

The optimum of the global function is obtained for        and          The 

thickness is higher than the nominal value (4.5 mm) while the permittivity is lower 

(2.7). Those values are situated in the zone of small error function. In Figure 169, we 

compared the points used to estimate the error function to the theoretical curves 

of amplitude and phase of the reflection coefficient, both for the estimated 

parameters and for the expected parameters. 
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Figure 169 : (a) Amplitude and (b) phase of the reflection coefficient for the bitumen layer. 

Comparison of the experimental values to the theoretical curves calculated for the real 

and estimated parameters. 

Observing the results comparison of Figure 169, we understand the lack of 

precision on the permittivity and thickness estimation. Indeed, in the considered 

frequency interval, both curves of estimated and expected values give an 

acceptable estimation for the considered points. To increase the precision of the 

measurement, a wider thickness/wavelength variation interval could be used. This 

would be the case for materials presenting a higher permittivity or could be 

obtained by the use of an antenna presenting a broader frequency range. 

If the layer thickness is known, which is the case here because the bitumen layer  

thickness has been measured in the laboratory and is equal to 0.45 cm, the same 

analysis can be performed with the permittivity as the only variable, whose 

precision can be increased to 0.1. The error functions of the amplitude, the phase 

and the combined parameters of the reflection coefficient are displayed in 

Figure 170. 

 

Figure 170 : Error functions for the amplitude, the phase and their combination in the  

bitumen permittivity determination when the thickness is known. 

The optimum peak for the amplitude is relatively sharp and equal to       . For 

the phase, the optimum is less sharp and equal to 3.7. In the combination of both 

parameters, the sharp peak present in the amplitude is predominant, giving a 
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global optimum equal to   
     . This is exactly the value predicted by the 

literature (  
           [73]).  

This method, in which the thin layer is embedded into an air matrix, gives better 

results than when the thin layers were embedded into concrete. This was 

expected, because the layer has then automatically a larger permittivity than the 

matrix. In addition, the direct wave can be measured with a high precision and is 

only affected by the antenna time drift. For all these reasons, this method could 

be an advantageous alternative to all the permittivity determination tests of 

§ 3.3.1 (surface reflection amplitude, bottom reflection time,…) when the two 

surfaces of the material to be tested are free.  

5.3 APVO curves parameters determination 

In this section, we attempt to determine the layer parameters on the basis of 

numerical and experimental APVO curves. In a first step, we will analyse 

numerical curves obtained with surface testing. This will allow checking the 

assumptions of § 4.2 on the limitation of the angle range for the parameters 

determination. Then, we will try to determine the parameters of air thin layers of 

various thicknesses on the basis of experimental CMPs.  

5.3.1 Numerical APVO curves 

The first test consists in determining the parameters of a 1.2 cm air layer, on the 

basis of the same numerical test as displayed in Figure 127. The radargram has 

been cut to isolate the first reflection (Figure 120) and the angle range 

considered in the analysis is 0°-42°. Five frequencies are considered, ranging from 

1.7 to 2.9 GHz. The error functions of the amplitude, the phase and their weighted 

sum, determined with the method presented in § 5.2.2.1 are represented in Figure 

171, in which the real values are represented by a white cross. 
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Figure 171 : Mean error between the reflection coefficient numerically estimated on a 

1.2 cm air layer into concrete and forward calculations using the hybrid model:  

(a) amplitude; (b) phase and (c) weighted sum of the amplitude and phase. 

The minimum of the error function is obtained for the parameters          and 

   
   . These estimated parameters are very close to the real parameters, 

despite the fact that the numerical tests are performed from the surface. The 

position of the maximum is mainly determined by the amplitude error (Figure 171 

(a)), but the phase error (Figure 171 (b)) allows eliminating the local minimum 

appearing in the amplitude error for high permittivities and low thicknesses. 

If the same analysis is performed on the angle range 32°-42°, the optimum is 

obtained for          and    
   . Those parameters are not exact but still give a 

fair approximation of the layer parameters.  

5.3.2 Experimental APVO curves 

The same analysis as in the previous paragraph is performed on experimental 

APVO curves measured on the same configuration:          and    
   . The 

considered angles interval ranges from 32°, the minimum angle measureable for 

this configuration with our antenna, to 42°, the maximum value for which the 

influence of the surface-lateral wave remains limited (see § 4.2.4). The error 

functions are drawn in Figure 172.  
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Figure 172 : Mean error between the reflection coefficient numerically estimated on a 

1.2 cm air layer into concrete and forward calculations using the hybrid model:  

(a) amplitude; (b) phase and (c) weighted sum of the amplitude and phase. 

The optimum value is obtained for          and    
   . This value is farther from 

the real values than the best parameters obtained from numerical curves, due to 

the important noise. We note that the minimum zone near the optimum value is 

an oblique line: If the permittivity is overestimated, it is likely that the layer 

thickness will be overestimated as well. On the opposite, if the value of one of the 

parameters is known, the error on the other parameter will be reduced. A 

difference with the error functions obtained for the numerical curves is the 

presence of a local minimum for thicker layers (         ) with a permittivity of 

3-4.  

The APVO curves estimated with the hybrid method for these estimated 

parameters are compared in Figure 173 to the experimental curves and to the 

curves calculated with the real parameters.  
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Figure 173 : (a) Amplitude and (b) phase comparison of the reflection coefficient 

experimentally measured on a 1.2 cm air layer embedded into concrete to the APVO 

curves calculated with the hybrid method for the estimated parameters and for the real 

values.  

In Figure 173, we observe that the amplitude of the curves calculated with the 

estimated values corresponds slightly more to the experimental curves than the 

ones calculated with the real parameters. This concordance is more evident 

again for the phase curves. The higher values observed for the phase are 

probably due to the surface-lateral waves and were predicted by the simulations 

(Figure 127 (b)). 

Finally, the same test was performed on air thin layers with amplitudes ranging 

from 1 mm to 1.8 cm. The estimated parameters are compared to the actual 

values in Figure 174. 

         
 

Experimental 
curves 

Analytical curves  

calculated for the  

estimated parameters 

Analytical curves  

calculated for the  

real parameters 

 

         

     

     

 Experimental Estimated parameters Real parameters 

(a) 

 

32 34 36 38 40 42 0 

0.5 

1 

1.5 

R
e
fl
e
c
ti
o
n

 c
o

e
ff
ic

ie
n
t 

a
m

p
lit

u
d
e
 

Incident angle (°) 
  

  

32 34 36 38 40 42 0 

0.5 

1 

1.5 

Incident angle (°) 

R
e
fl
e
c
ti
o
n

 c
o

e
ff
ic

ie
n
t 

a
m

p
lit

u
d
e
 

  

  

32 34 36 38 40 42 0 

0.5 

1 

1.5 

Incident angle (°) 

R
e
fl
e
c
ti
o
n

 c
o

e
ff
ic

ie
n
t 

a
m

p
lit

u
d
e
 

  

  

1.696 
2.009 
2.321 
2.58

9 2.90

1 

Frequency (GHz) 

(b) 

 

32 34 36 38 40 42 -5 

-4.5 

-4 

-3.5 

R
e
fl
e
c
ti
o
n

 c
o

e
ff
ic

ie
n
t 

p
h

a
s
e
 (

ra
d

) 

Incident angle (°) 
  

  

32 34 36 38 40 42 -5 

-4.5 

-4 

-3.5 

Incident angle (°) 

R
e
fl
e
c
ti
o
n

 c
o

e
ff
ic

ie
n
t 

p
h

a
s
e

 (
ra

d
) 

  

  

32 34 36 38 40 42 -5 

-4.5 

-4 

-3.5 

Incident angle (°) 

R
e
fl
e
c
ti
o
n

 c
o

e
ff
ic

ie
n
t 

p
h

a
s
e

 (
ra

d
) 

  

  



   

215 

 

 

Figure 174 : Experimental estimation of layer thickness and permittivity determined by 

minimization of the global error function for a CMP measurement. 

In Figure 14, we observe that both the permittivity and the thickness are 

systematically overestimated by the method. The results are acceptable 

between 2 mm and 1.2 cm: the global trend of the thickness increase is visible. In 

this range, the thickness error is less than 4 mm and the permittivity error is less 

than 5. The worst results are obtained for the 1 mm layer, probably due to the 

excessive noise, and for the 1.8 cm layer, for which the global optimum is 

obtained for the local minimum that was observed in Figure 172 (c). 

As expected, due to the numerous factors that are not taken into account in our 

analysis (§ 4.2), the parameters estimation using the APVO curves is not as 

efficient as the method using the static measurements. Nevertheless, the method 

is promising, and a diminution of the dimensions of the antennas or the 

introduction of the surface-lateral waves into the hybrid model are likely to 

increase the method accuracy and robustness. 

5.4 Conclusions 

The peak-to-peak amplitude of a radar pulse reflected on a thin layer is linearly 

influenced by the layer amplitude. But the concordance with the analytical 

curves is reduced due to the peak separation. Moreover, as long as only one 

value (the peak-to-peak amplitude) is extracted from each measurement, the 

method is insufficient to determine simultaneously the thickness and the 

permittivity of the layer, but it can help determining one parameter if the other 

one is known. 

A spectral analysis of static measurements allows a simultaneous determination. 

With this method, all the frequencies present in the pulse can be exploited, and 
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the phase information can be used in addition to the amplitude information. The 

validity of the method was demonstrated on numerical tests. In particular, when 

the layer thickness is important, the hybrid model revealed to give a better 

parameters estimation than the plane wave method.  

The method was then tested experimentally to determine thin air layers of 

different thicknesses embedded into concrete. The concordance between the 

experimental points (especially the phase) and the curves was far poorer than for 

the numerical data. This may be due to the dispersive properties of concrete, 

which are not accounted for in the simulations nor in the equations. Nevertheless, 

the parameters determination was possible with a precision of 20% on the 

thickness, and the permittivity was perfectly determined. The same test was 

performed on a thin bitumen layer instead of air. Probably due to the lower 

permittivity contrast, the precision in parameters determination was lower than for 

the air layers.  

The static determination method can also be adapted to measure layers 

“embedded” into air. A test performed on a bitumen layer gave promising results. 

The precision was good, and could clearly be improved by using a wider range of 

thickness-to-wavelength ratios. This method is directly applicable to any layer 

whose both faces are in contact with air. In this case, it may be an interesting 

alternative to all the methods presented in § 3.3 for the permittivity determination. 

Without surprise, the layer determination using CMP measurements performed at 

the surface has a relatively low precision. The phenomena induced by the 

surface testing with large offset (§ 4.2) decrease the parameters estimation 

precision, even when a limited angle range is considered. Without improvements, 

this method should not be preferred to the frequency analysis of static 

measurement, despite the fact that each measurements contains more 

information. 
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Conclusions 

and perspectives 

The aim of this thesis was to investigate the possibilities of determining the 

properties of thin layers embedded into concrete with a commercial GPR 

antenna.  

In the first chapter, we presented the general context of the bridge testing with 

GPR. We described the different pathologies that could affect concrete 

structures and the different non-destructives methods that can be used to detect 

the problems. Finally, we showed that the GPR is particularly suitable to detect 

layers, and we described different existing strategies for the layers determination.  

In the second chapter, we presented the physical bases of the GPR waves 

propagation, with an emphasis on the phenomenon of wave reflection on simple 

interfaces and on thin layers. In this last case, we noticed that the plane wave 

approximation, frequently used for the thin layers characterization, could be 

invalid in some cases, namely when the layer is in the near field or has a low 

permittivity. 

The third chapter was dedicated to the analysis of the radar incident signal. We 

determined different test configurations and a method to extract the reflection 

coefficient from numerical and experimental data. We also determined 

procedures to optimize the experimental acquisition, the signal treatment and the 

properties determination of the surface material. 

The fourth chapter tackled the problem of the analytical estimation of the 

reflection coefficient APVO curves. First, the analytical methods detailed in the 

second chapter were confronted to the offset-dependent reflection coefficients 

obtained from FDTD simulations. We determined a hybrid model in 2D and 3D, 

allowing to approach satisfactorily the reflection coefficient amplitude and 
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phase by using the best method depending on the layer thickness-to-wavelength 

ratio. This model is valid for antennas embedded into the matrix. When the 

measurement is performed from the surface, additional phenomena influence 

the curves. By comparing the APVO curves, obtained by the model, to realistic 

numerical and experimental curves, we determined a signal treatment 

procedure for limiting the influence of those phenomena and discussed different 

strategies for future improvements of the method.  

In the fifth and last chapter, we attempted to characterize embedded thin layers 

using the analytical curves described in the previous chapter.  A simple method 

to suppress the influence of the different refracted waves consists in performing 

static measurements, with an angle less than the critical incidence. First, we 

performed a very simple analysis of the data, extracting only the peak-to-peak 

amplitude. This method showed a very good concordance with the numerical 

results, and a relatively good concordance with the analytical curves, for the very 

thin layers. But it is very limited in terms of parameters determination. To be able to 

simultaneously determine the thickness and the permittivity of the layer, it is 

necessary to perform a spectral analysis of the wave, so that all the frequency 

content of the pulse can be exploited. This method revealed to give good results, 

with a permittivity perfectly detected and an error on the thickness less than 20%. 

Finally, we investigated the possibility to determine the layers parameters using 

the CMP measurements. As expected, the presence of the surface effects, in 

combination with the measurement noise, decreased the parameters estimation 

precision. Nevertheless, for most tests, the parameters could be estimated with a 

limited error, which is encouraging for the future developments of the method.  

The methods presented in this work aim at determining the reflection coefficient 

of a simple interface or a thin layer. By consequence, they can only be applied 

practically in cases where this parameter can be isolated in the measurement. 

This is the case in two situations: 

- When a measurement on a metallic reflector  placed at the same position 

as the layer is possible. This reflector can be placed into the structure 

during its building, in the perspective of future testing, but can difficultly be 

introduced at the required depth for the auscultation of existing structures. 

On the opposite, this is always possible and relatively easy when the layer 

to determine is embedded into air. 

- When all the other parameters influencing the measured amplitude are 

known or can be estimated (included the permittivity and conductivity of 

the first medium and the corresponding radiation pattern of the antenna). 

This may be easier to achieve when the antennas are situated in the far 

field. 

The comparison of the experimental APVO curves with analytical curves leads to 

a fair parameters estimation for air thin layers embedded into concrete, after a 

fast computation. In addition to this main contribution, the thesis also gives a 

comprehensive description of the different phenomena affecting the thin layers 

detection as well as of the complexity of the signals for this type of measurements 
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with contact antennas and near-field measurements. Indeed, the interaction of 

the reflection curve with the lateral and the surface-lateral wave, the multiple 

reflections, the time drift of the antenna or the near-field radiation pattern are 

phenomena that strongly influence the measured data and impair the direct 

application of simple APVO curves inversion methods. 

Different solutions were proposed along the different chapters to improve the 

proposed analytical solution. Three methods seem particularly promising to 

increase the precision of the estimation of the APVO curves in the case of near-

field concrete testing.  

The first one is the evaluation of the surface-lateral wave, whose amplitude 

revealed to be important and which is present for almost all the angle range that 

can be investigated in CMPs. The second path of improvement consists in taking 

into account the antenna radiation pattern in the equations. The analytical 

formulation of this radiation diagram may depend on many parameters, 

including the distance to the antenna for measurements performed in the near-

field, but this analysis will be necessary in order to be able to compare rigorously 

the post-critical reflections on the thin layers and on the perfect reflector. Finally, 

a phenomenon that has been neglected but may have an influence on the 

results is the dispersive behaviour of concrete. This frequency dependence of the 

properties may be taken into account by the determination of the Jonscher 

parameters. In this case, the layer conductivity will be determined by the method, 

in addition to its permittivity. 

Additional developments could also be implemented in the model, so that it 

could be used in more situations. First, the equations developed for a layer 

embedded into a matrix, could be developed for the cases where the materials 

above and under the layer are different. If the permittivity of the second layer is 

larger than the matrix permittivity, this should not pose any problem, but it will add 

an additional parameter to determine (   
 ). On the opposite, if the second 

medium has a lower permittivity, a lateral wave is susceptible to propagate at the 

interface, which will considerably complicate the equations.  

The second method development that we recommend would be to compare 

the measurements for each offset to the first trace in the same APVO curve. With 

this method, the parameters estimation could be performed in many more cases, 

because it frees the layer determination from the necessity of a comparison with 

a perfect reflection. This method requires a good estimation of all the factors 

influencing the amplitude, and especially the radiation pattern and the surface 

conductivity.  

A last method development would consist in performing CMPs in the TM mode, in 

addition to the TE mode. The energy transmitted in this mode is much lower, but 

the evolution of the reflection coefficient is much more variable with the incident 

angle. For this reason, measurements performed in the transverse magnetic mode 

are likely to allow improving the current measurements precision.  
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The introduction of all these parameters into the equations will increase the 

computational time. But the introduction of an inversion method, allowing to test 

only selected values instead of spanning the whole parameter space is likely to 

reduce drastically the computation time. 

After being implemented with all these improvements, it is likely that the analytical 

model will be able to determine the layer properties with a very good precision 

from experimental measurements. Nevertheless, under a few conditions, the 

method proposed in this work can be applied unaltered for an estimation of the 

layer properties. Due to its fast computation, this analytical approach can also be 

used as a first step of a more sophisticated method. Indeed, it could be part of 

the data pre-treatment phase of a more comprehensive method, like modelling 

or full waveform inversion. The investigated parameters would then be roughly 

estimated by comparison to the analytical curves, in order to reduce the space 

of parameters to investigate with the high precision method.  

The applicability of this method on real structures, in the framework of a 

nondestructive inspection campaign, will depend on the field conditions. It is 

expected that a thin layer embedded into a structure presenting a large humidity 

gradient, high chloride infiltrations or a dense surface reinforcement will not be 

possible to characterize. Nevertheless, in good field conditions, the method 

presented in this thesis can contribute to the quantitative characterization of 

layered structures. For instance, it can help to the determination of the 

composition of a road or bridge pavement or to the estimation of the thickness of 

an insulation layer inside a wall or a soil.  
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 Theoretical equations of the Appendix 1.

characteristic waves in CMPs 

The equation of all the waves appearing in the radargram obtained with the 

CMP acquisition mode (Figure 175) can be calculated. 

    

Figure 175 : Typical radargram obtained with CMP. 

The equations of the time of arrival of the waves   and  , which are respectively 

the direct wave in the air and in the material, have already been developed in 

§ 2.1.3.2 : 
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Wave  , the critically refracted wave, travels into the ground with an incident 

angle equal to   , the critical angle, which is the incident angle corresponding to 

an horizontal path into the air. At every interface, refraction laws stipulate that we 

have: 
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In this case, material 1 is concrete and material 2 is air, thus if       ,    should be 

equal to 90°. It gives us the value of   : 
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(151) 

If the offset is equal to        , the critically refracted wave is coincident with the 

first reflected wave  . If the offset   is larger than this value, the time of travel of 

the wave is equal to the constant time of travel through the concrete plus the 

time of travel in the air: 

 
      

  

      

 
         

 
 

(152) 

First reflected wave   is a function of the offset and the speed into the material. Its 

time of arrival is: 

        
√   

  

 

 
 (153) 

Finally, second reflected wave   has exactly the same parameters than the first 

reflected wave. Its measurement time is 

        
√   

  

  

 
 (154) 

Of course, an infinite number of reflection multiples on the first interface can be 

represented in the same way. Anyway, because of the attenuation, the number 

of visible multiples is quite limited. 
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 Mathematical models for the Appendix 2.

estimation of the frequency-

dependent permittivity  

As explained in § 2.1.6, the dielectric properties of a material are frequency 

dependent. Under some conditions (in the GPR plateau), this dependence may 

be neglected. But when this is not possible, different mathematical models have 

been elaborated to take into account the evolution of the properties with the 

frequency. 

Debye model 

Debye model [121] is valid for materials such as water, that present a variation 

between a low frequency permittivity and a high frequency permittivity, as well 

as a relaxation time. 

 
  ( )     

     

      
  

(155) 

 
   ( )  (     )

  

      
 

(156) 

In (155) and (156),    is the static, or very low frequency permittivity, 

corresponding to a good alignment between the electromagnetic field and the 

dipolar molecules. On the opposite,    is the optical, or very high frequency, 

permittivity: it corresponds to a point at which the dipoles cannot align on the 

field, which changes at a high frequency. Instead, they are agitated, creating 

high heat dissipation. The permittivity relaxation time   corresponds to the time 

necessary for the dipoles to align on the field. When the excitation period is equal 

to  , the dipoles are almost always on phase opposition to the field and the 

imaginary component is maximum. 
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Figure 176 : Permittivity spectrum of free, pure water at room temperature illustrating the 

single Debye relaxation mechanism at approximately 19 GHz [122]. 

Cole-Cole model 

The Debye formula is very well describing the behaviour of free polar molecules, 

but often fails to describe the behaviour of mixed materials, in which different 

materials can have different relaxation times, and molecular collisions can modify 

the global response. Cole and Cole [123] improved the Debye formula by 

incorporating an experimental broadening factor  . The complex dielectric 

permittivity is then equal to: 

 
 ( )     

     

  (   )   
 

(157) 

Studies showed that for typical underground materials,   is comprised between 0 

(the Cole-Cole formula is then equal to the Debye relationship) and 0.7 [122] . 

Jonscher model 

The Debye and Cole-Cole models cannot describe phenomena as the charge 

carrier relaxation phenomenon; they give unsatisfactory results to describe the 

high frequency part of dipolar relaxation [56]. Jonscher [124] introduced a more 

global model which uses the exponential dependence of the imaginary and real 

parts of the dielectric permittivity for large frequencies, with the exponent      

[125]. In his theory, the complex dielectric permittivity is given as a function of the 

dielectric susceptibility        .  

   ( )         ( )  
    

 
 (158) 

In equation (158):  

-   (     ) is the limiting high-frequency value of the real part of the 

effective permittivity. It is constant and real and describes the 
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mechanisms of polarization that rapidly respond to the application of an 

electric field; 

-     is dc (direct current) conductivity (real and constant); 

-    is the sum of various susceptibilities related to polarizations responding 

more slowly. It is expressed by the relationship called the Jonscher 

universal dielectric response. 

   ( )    (
 

  

)
   

 [      (
  

 
)] (159) 

In (159): 

-   is an empirical parameter without dimension that characterizes the 

change in amplitude as a function of frequency. It varies from 0 for 

materials with high dielectric loss to 1 for material without dielectric losses; 

-    is the real part of the susceptibility at the reference frequency; 

-    is a reference frequency, arbitrarily chosen. 

The complete Jonscher formulation counts four unknowns:       ,   and   . The 

efficiency of this model for the concrete has been assessed in different papers, for 

different water contents and aggregate sizes. Different simplification assumptions 

can be used to reduce the number of unknowns or to reduce the computation 

time in simulations [125, 126].  

A classic way to reduce the number of unknown for high frequency tests is simply 

to neglect the ratio     ⁄ , which decreases with the frequency [69, 126, 127]. 

Then, the effective dielectric permittivity can be written: 

   ( )         (
 

  

)
   

 [      (
  

 
)] (160) 

The complete Jonscher formulation and different approximations with two and 

three unknowns were compared by Chahine [126] for different concretes and 

water contents. They showed that the complete formulation (158) gave the best 

results, but that the three unknowns approximation (160) was quite close to the 

experimental results in most cases. 
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 Reflection coefficients in the TM Appendix 3.

mode 

In the transverse magnetic mode, the reflection coefficient for magnetic waves is 

given by: 

     
               

               

 (161) 

In this equations,    and    are the respective impedances of the two layers and 

   and    are the respective inclinations of the wave. If the medium is lossless, this 

equation can be expressed in function of the dielectric permittivities of the media 

     and     , using (46): 

     
√          √         

√          √         

 (162) 

 
      

√     √    

√     √    

        
(163) 

For a perpendicular incidence, the reflection coefficient will be the opposite of 

the TE reflection coefficient. When the incident angle grows, the behaviour is 

different from the TE because there is an incident angle (called the Brewster’s 

angle) for which the reflection coefficient is null. For superior angles, the reflection 

coefficient keeps decreasing to -1. 

Using the relationships (52) and (53), equation (162) becomes:  
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      √
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(164) 

In some specific acquisition configurations, it is useful to estimate the reflection 

coefficient of the electric field in the TM plane, or the magnetic field in the TE 

plane. They are simply linked by the relationship [54]: 

 
   

      
  

(165) 
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 Adaptation of the lateral wave Appendix 4.

equations for 2D propagation 

The main difference between 2D and 3D propagation is the geometric 

spreading. While 3D waves amplitudes decrease proportionally to the distance, 

2D waves decrease with the square root of the distance, and are then less 

attenuated (§ 2.1.7.3). 

The reflection coefficient (to the restrictive meaning of the term), is not affected 

by this attenuation difference: the same proportion of the energy is reflected at 

the interface, even if this energy is higher in 2D case. For this reason, equations 

(59)-(66) remain valid in two dimensions. 

The difference appears when we consider the lateral wave. Indeed, the wave 

reaches the interface has a different amplitude. Then it will attenuate less into the 

layer, due to the fact that in 2D, lateral waves travel along a 1D interface and are 

not submitted to circular spreading into the interface plane. Then, it will interact 

with a reflected wave less attenuated as well. In every case, the 3D attenuation 

factor     will have to be replaced by a 2D attenuation factor   √ , which 

corresponds to multiply each equation by √ .  

For incident angles larger than the critical angle, the field of the lateral wave (67) 

becomes then:  

 
        

   

  (    ) √     
  ⁄

   (          )  ( ) 
(166) 

 

        √        
   

  (    ) √         
  ⁄

   (          )  ( )

  
  √ 

  (    )    
  ⁄

   (          )  ( ) 
(167) 

This attenuation in     
   

 has been confirmed by numerical simulations. Indeed, 

when the measured amplitude is multiplied by   
   

 for each offset, the frequency 

amplitude obtained after Fourier analysis is then constant with the offset (see 

Figure 94). The factors √      and √        appear to take into account the change 

of geometrical spreading into the matrix.   and  ( ) are supposed to be similar in 

2D than in 3D. Equations of § 2.1.7.3 will then be used. 

The pseudo-reflection coefficient of the lateral wave has to be changed as well, 

as the propagation term of the reflected wave is now        √  ⁄  . 
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√  

       
 (168) 

We obtain then the apparent reflection coefficient for the spherical waves: 

 

                           

 
  √ 

  (    )    
  ⁄

   (          )  ( )
√  

       

       √        √          ( ) 

(169) 

The angle-dependent amplitude and phase of the global reflection coefficient 

obtained with this formula with         ,        and         for different 

frequencies are represented in Figure 35(a). Those curves can be compared to 

reflection coefficient measured through 2D numerical modeling for the same 

configuration, represented in Figure 35 (b). 

 

 

Figure 177 : Amplitude and phase of the global reflection coefficients with   
  

    , 

  
  

   and         ; (a) obtained with the modified formulas taking into account the 

spherical waves reflection and the lateral; (b) measured through the analysis of numerical 

2D simulations. 
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 Signal performance compliance Appendix 5.

Different tests can be performed on the signal in order to insure the signal quality. 

We evaluated the system performances in different configurations, with a 

procedure inspired from the ASTM D 6087 – 05 standard, concerning the 

evaluation of asphalt-covered bridge decks [95] with horn antennas. Moreover, 

we also studied the influence of different acquisition factors and methods on the 

test results. 

Long-time stability test 

The test consists in measuring every minute the reflection of the radar placed in 

the air on a metal plate. According to the standard [95], we should have: 

 

         

    

    
(170) 

In (170),      is the amplitude at the reference warming up time and      is the 

maximum amplitude observed for longer times. 

 

Figure 178 : Evolution of the peak-to-peak amplitude reflected on a metallic plate  

with a stack of 1. 

In Figure 178, we can observe that the amplitude is slightly decreasing; however, 

the most important observation is probably related to the important variation with 

time of the signal. This variation is up to 20% of the amplitude, even after a long 

warming up time. 

The same test was performed again, with an automatic stack of 8 (Figure 179) 
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Figure 179 : Evolution of the peak-to-peak amplitude reflected on a metallic plate  

with a stack of 8. 

If we rigorously follow the standard, the stability criteria is respected with the stack 

of 8, even for a warming up time of 20 minutes since  

 

           

      

    
(171) 

But this is only the case because the reflected amplitude is decreasing, while the 

standard seems to expect an increase. If we perform a similar analysis for a signal 

that decreases with the time, we obtain 

 

           

      

          
(172) 

If we respect a warming up time of 80 minutes, we find 

 

           

      

         
(173) 

To respect rigorously the standard, the warming up time should be larger than 

80 minutes, or the stack higher than 8.  

The same test was performed with a stacking of 16 and more than 6 hours of 

measurements. 
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Figure 180 : Evolution of the peak-to-peak amplitude reflected on a metallic plate  

with a stack of 16. 

We observe in Figure 180 that, since the metallic plate was placed closer to the 

antenna, the reflected amplitude is higher than in the previous tests. 

Unfortunately, the stability criterion is still not respected, because the variations 

are still up to 20%. 

The long-time stability criterion of the standard is not fulfilled by our antenna, even 

by increasing the stacks number. We conclude that the long-time stability of our 

antenna signal is poorer that the stability that can be reached with horn 

antennas (for which the standard was initially written). 

Signal stability test 

The signal stability control, according to the standard, consists in 

100 measurements performed over a metallic plate with the maximum acquisition 

rate. We should then have 

 

         

    

       
(174) 

The test was performed and we found 

 

         

    

        
(175) 

We see that it is impossible to fit to the standard requirement; the signal of the 

radar is too unstable. To decrease this variability, one can use the signal stacking 

method, but the number of stacks necessary to fit to the standard is very large as 

long as the noise proportionally decreases to the inverse of the root mean of the 

stack number (see § 3.2.3.1). 
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 Alternative 3D hybrid model Appendix 6.

As an alternative to the 3D hybrid model developed in § 4.1.3.3, we developed 

an second model in which the attenuation function is not applied to the lateral 

wave but only on the multiples. The only attenuation for the lateral wave is then its 

attenuation described by (67), unrelated to the layer thickness. The parameters of 

the attenuation equation (144) had to be optimized to this new configuration. The 

best fit was obtained for       and    . The results are shown in Figure 181. 

 

 

Figure 181 : Comparison of the APVO curves measured from 3D numerical modelling and 

estimated with the hybrid model determined from 3D measurements, without applying 

attenuation function to the lateral wave. 

The value of the error function calculated on the thicker curves (7-11 cm) is equal 

to 0.4186 without applying attenuation to the lateral wave (Figure 181) while it 

was equal to 0.4273 with the first model (Figure 118). But no improvement is really 

visible on the curves. For example, the position of the first peak of the 7 cm curve 

is improved, but for larger incidences, the oscillations are completely attenuated 

because the lateral wave is in phase opposition with the multiples. This does not 

appear in the numerical modelling results, suggesting that the lateral wave is 

present but still undergoes attenuation due to the layer thickness.   
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 Codes of the main Matlab functions Appendix 7.

In this appendix, the hybrid function used for the determination of APVO curves is 

detailed. All the sub-functions used in this routine (written in italic and bold) will be 

detailed as well. 

 

function [AVO,PVO]=APVO_Hybrid(e_r1,e_r2,sig_1,sig_2,h,d,x,nk,freq,nbdim,fig) 

  

% This function evaluates the AVO and PVO curves with the hybrid method. 

% e_r1 and e_r2 are the respective relative dielectric permittivities of the 

matrix 

% and of the layer,  

% sig_1 and sig_2 are their respective conductivities. 

% h is the layer depth, d the layer thickness, x the antennas offsets (in m) 

% nk is the number of terms of the series truncation,  

% freq is the array of considered frequencies (in Hz),  

% nbdim is the number of dimensions of the problem (2 or 3) and  

% fig is 0 or 1, depending if figures should be displayed. 

  

v_c=0.3/sqrt(e_r2);% speed into the layer 

valtheta=atan(x/2/h); %Range of incident angles 

  

for k=1:length(x)% Loop on the different positions 

     

    xk=x(k); % Local offset value 

         

    for l=1:length(freq)  

     

        freqk=freq(l); 

        lambda_c=(v_c/(freqk/10^9));% wavelength into the matrix         

         

        if d<0.3*lambda_c 

            Rcompl=R_tl_plane(e_r1,e_r2,sig_1,sig_2,h,d,xk,freqk); 

         

        elseif d>0.5*lambda_c 

            Rcompl=R_tl_cerv_att(e_r1,e_r2,sig_1,sig_2,h,d,xk,nk,freqk,nbdim); 

        

        else % interpolation between both methods 

                        

Rcompl_cerv=R_tl_cerv_att(e_r1,e_r2,sig_1,sig_2,h,d,xk,nk,freqk,nbdim); 

       Rcompl_ev=R_tl_plane(e_r1,e_r2,sig_1,sig_2,h,d,xk,freqk); 

Rcompl=Rcompl_cerv*(d-0.3*lambda_c)/(0.2*lambda_c)+Rcompl_ev*(0.5*lambda_c-

d)/(0.2*lambda_c); 

        end 

         

        phase(k,l)=angle(Rcompl);      

        R(k,l)=abs(Rcompl); 

  

    end 

end 

  

AVO=R; 

PVO=phase; 

  

if fig==1 

    equation_str = (num2str((freq*10^-9)',4)); 

  

    figure 

    plot(valtheta/pi*180,R) 

            ylabel('Reflection coefficient amplitude') 

            xlabel('Incident angle (°)') 

            title('Hybrid model') 

            hl=legend(equation_str,'Location', 'EastOutside');   
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            vl = get(hl,'title'); 

            set(vl,'string','Frequency (GHz)'); 

  

    figure 

    plot(valtheta/pi*180,phase) 

            ylabel('Reflection coefficient phase (rad)') 

            xlabel('Incident angle (°)') 

            title('Hybrid model') 

            hl=legend(equation_str,'Location', 'EastOutside');   

            vl = get(hl,'title'); 

            set(vl,'string','Frequency (GHz)'); 

end 

 

 

 

 

 

 

function Rcompl=R_tl_cerv_att(e_r1,e_r2,sig_1,sig_2,h,d,x,nk,freq,nbdim) 

  

% This function evaluates the AVO and PVO curves with the first terms method with 

spherical waves and layer attenuation. 

% e_r1 and e_r2 are the respective relative dielectric permittivities of the 

matrix 

% and of the layer,  

% sig_1 and sig_2 are their respective conductivities. 

% h is the layer depth, d the layer thickness, x the antennas offset (in m) 

% nk is the number of terms of the series truncation,  

% freq is the frequency (in Hz),  

% nbdim is the number of dimensions of the problem (2 or 3) and  

  

r=sqrt(e_r1)/sqrt(e_r2);%speed ratio 

v_m=0.3/sqrt(e_r1);% speed into the matrix 

v_c=0.3/sqrt(e_r2);% speed into the layer 

lambda_c=(v_c/(freq/10^9));% wavelength into the matrix 

dOnLambda=d/lambda_c;% Thickness-to-wavelength ratio 

  

%Determination of the geometric attenuation coefficient 

if nbdim==2 

    att_coeff=0.5; 

else 

    att_coeff=1; 

end 

  

%Calculation of the intrinsic attenuation coefficient 

att_m=sig_1*sqrt(4*pi()*10^(-5))/(2*sqrt(e_r1*8.854187*10^-10)); 

att_c=sig_2*sqrt(4*pi()*10^(-5))/(2*sqrt(e_r2*8.854187*10^-10)); 

  

theta_crit=asin(v_m/v_c); %Critical angle 

x_crit=2*h*tan(theta_crit); %Critical distance 

     

% Determination of the incidence angles of every multiple 

[alpha]=Find_alpha(e_r1,e_r2,h,d,x,nk); 

% Calculation of Fresnel reflection coefficient for each multiple 

Rsimple=(cos(alpha)-sqrt(e_r2/e_r1-(sin(alpha).^2)))./(cos(alpha)+sqrt(e_r2/e_r1-

(sin(alpha)).^2)); 

% Distance of each multiple into the matrix 

x_m=ones(size(alpha)).*2*h./cos(alpha); 

% Distance of each multiple into the layer 

x_c=(0:2:2*nk).*d./cos(asin(r*sin(alpha))); 

% Calculation of the reflection coefficient of each multiple 

R_loc=-(1-Rsimple.^2).*Rsimple.^(-1:2:2*nk-1);  

% The first reflection coefficient is replaced by a calculation by the spherical 

equation  

[R_loc(1),R_refl,~]= 

R_cerveny_refl_lat(e_r1,e_r2,sig_1,sig_2,h,2*h*tan(alpha(1)),freq,nbdim); 

x_tot=x_m+x_c; % Total path of the wave 

t_tot=x_m/v_m+x_c/v_c; % Total travelling time of the wave 

% geometric attenuation for each multiple 

geom=x_tot(1)^att_coeff./x_tot.^att_coeff;  

% Intrinsic attenuation for each multiple 

att=exp(x_m*att_m).*exp(x_c*att_c); 

x_peak=x_crit+d; 

  

%Calculation of the attenuation function 
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if nbdim==2 

    attd=min(7.5*exp(-2.4*dOnLambda)*exp(-0.15*dOnLambda.^-4*(x-

x_crit)/lambda_c),1);        

else 

    attd=min(1.65*exp(-0.85*dOnLambda)*exp(-0.21*dOnLambda.^-3.25*(x-

x_crit)/lambda_c),1);        

end 

  

%The attenuation function is applied progressively between the critical 

%distance and the peak distance 

  

if x<x_crit 

   attd=1; 

elseif x<x_peak 

   attd=attd*sin(pi/2*(x-x_crit)/(x_peak-x_crit))+1*(1-sin(pi/2*(x-

x_crit)/(x_peak-x_crit))); 

end 

  

%Calculation of the propagation of every multiple 

prop=exp(1i*2*pi().*freq.*t_tot*10^-9)./exp(1i*2*pi()*freq*t_tot(1)*10^-9); 

glob=R_loc.*att.*geom.*prop; 

  

%Summation of the considered multiples 

Rcompl=sum(glob)*attd+R_refl.*(1-attd); 

  

  

 

 

 

 

function Rcompl=R_tl_plane(e_r1,e_r2,sig_1,sig_2,h,d,x,freq) 

  

% This function evaluates the AVO and PVO curves with the plane wave 

approximation.  

% e_r1 and e_r2 are the respective relative dielectric permittivities of the 

matrix 

% and of the layer,  

% sig_1 and sig_2 are their respective conductivities. 

% h is the layer depth, d the layer thickness, x the antennas offsets (in m) 

% nk is the number of terms of the series truncation,  

% freq is the array of considered frequencies (in Hz),  

% nbdim is the number of dimensions of the problem (2 or 3) and  

% fig is 0 or 1, depending if figures should be displayed. 

  

r=sqrt(e_r1)/sqrt(e_r2);%speed ratio 

v_c=0.3/sqrt(e_r2);% speed into the layer 

lambda_c=(v_c/(freq/10^9));% wavelength into the matrix 

dOnLambda=d/lambda_c;     

  

%Calculation of the intrinsic attenuation coefficient 

att_m=sig_1*sqrt(4*pi()*10^(-5))/(2*sqrt(e_r1*8.854187*10^-10)); 

att_c=sig_2*sqrt(4*pi()*10^(-5))/(2*sqrt(e_r2*8.854187*10^-10)); 

  

%Incident angle    

alpha=atan(x/2/h);  

%Fresnel reflection coefficient 

Rsimple=(cos(alpha)-sqrt(e_r2/e_r1-(sin(alpha).^2)))./(cos(alpha)+sqrt(e_r2/e_r1-

(sin(alpha)).^2));% Calculation of Fresnel reflection coefficient for each 

multiple  

%Angle into the layer 

phi=asin(r*sin(alpha)); 

%Path change into the matrix and the layer 

dx_m=-2*d*r*(sin(alpha(1)))^2/sqrt(1-r^2*(sin(alpha(1)))^2); 

dx_l=2*d/sqrt(1-r^2*(sin(alpha(1)))^2); 

%Intrinsic attenuation term 

att_term=exp(-att_c*dx_l+att_m*dx_m); 

%Phase shift term 

beta_1=exp(1i*4*pi()*dOnLambda*cos(phi)); 

%Global formula 

Rcompl=Rsimple*(1-beta_1*att_term)/(1-Rsimple^2*beta_1*att_term); 
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function [alpha]=Find_alpha(er_1,er_2,h,d,x,nk) 

  
%This function evaluates the reflection angles of the multiples when a  
%wave reflects into a thin layer. The parameters are er_1 and er_2 the  
%relative dielectric permittivities of the matrix and the layer, 
%h, the depth of the layer, d its thickness and x the antennas offset (all 
%in m). nk is the number of multiples that will be considered. 

  
r=sqrt(er_1)/sqrt(er_2); 
alpharef=atan(x/2/h); 
alpha(1)=alpharef; 

  
for j=1:nk 

     
    A=-r^2*h^2-r^2*j^2*d^2-x^2/4*r^2; 
    B=h^2+r^2*j^2*d^2+x^2/4+x^2/4*r^2; 
    C=-x^2/4; 
    D=-2*r*j*d*h; 
    E=r^2; 
    F=(-1-r^2); 

  
    p=[(A^2-D^2*E),0,(2*A*B-D^2*F),0,(B^2+2*A*C-D^2),0,(2*B*C),0,C^2]; 
    rac=asin(roots(p)); 

  
    alpha(j+1)=0; 
    for i=1:size(rac,1); 
        if rac(i)>0 & imag(rac(i))==0 &rac(i)<alpharef; 
            alpha(j+1)=rac(i); 
        end 
    end 

  
end 
 

 

 

 

 

function [R,R_refl,R_lat] 

=R_cerveny_refl_lat(er_1,er_2,sig_1,sig_2,h,x,freq,nbdim) 

  
% This function evaluates the reflection coefficient R from Cerveny equations. 
% It also gives its decomposition into reflected amplitude (R_refl) and 
% amplitude of the lateral wave (R_lat) 
% e_r1 and e_r2 are the respective relative dielectric permittivities of the 

matrix 
% and of the layer,  
% sig_1 and sig_2 are their respective conductivities. 
% h is the layer depth, d the layer thickness, x the antennas offsets (in m) 
% freq is the  considered frequencies (in Hz) 

  
v1=0.3/sqrt(er_1); 
v2=0.3/sqrt(er_2); 

  
epsilon0=8.854187*10^-10; 
mu0=4*pi()*10^-5; 

  
n=sqrt(er_2/er_1); 
alpha_1=sig_1/100*sqrt(mu0)/(2*sqrt(er_1*epsilon0)); 

  
k1=2*pi()*freq/(v1*10^9)+1i*alpha_1; 

  
theta=atan(x/2/h); 

  
theta_crit=asin(v1/v2); 
x_crit=2*h*tan(theta_crit); 
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A0=(cos(theta)-sqrt(n^2-(sin(theta))^2))/(cos(theta)+sqrt(n^2-(sin(theta))^2)); 

  
%%%%%%Situation before critical point%%%%%%%%%%%%%%%%%%%%%% 
beta=sqrt(k1*x./(2.*(sin(theta)).^3)).*(sqrt(1-n^2)-sqrt(1-(sin(theta)).^2)); 
A2=-2./((1-(sin(theta).^2))-(n^2-(sin(theta)).^2)); 

  
g=@(xk) exp(-xk.^2).*sqrt(xk-beta.*exp(1i*pi()/4)); 
L=integral(g,-Inf,Inf); 
mu1=L./(sqrt(pi())*sqrt(-beta.*exp(1i*pi()/4))); 

  
%%%%%%Beyond the critical point %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
L=x-2*h*n./(sqrt(1-n^2)); 
eta=((k1.*n*(1-n^2))./(2*x)).^0.5.*L; 
A1=((1-(sin(theta)).^2)+(n^2-(sin(theta)).^2))./((1-(sin(theta)).^2)-(n^2-

(sin(theta)).^2)); 

  
f = @(xk) exp(-xk.^2-sqrt(2).*eta.*xk.*(1+1i)).*(xk).^0.5; 
Q = integral(f,0,Inf); 
mu2=Q.*(2*eta).^1.5.*(exp(1i*pi()/4)).^1.5./gamma(3/2); 

  
R=2*h./cos(theta); 
if nbdim==2; 
    dim_corr=R.^-0.5.*(x_crit./sin(theta_crit)).^0.5.*x.^0.5./x_crit.^0.5; 
else 
    dim_corr=1; 
end 

  
R_refl=A0+sqrt(1-(sin(theta)).^2).*sqrt(n^2-(sin(theta)).^2).*A2.*(mu1-1); 
R_lat=0; 

  
if x>=x_crit 
    R_lat=2*n*mu2*x^0.5/(k1*sin(theta)*(1-

n^2)*(L)^1.5)*dim_corr*exp(1i*k1*(x*n+(2*h*sqrt(1-n^2)-R))+1i*pi()/2); 
    R_refl=A1+1i*A2*(1-(sin(theta))^2)^0.5*((sin(theta))^2-n^2)^0.5*mu1; 
end 

  
R=R_refl+R_lat; 


