S^{ν} Spaces, from Theory to Practice

KLEYNTSSENS Thomas Institute of Mathematics, University of Liège, Belgium tkleyntssens@ulg.ac.be

joint work with **Samuel NICOLAY**

Multifractal Analysis

- Study of very *irregular functions*;
- We determine the "size" of the set of points x which share the same "irregularity" $h_f(x)$;

 $D_f: h \mapsto \dim_{\mathcal{H}}(\{x: h_f(x) = h\});$

- it gives a geometrical idea of the *repartition of the irregularity*;

• In practice, we use a numerically computable function which "approximates" this size ; we use a Multifractal Formalism.

For Functions

Definition 1. Let $x \in \mathbb{R}$, $s \in \mathbb{R}_0^+$ and $f \in L_{loc}^\infty$. We denote $f \in C^s(x)$ if there exist a polynomial P of degree strictly smaller than s, a constant C > 0 and a neighbourhood Ω of 0 such that

 $|f(x+l) - P(l)| \le C|l|^s$

for all $l \in \Omega$.

Definition 2. Let $x \in \mathbb{R}$ and $f \in L_{loc}^{\infty}$; we denote the Hölder exponent of f at a point x by

 $h_f(x) = \sup\{s \in \mathbb{R}^+_0 : f \in C^s(t)\}.$

S^{ν} Spaces in Theory

For Measures

Definition 3. Let $x \in \mathbb{R}$ and μ a positive Borel measure on \mathbb{R} . We denote the Hölder exponent of μ at a point x by

$$h_{\mu}(x) = \liminf_{r \to 0^+} \frac{\log\left(\mu(B(x,r))\right)}{\log(r)}.$$

Wavelet

Take a mother wavelet ψ and $\{(\psi_{j,k}) : j \ge 0, k \in \{0, ..., 2^j - 1\}\}$ an orthonormal basis of $L^2([0;1])$ associated to ψ . We denote by $c_{i,k} =$ $\langle f, \psi_{i,k} \rangle$ the periodized wavelet coefficients of $f \in L^2([0;1])$. **Theorem 4** (Barral, Seuret). Let μ be a positive Borel measure on [0; 1]. If f is a function where $c_{j,k} = \mu ([k2^{-j}; (k+1)2^{-j}])$ then $D_f = D_{\mu}$.

Definition 5. We define the *wavelet profil* of a function $f \in L^2([0;1])$ by

$$\nu_f^C(\alpha) = \lim_{\epsilon \to 0^+} \left(\limsup_{j \to +\infty} \left(\frac{\ln(\#E_j(C, \alpha + \epsilon)(f))}{\ln(2^j)} \right) \right)$$

where $E_j(C, \alpha)(f) = \{k : |c_{j,k}| \ge C2^{-\alpha j}\}.$ **Proposition 6.** For all $C_1, C_2 > 0, \nu_f^{C_1} = \nu_f^{C_2} := \nu_f$.

Definition 7. Take a function $\nu : \mathbb{R} \to \{-\infty\} \cup [0; 1]$ nondecreasing and right-continuous and assume that there exists $\alpha_{min} \geq 0$ such that $\nu(\alpha) = -\infty$ for all $\alpha < \alpha_{min}$ and $\nu(\alpha) \in [0;1]$ for all $\alpha \geq \alpha_{min}$. We define

 $S^{\nu} = \{ f \in L^2([0;1]) : \nu_f(\alpha) \le \nu(\alpha) \ \forall \alpha \in \mathbb{R} \}.$

Theorem 8 (Aubry, Bastin, Dispa). For all $f \in S^{\nu}$, the function

$$\mathcal{D}_{f}^{\nu}(h) = \begin{cases} h \sup_{h' \in]0;h]} \frac{\nu(h')}{h'} & \text{if } h \leq h_{max} := \inf_{h \geq \alpha_{min}} \frac{h}{\nu(h)} \\ 1 & \text{otherwise} \end{cases}$$

is an upper bound of D_f and the set of functions where $D_f^{\nu} = D_f$ is prevalent in S^{ν} .

S^{ν} Spaces in Practice

In practice, the constant C > 0 of $\nu^{C}(\alpha)$ is not arbitrary because we have only a finite number of wavelet coefficients : • If C is too small, the detected value of $\nu_f^C(\alpha)$ will be 1; • If C is too big, the detected value of $\nu_f^C(\alpha)$ will be $-\infty$. For $\alpha \in \mathbb{R}$, we construct the function $C \mapsto \nu_f^C(\alpha)$. In practice, if $\alpha \geq \alpha_{min}$, this function is decreasing and stabilizes with an approximation of the theoritical value of $\nu_f(\alpha)$.

Spectrum of Cascades of Mandelbrot

Take W a positive random variable such that E[W] = 1 and $W_{i,k} \sim^{i.i.d} W$. Almost surely, the following construc-

Take the example where W is a log-normal :

References :

- [1] J.-M. Aubry, F. Bastin, S. Dispa Prevalence of multifractal functions in S^{ν} spaces, The Journal of Fourier Analysis and Applications, 2007.
- [2] J. Barral and S. Seuret, From multifractal measures to multifractal wavelet series, The Journal of Fourier Analysis and Applications, 2002.