S^{ν} Spaces, from Theory to Practice

KLEYNTSSENS Thomas Institute of Mathematics, University of Liège, Belgium

tkleyntssens@ulg.ac.be
joint work with Samuel NICOLAY

Multifractal Analysis

- Study of very irregular functions;
- We determine the "size" of the set of points x which share the same "irregularity" $h_{f}(x)$;

$$
D_{f}: h \mapsto \operatorname{dim}_{\mathcal{H}}\left(\left\{x: h_{f}(x)=h\right\}\right) ;
$$

it gives a geometrical idea of the repartition of the irregularity ;

- In practice, we use a numerically computable function which "approximates" this size ; we use a Multifractal Formalism.

For Functions

Definition 1. Let $x \in \mathbb{R}, s \in \mathbb{R}_{0}^{+}$and $f \in L_{\text {loc }}^{\infty}$. We denote $f \in C^{s}(x)$ if there exist a polynomial P of degree stricly smaller than s, a constant $C>0$ and a neighbourhood Ω of 0 such that

$$
|f(x+l)-P(l)| \leq C|l|^{s}
$$

for all $l \in \Omega$.
Definition 2. Let $x \in \mathbb{R}$ and $f \in L_{\text {loc }}^{\infty}$; we denote the Hölder exponent of f at a point x by

$$
h_{f}(x)=\sup \left\{s \in \mathbb{R}_{0}^{+}: f \in C^{s}(t)\right\} .
$$

S^{ν} Spaces in Theory

Definition 5. We define the wavelet profil of a function $f \in L^{2}([0 ; 1])$ by

$$
\nu_{f}^{C}(\alpha)=\lim _{\epsilon \rightarrow 0^{+}}\left(\limsup _{j \rightarrow+\infty}\left(\frac{\ln \left(\# E_{j}(C, \alpha+\epsilon)(f)\right)}{\ln \left(2^{j}\right)}\right)\right)
$$

where $E_{j}(C, \alpha)(f)=\left\{k:\left|c_{j, k}\right| \geq C 2^{-\alpha j}\right\}$.
Proposition 6. For all $C_{1}, C_{2}>0, \nu_{f}^{C_{1}}=\nu_{f}^{C_{2}}:=\nu_{f}$.
Definition 7. Take a function $\nu: \mathbb{R} \rightarrow\{-\infty\} \cup[0 ; 1]$ nondecreasing and right-continuous and assume that there exists $\alpha_{\text {min }} \geq 0$ such that $\nu(\alpha)=-\infty$ for all $\alpha<\alpha_{\text {min }}$ and $\nu(\alpha) \in[0 ; 1]$ for all $\alpha \geq \alpha_{\text {min }}$. We define

$$
S^{\nu}=\left\{f \in L^{2}([0 ; 1]): \nu_{f}(\alpha) \leq \nu(\alpha) \forall \alpha \in \mathbb{R}\right\} .
$$

Theorem 8 (Aubry, Bastin, Dispa). For all $f \in S^{\nu}$, the function

$$
D_{f}^{\nu}(h)= \begin{cases}h \sup _{\left.\left.h^{\prime} \in\right] 0 ; h\right]} \frac{\nu\left(h^{\prime}\right)}{h^{\prime}} & \text { if } h \leq h_{\text {max }}:=\inf _{h \geq \alpha_{\text {min }}} \frac{h}{\nu(h)} \\ 1 & \text { otherwise }\end{cases}
$$

is an upper bound of D_{f} and the set of functions where $D_{f}^{\nu}=D_{f}$ is prevalent in S^{ν}.

Spectrum of p-Cantor measure

Take $\left(r_{j}\right)_{j \in \mathbb{N}}$ such that $\sup r_{j}<\frac{1}{2}$ and $\lim _{n \rightarrow+\infty} \frac{1}{n} \log \left(r_{1} \ldots r_{n}\right)$ exists and is finite. Define $C:=C\left(\left(r_{j}\right)_{j}\right)=\bigcap_{j} C_{j}$. The p-Cantor measure on C is a
 measure such that

For Measures

Definition 3. Let $x \in \mathbb{R}$ and μ a positive Borel measure on \mathbb{R}. We denote the Hölder exponent of μ at a point x by

$$
h_{\mu}(x)=\liminf _{r \rightarrow 0^{+}} \frac{\log (\mu(B(x, r))}{\log (r)}
$$

Wavelet

Take a mother wavelet ψ and $\left\{\left(\psi_{j, k}\right): j \geq 0, k \in\left\{0, \ldots, 2^{j}-1\right\}\right\}$ an orthonormal basis of $L^{2}([0 ; 1])$ associated to ψ. We denote by $c_{j, k}=$ $\left\langle f, \psi_{j, k}\right\rangle$ the periodized wavelet coefficients of $f \in L^{2}([0 ; 1])$.
Theorem 4 (Barral, Seuret). Let μ be a positive Borel measure on $[0 ; 1]$. If f is a function where $c_{j, k}=\mu\left(\left[k 2^{-j} ;(k+1) 2^{-j}[)\right.\right.$ then $D_{f}=D_{\mu}$.

S^{ν} Spaces in Practice

In practice, the constant $C>0$ of $\nu^{C}(\alpha)$ is not arbitrary because we have only a finite number of wavelet coefficients :

- If C is too small, the detected value of $\nu_{f}^{C}(\alpha)$ will be 1 ;
- If C is too big, the detected value of $\nu_{f}^{C}(\alpha)$ will be $-\infty$.

For $\alpha \in \mathbb{R}$, we construct the function $C \mapsto \nu_{f}^{C}(\alpha)$.
In practice, if $\alpha \geq \alpha_{\text {min }}$, this function is decreasing and stabilizes with an approximation of the theoritical value of $\nu_{f}(\alpha)$.

Spectrum of Cascades of Mandelbrot

Take W a positive random variable such that $E[W]=1$ and $W_{j, k} \sim^{i . i . d} W$. Almost surely, the following construction defines a borel measure μ on $[0 ; 1]$:

Take the example where W is a log-normal :

References :

[1] J.-M. Aubry, F. Bastin, S. Dispa Prevalence of multifractal functions in S^{ν} spaces, The Journal of Fourier Analysis and Applications, 2007.
[2] J. Barral and S. Seuret, From multifractal measures to multifractal wavelet series, The Journal of Fourier Analysis and Applications, 2002.

