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cNeuroscience Institute and Centre for Neurocognitive Research & Department of Neurology, Christian-Doppler-Clinic, Paracelsus Private

Medical University, Salzburg, Austria
dDepartment of Psychology and Centre for Neurocognitive Research, University of Salzburg, Austria
eDepartment of Radiology, CHU University Hospital, University of Liège, Belgium
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a b s t r a c t

Introduction: In healthy conditions, group-level fMRI resting state analyses identify ten

resting state networks (RSNs) of cognitive relevance. Here, we aim to assess the ten-

network model in severely brain-injured patients suffering from disorders of conscious-

ness and to identify those networks which will be most relevant to discriminate between

patients and healthy subjects.

Methods: 300 fMRI volumes were obtained in 27 healthy controls and 53 patients in mini-

mally conscious state (MCS), vegetative state/unresponsive wakefulness syndrome (VS/

UWS) and coma. Independent component analysis (ICA) reduced data dimensionality. The

ten networks were identified by means of a multiple template-matching procedure and

were tested on neuronality properties (neuronal vs non-neuronal) in a data-driven way.

Univariate analyses detected between-group differences in networks’ neuronal properties

and estimated voxel-wise functional connectivity in the networks, which were signifi-

cantly less identifiable in patients. A nearest-neighbor “clinical” classifier was used to

determine the networks with high between-group discriminative accuracy.

Results: Healthy controls were characterized by more neuronal components compared to

patients in VS/UWS and in coma. Compared to healthy controls, fewer patients in MCS and

VS/UWS showed components of neuronal origin for the left executive control network,

default mode network (DMN), auditory, and right executive control network. The “clinical”

classifier indicated the DMN and auditory network with the highest accuracy (85.3%) in

discriminating patients from healthy subjects.

* Corresponding author. Coma Science Group, Cyclotron Research Center & Neurology Department, Allée du 6 août n� 8, Sart Tilman B30,
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Conclusions: FMRI multiple-network resting state connectivity is disrupted in severely

brain-injured patients suffering from disorders of consciousness. When performing ICA,

multiple-network testing and control for neuronal properties of the identified RSNs can

advance fMRI system-level characterization. Automatic data-driven patient classification

is the first step towards future single-subject objective diagnostics based on fMRI resting

state acquisitions.

ª 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cumulative researchonhemodynamic activitymeasuredwith

functional MRI (fMRI) in resting state conditions suggests that

the healthy brain can be organized in large-scale resting state

networks (RSNs) of cognitive-behavioral relevance. More

particularly, the default mode network (DMN), right and left

executive control, auditory, salience, sensorimotor, cere-

bellumand threevisualnetworks (lateral,medial, occipital) are

consistently identified in healthy subjects (Damoiseaux et al.,

2006; Laird et al., 2011; Smith et al., 2009) and show differen-

tial connectivity changes as the level of consciousness di-

minishes, such as in light (Horovitz et al., 2008) and deep sleep

(Boly et al., 2012; Horovitz et al., 2009), anesthesia (Boveroux

et al., 2010; Guldenmund et al., 2013; Martuzzi, Ramani, Qiu,

Rajeevan, & Constable, 2010; Schrouff et al, 2011) and hypno-

sis (Demertzi et al., 2011; Hoeft et al., 2012;McGeown,Mazzoni,

Venneri, & Kirsch, 2009). In clinical conditions, like dementia,

coma and related disorders of consciousness, fMRI resting

state investigations have mainly focused on the DMN which

showsdecreases in functional connectivity as a function of the

level of consciousness (e.g., Buckner, Andrews-Hanna, &

Schacter, 2008; Greicius, Srivastava, Reiss, & Menon, 2004;

Norton et al., 2012; Vanhaudenhuyse et al., 2010). To date, a

system-level characterization of fMRI baseline activity in pa-

tients with consciousness alterations is pending. Here, we

aimed toassess the ten-cognitive-RSNmodel in severelybrain-

injured patients suffering from disorders of consciousness,

namely in coma, vegetative state/unresponsive wakefulness

syndrome (VS/UWS) and minimally conscious state (MCS). By

means of an automatic data-driven approach, we further

aimed to identify those RSNs, which were most relevant to

discriminate unconscious and minimally conscious patients

from healthy volunteers.

2. Methods

A widely-used methodology to investigate fMRI resting state

functional connectivity is independent components analysis

(ICA). ICA is a multivariate data-driven procedure, which

evaluates the coherence of activity in multiple distributed

voxels that are organized inmaximally statistical independent

components (Cole, Smith, & Beckmann, 2010). By thisway, ICA

is also able to isolate cortical connectivity maps from non-

neuronal signals, such as head motion, cardiac pulsation and

respiration (Beckmann, DeLuca, Devlin, & Smith, 2005). So far,

ICA in severely brain-damaged patients was used to identify

the DMN and adopted a two-step procedure: first, filtering low

(<.007 Hz) and high (>.1 Hz) frequency signal fluctuations and

then opting for a template-matching procedure, i.e., the IC

which would best fit a predefined spatial template (repre-

senting theDMN)would be selected as the RSNof interest (e.g.,

Buckner et al., 2008; Greicius et al., 2004; Norton et al., 2012;

Vanhaudenhuyse et al., 2010). We here recognize the meth-

odological challenge when opting for a multiple RSN investi-

gation in patients with severe brain damage. In particular, by

using a single template-matching goodness-of-fit (GOF) pro-

cedure at a time, one runs the risk to erroneously identify a

component as the RSN of interest. To better illustrate this

issue, we consider the extreme case of a patient showing only

one IC of neuronal origin. If merely using the single template-

matching method, then this component would be assigned to

the RSNweare investigating each time. Consequently, in cases

of severely brain-injured patients, who are expected to show

fewer components of neuronal origin, the identification of the

accurate network can be jeopardized (Heine et al., 2012; Soddu

et al., 2012). To identify multiple RSNs of interest, we here

suggest: a) single-subject ICA decomposition, b) multiple

template-matching procedure using binary integer program-

ming and c) data-driven “neuronality” test for the selected

RSNs. For further quantitative voxel-wise connectivity ana-

lyses, we propose that these are performed on those subjects

andpatients forwhomtheRSNswill be identifiedboth in terms

of spatial pattern and neuronal activity.

2.1. Participants

We prospectively assessed healthy volunteers and patients in

coma,VS/UWSandMCS following severe brain damage studied

at least 5 days after acute brain insult. Clinical examinationwas

performedusingtheFrenchversionoftheComaRecoveryScale-

Revised (CRS-R;Giacino,Kalmar,&Whyte, 2004;Schnakersetal,

2008). Exclusion criteria were contra-indication for MRI (e.g.,

presence of ferromagnetic aneurysm clips, pacemakers), MRI

acquisition under sedation or anesthesia and large focal brain

damage (>50%of total brain volume). Healthyparticipantswere

free of psychiatric or neurological history. The study was

approved by the Ethics Committee of the Medical School of the

University of Liège. Written informed consent to participate in

the study was obtained from the healthy subjects and from the

legal surrogates of the patients.

2.2. fMRI data acquisition and preprocessing

As in previous resting state paradigms classically performed

by others (e.g., Beckmann et al., 2005; Greicius et al., 2004;

c o r t e x 5 2 ( 2 0 1 4 ) 3 5e4 636



Author's personal copy

Raichle et al., 2001) and ourselves (e.g., Demertzi et al., 2011;

Guldenmund et al., 2013; Soddu et al., 2012) we instructed

the healthy volunteers to close their eyes, relaxwithout falling

asleep and refrain from any structured thinking (e.g., count-

ing, singing etc.). The same instructionswere given to patients

but due to their cognitive and physical impairments, we could

not fully control for a prolonged eye-closed yet awake scan-

ning session. Nevertheless, patients were scanned under this

condition as in previous work dealing with this clinical pop-

ulation (Boly et al., 2009; Vanhaudenhuyse et al., 2010).

In all patients and controls, functional MRI time series

were acquired on a 3 T head-only scanner (Siemens Trio,

Siemens Medical Solutions, Erlangen, Germany) operated

with a standard transmit-receive quadrate head coil. Three

hundred multislice T2*-weighted functional images were ac-

quired with a gradient-echo echo-planar imaging sequence

using axial slice orientation and covering the whole brain (32

slices; voxel size: 3 � 3 � 3 mm3; matrix size 64 � 64 � 32;

repetition time ¼ 2,000 msec; echo time ¼ 30 msec; flip

angle ¼ 78�; field of view ¼ 192 � 192 mm2). The three initial

volumes were discarded to avoid T1 saturation effects. For

anatomical reference, a high-resolution T1-weighted image

was acquired for each subject (T1-weighted 3D

magnetization-prepared rapid gradient echo sequence). Data

preprocessing was performed using Statistical Parametric

Mapping 8 (SPM8; www.fil.ion.ucl.ac.uk/spm). Preprocessing

steps included realignment and adjustment for movement-

related effects, coregistration of functional onto structural

data, segmentation of structural data, spatial and functional

normalization into standard stereotactic Montreal Neurolog-

ical Institute (MNI) space, and spatial smoothing with a

Gaussian kernel of 8 mm full width at half-maximum. Further

motion correction was applied using ArtRepair toolbox for

SPM (http://cibsr.stanford.edu/tools/ArtRepair/ArtRepair.

htm), which corrects for small, large and rapid motions,

noise spikes, and spontaneous deep breaths.

2.3. Extraction and identification of RSNs

The performed methodology is summarized in Fig. 1. First,

single-subject ICA with 30 components was performed

(Ylipaavalniemi & Vigario, 2008) using the infomax algorithm

as implemented in the Group-ICA of fMRI toolbox (GIFT:

http://icatb.sourceforge.net/). The component images (spatial

maps) were calibrated to the raw data so the intensity values

were in units of percent signal change (PSC) from the mean

(Calhoun, Adali, Stevens, Kiehl, & Pekar, 2005). This fit was

used to scale the component images into units, which reflect

the deviation of the data from the mean, enabling a second-

level random effects analysis to be performed (Calhoun,

Adali, Pearlson, & Pekar, 2001). The ICs were then matched

to the templates representative of the RSNs by means of a

goodness-of-fit procedure. This method extends the single-

template goodness-of-fit approach (e.g., Greicius et al., 2004)

by quantifying the absolute PSC average of voxels falling in the

template minus the PSC average of voxels outside the tem-

plate. The templates for each RSN were selected by an expert

(author AD) after visual inspection from a set of spatial maps

resulting from Group ICA decomposition (30 components

running GIFT) performed on 12 independently assessed con-

trols (4 women, mean age ¼ 21 years � 3, scanned on a 3 T MR

scanner using a gradient echo-planar sequence of axial slice

orientation: 32 slices, voxel-size ¼ 3.4 � 3.4 � 3.0 mm3, repe-

tition time¼ 2,460msec, echo time¼ 40msec, flip angle¼ 90�,
field of view¼ 220� 220mm2). These templates were checked

by another expert (author AS) for accuracy of structural la-

beling (for the full set of the 30 ICs and the selected templates

see Supplementary Methods 1). Second, the multiple-

template assignation procedure took place. In order to over-

come potentially concurrent IC assignations to the same

template, we introduced two physiologic constraints: (i) a

template had to be assigned to one of the 30 ICs and (ii) an IC

could be labeled as an RSN or not. The first constraint ensured

Fig. 1 e Illustrative methods summary for the extraction and identification of the RSNs. First, single-subject ICA was used to

reduce fMRI data dimensionality into 30 independent components. Then, the goodness of fit (gi,j) between the components

and ten predefined spatial templates (T, representing the RSNs) was calculated. Second, the multiple-template assignation

procedure referred to the concurrent component assignation by means of two constraints, where 1) an RSN template had to

be assigned to one of the 30 independent components (column-wise) and 2) an independent component could be labeled as

an RSN or not (row-wise). Finally, a binary automatic classification was used to separate the identified RSNs between those

of neuronal and non-neuronal source (see Methods Section 2.3 and Supplementary Methods for more details).
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that all templateswould be assigned, given that the number of

ICs was larger than the number of the templates. The second

restriction forced a unique identification of each IC, which

overcame the potentially concurrent component assigna-

tions. The multiple components labeling with assignation

restrictions was formulated as a matching problem:

maxx

XN

i¼1

XM

j¼1

xi;jgi;j

s: t:
XN

i¼1

xi;j ¼ 1;1 � j � M (1)

XM

j¼1

xi;j � 1;1 � i � N (2)

with M ¼ 10 the number of different templates, N ¼ 30 the

number of ICs, gi,j the goodness of fit between the component i

and the template j and xi,j ˛ {0, 1}, an assignation binary var-

iable indicating thematch between the template j and the IC i.

Hence, the couple between the template and IC with the

highest global goodness of fit (taking into account all tem-

plates simultaneously) was eventually selected. The proposed

optimization problem was solved by using binary integer

programming (Grötschel & Holland, 1985). Third, for the

discrimination between “neuronal” and “non-neuronal” ICs,

we used a binary classification approach by means of support

vector machine (SVM) classifier trained on 19 independently

assessed healthy subjects. The feature, which was used for

the training of the classifier was the fingerprints obtained

from ICA decomposition (n ¼ 30 components). The fingerprint

is a feature vector which contains both spatial (i.e., degree of

clustering, skewness, kurtosis, spatial entropy) and temporal

information (i.e., one-lag autocorrelation, temporal entropy,

power of five frequency bands: 0e.008 Hz, .008e.02 Hz,

.02e.05 Hz, .05e.1 Hz, and .1e.25 Hz) and has been shown to

discriminate neuronal from artifactual components (De

Martino et al., 2007). For details on the training and selection

of the classifier for the “neuronality test”, see Supplementary

Methods 2.

2.4. Univariate analyses

ManneWhitney U tests assessed differences in the total

number of neuronal components between the groups of con-

trols, patients in MCS, VS/UWS and coma. Chi-square tests on

contingency tables assessed differences in frequencies of

neuronal RSNs between controls and patients. Results were

considered significant at p < .05 corrected for multiple com-

parisons (Bonferroni correction).

Voxel-based between-groups comparisons (Holmes &

Friston, 1998) were performed on the PSC IC maps of those

healthy controls and patients for whom the RSNs were clas-

sified as “neuronal”. A factorial design with three levels (con-

trols,MCS,VS/UWS)wasordered for eachRSN.A correction for

non-sphericity was applied to account for potentially unequal

variance across groups. In healthy controls, one-sided T

contrast searched for the identification of the RSN of interest.

Decreases in functional connectivity as a function of the level

of consciousness (i.e., controls, MCS and VS/UWS) were

assessed with exponential decay one-tailed T contrast, under

the assumption that decreases in connectivity is more com-

parable among patients than healthy controls. Results were

considered significant at p < .05 corrected for multiple com-

parisons at false discovery (FDR) for the whole brain volume.

2.5. Multivariate analyses

A nearest-neighbor “clinical” classifier was used to discrimi-

nate between healthy controls and all patients, between

healthy controls and patients in VS/UWSand betweenhealthy

controls and patients in MCS. For each classification, three

different kinds of inputs were used: first, a binary vector at the

single-subject level representing the presence/absence (in

terms of “neuronality”-“non-neuronality”) of each of the ten

RSNs (occurrence); second, a vector containing GOF values

corresponding to each RSN without including information

about neuronality (visual similarity); and third, a vector con-

taining the product between the binary representation of

neuronality and RSN GOF values (occurrence & visual simi-

larity). For the classifier’s validation, a leave-one-out cross

validation was performed. Classification accuracy and

accuracy-per-class were computed as measures of perfor-

mance for the different classifications. In addition, a feature

extraction method on the input vectors was also applied in

order to determine those RSNs of discrimination relevance for

each classification (Hall, 1999).

3. Results

Twenty-seven healthy volunteers (14 women; mean age:

47 � 16 years; range: 20e72) and 53 patients with disorders of

consciousness (24 in MCS, 24 in VS/UWS, 5 in coma; 20

women; mean age: 50 � 18 years, range: 14e87; 34 of non-

traumatic etiology of whom anoxic: 11, cerebrovascular acci-

dent: 12, hemorrhage: 9, seizure: 1, metabolic: 1; 17 of trau-

matic, and 2 of mixed etiology; 31 patients assessed in the

chronic setting, i.e.,�50 days post-insult) were included in the

analysis Supplementary Table 1 summarizes the patients’

demographic and clinical characteristics.

Fig. 2 summarizes the results of the “neuronality” classifier

for all ICs in the groupsofhealthy controls andpatients. For the

ICs whichwere identified as RSNs, univariate analysis showed

that the left executive control network, the DMN, the auditory

and right executive control network were identified as

neuronal in more healthy controls than patients; no between-

group differences in neuronal ICs were observed for the rest of

the RSNs (Fig. 3). For these four RSNs, functional connectivity

was reproduced across healthy volunteers (Fig. 4, red color

scale, Supplementary Table 2) and exponential voxel-wise

contrasts resulted in reduced functional connectivity for

most of the regions of each network (blue color scale, Table 1).

For the ICs which were identified as RSNs, multivariate

analyses using the “clinical” classifier showed that informa-

tion about occurrence of an RSN as neuronal or non-neuronal

was of the highest accuracy to discriminate between healthy

controls and all patients as well as between healthy controls

and patients in VS/UWS (Table 2). The product vector

occurrence * visual similarity was more successful for the
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discrimination between healthy controls and patients in MCS.

Importantly for all classifications, the DMN and the auditory

network were selected as the most discriminative features to

distinguish between the healthy and clinical groups (Table 2,

Supplementary Fig. 2).

4. Discussion

Wehere aimed to assess the tenRSNmodel, typically observed

in healthy conditions (e.g., Damoiseaux et al., 2006; Laird et al.,

2011; Smith et al., 2009), in severely brain-injured patients

suffering from disorders of consciousness. By means of a

multiple template-matching procedure and a “neuronality”

test, we first found that patients with consciousness alter-

ations exhibit fewer networks of neuronal origin compared to

healthy subjects. The notion of reduced neural function in

disorders of consciousness has been well documented by

means of positron emission tomography (PET),withpatients in

VS/UWS showing 40e50% of normal metabolic values globally

around the brain (Laureys, Owen, & Schiff, 2004). However,

some polymodal areas, such as bilateral prefrontal regions,

Broca’s parieto-temporal, posteriorparietal andprecuneus, are

systematically dysfunctional in pathologically unresponsive

conditions (Kinney & Samuels, 1994; Laureys, Goldman, et al.,

1999; Thibaut et al., 2012) and show functional recovery after

patients regain consciousness (Laureys, Lemaire, Maquet,

Phillips, & Franck, 1999). These results imply that not all

brain regions contribute equally to sustain consciousness-

related functions (Laureys, 2005). Under the assumption that

our fMRI “neuronality” test classifier reflects, to some degree,

neural functioncomparable to PET (Fig. 5), thenourfinding that

not all RSNswere significantly disrupted in the patient sample

align with such previous PET studies. Indeed, here, univariate

analysis indicated that the DMN, auditory and the bilateral

executive control networkswere among the RSNs, whichwere

less identifiable in patients compared to healthy controls and

multivariate analyses confirmed so for the first two networks.

Under healthy conditions, these four RSNs have been impli-

cated in consciousness-related processing. More specifically,

the bilateral executive control networks cover wide fronto-

parietal areas. Resting state activity in these bilateral fronto-

parietal cortices has been linked to performing externally

imposed tasks (Corbetta & Shulman, 2002) but also relate to

overt externally-oriented cognition during resting state (Fox,

Corbetta, Snyder, Vincent, & Raichle, 2006). The DMN, on the

other hand, has been associated with self-related internally

directed cognition, including recollection of the past and

thinking about the future, episodicmemory retrieval andmind

wandering (Buckner et al., 2008; D’Argembeau et al., 2008;

Mason et al., 2007; Raichle et al., 2001). The bilateral fronto-

parietal system and DMN were shown to have an anti-

correlated function in the resting brain, where increased

activityof onesystemparallels the reducedactivityof theother

(Fox et al., 2005; Fransson, 2005; Golland et al., 2007; Tian et al.,

2007). We recently showed that such anticorrelated relation-

ship has a behavioral correlate: subjective reports of increased

“external awareness” (or perception of the environmental

Fig. 3 e Across the ten RSNs, univariate analysis showed that fewer patients in MCS (gray bars) and VS/UWS (black bars)

compared to healthy controls (white bars) exhibited the selected independent components (representing the left executive

control, default mode, auditory, and right executive control network) as of neuronal origin (**p < .05, Bonferroni correction).

The left executive control network was characterized by neuronal source in more patients in MCS than in patients in VS/

UWS (*p < .05, **p < .001).

Fig. 2 e Across all independent components, healthy

controls were characterized by more components of

neuronal source compared to patients in VS/UWS and

patients in coma; no differences in the number of neuronal

components were identified between healthy controls and

patients in MCS as well as between patients in MCS and

VS/UWS. Boxplots represent medians with interquartile

range and whiskers signify minimum and maximum

values (*p < .05, Bonferroni correction, ns: non-

significant).
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stimuli through the senses)were linked to theactivityof lateral

frontoparietal areas; while subjective ratings of increased “in-

ternal awareness” (or self-related mentation) correlated with

the activity in midline posterior and anterior areas

(Vanhaudenhuyse et al., 2011). A legitimate question is towhat

degree reduced functional connectivity in these networks re-

flects diminished levels of conscious content in the absence of

verbal reports. Hypnosis can work as an alternative experi-

mental condition, wherein subjects remain fully responsive

and can account for phenomenological modifications. Using

this paradigm, we showed that functional connectivity of the

external awareness system was hardly preserved under

hypnosis and this cortical pattern was parallel to subjective

reports of increased dissociation from the environment

(Demertzi et al., 2011). Similar decreases in connectivity par-

allel to reduced awareness are also observed in sleep and

pharmacologically-induced anesthesia (for a review see Heine

et al., 2012). In the pathological condition of MCS, metabolic

disruptions are shown for the internal (but not the external)

awareness network, possibly accounting for their residual

context-specific responsiveness of these patients to environ-

mental demands (Thibaut et al., 2012). Our quantitative voxel-

wise analysis indicated that consciousness level-dependent

decreases in functional connectivity were observed in most

Fig. 4 e System-level fMRI resting state functional connectivity is reproduced across healthy controls (red color-scaled areas)

and shows consciousness level-dependent decreases ranging from healthy subjects, to patients in MCS and VS/UWS (blue

color-scaled areas). Group-level statistical inference was based on the independent components which were identified as

the putative RSN by means of the multiple template-matching procedure and the “neuronality” test. As illustrated by the

fingerprints, the included networks were characterized on average (yellow line) by neuronal origin (pick frequency at

.02e.05 Hz; green areas represent one standard deviation above and below the groupmean). Due to this selection procedure,

some RSNs were not identified for some controls and patients (i.e., different group size per network). Statistical maps are

thresholded at FDR for multiple comparisons p < .05 and are rendered on a structural T1 magnetic resonance template (x, y

and z values indicate Montreal Neurological Institute coordinates of represented sections, neurological convention).

Fingerprint labels: 1. degree of clustering, 2. skewness, 3. kurtosis, 4. spatial entropy, 5. one-lag autocorrelation, 6. temporal

entropy.
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regions of these four RSNs. Our results align with previous

resting state fMRI studies in this patient population showing

decreases in functional connectivity in the DMN (Norton et al.,

2012; Soddu et al., 2012; Vanhaudenhuyse et al., 2010) and

absent connectivity in brain death (Boly et al., 2009; Soddu

et al., 2011). These data suggest that activity of such long-

range cerebral systems, such as the DMN and the bilateral

executive control networks, serve to a certain degree,

Table 1 e Peak voxels of the four RSNs showing reduced functional connectivity as a function of the level of consciousness,
ranging from controls, patients in MCS and in VS/UWS.

Area (Brodmann area) x x z z value p value

Left executive control network

L Dorsolateral prefrontal cortex (46) �54 20 28 4.61 .002

L Inferior frontal gyrus (47) �54 38 �8 4.16 .004

L Middle frontal gyrus (9) �54 20 28 4.61 .002

R Middle frontal gyrus (9) 54 17 31 3.41 .021

L Medial frontal gyrus (8) �6 23 46 4.89 .001

L Inferior parietal lobe (40) �36 �55 43 5.00 .001

R Inferior parietal lobe (40) 39 �58 46 3.94 .006

L Fusiform gyrus (37) �57 �52 �5 4.48 .002

R Fusiform gyrus (37) 66 �37 �8 4.39 .002

R Primary visual cortex (17) 12 �88 10 3.15 .038

R Cerebellum 12 �82 �29 5.86 <.001

DMN

Posterior cingulate cortex/Precuneus (31/7) �3 �58 25 5.98 <.001

Anterior cingulate/medial prefrontal cortex (9/10/11) �3 53 10 5.47 <.001

Midcingulate cortex (24) 0 �22 37 3.34 .011

L Angular gyrus (39) �54 �67 25 6.54 <.001

R Angular gyrus (39) 54 �55 25 6.28 <.001

L Superior frontal gyrus (8)/middle frontal gyrus (6) �36 14 52 4.89 <.001

L Inferior frontal gyrus (13) �33 8 �11 3.64 .005

L Inferior parietal lobe (40) �36 �34 55 3.57 .006

L Inferior (20)/middle temporal gyrus (21) �57 �7 �20 4.48 <.001

R Inferior (20)/middle temporal gyrus (21) 63 �4 �26 5.12 <.001

L Parahippocampal gyrus (35) �18 �25 �17 5.02 <.001

R Parahippocampal gurus (35) 24 �22 �23 3.73 .004

L Primary visual cortex (17) �9 �97 1 3.83 .003

L Cerebellum �30 �79 �35 4.39 <.001

R Cerebellum 30 �76 �35 4.81 <.001

Auditory network

L Superior temporal gyrus (22) �45 �31 22 3.400 .018

R Transverse temporal gyrus (41) 45 �31 13 3.590 .011

L Subcentral area (43) �63 �13 19 4.97 .001

R Subcentral area (43) 63 �4 13 5.28 .001

L Postcentral gyrus (6) �63 2 19 5.10 .001

R Postcentral gyrus (6) 60 �4 31 4.66 .001

L Superior orbital gyrus (11) �15 62 �11 3.73 .008

Midcingulate cortex (24) 3 8 43 4.740 .001

Supplementary motor area (6) �6 �10 64 4.88 .001

Precuneus (7) �12 �55 64 4.05 .004

L Fusiform Gyrus (37) �39 �76 �17 3.76 .008

Auditory network

L Primary visual cortex (17) �18 �64 4 3.200 .028

L Insula (13) �39 �1 �5 4.070 .004

Thalamus �3 �28 4 3.140 .032

Brainstem 6 �13 �29 3.60 .011

Right executive control network

R Middle frontal gyrus (6) 33 11 55 3.83 .008

R Anterior prefrontal cortex (10) 36 53 �8 3.56 .015

R Inferior frontal gyrus (45) 51 17 4 3.58 .014

R Inferior parietal lobe (40) 36 �49 37 4.98 .001

L Inferior parietal lobe (40) �42 �55 37 5.07 .001

R Middle temporal gyrus (20/21) 57 �43 �11 4.65 .001

Precuneus (7) 9 �70 34 4.23 .003

Posterior cingulate cortex (23) 6 �25 25 4.01 .005

Cerebellum �9 �73 �23 4.63 .001

Significance values are corrected for multiple comparisons at FDR p < .05 (whole brain level).
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conscious- and self-related cognition which is demolished in

patientswith consciousness alterations (Baars, 2005; Dehaene,

Sergent, & Changeux, 2003; Dehaene & Changeux, 2011; also

see Demertzi, Soddu, & Laureys, 2013; Demertzi,

Vanhaudenhuyse, et al., 2013).

We further found that the auditory network was among the

sensory RSNs, which was most consistently identified as

neuronal in healthy controls and was significantly reduced in

patients. The auditory system during rest has been associated

with tasks related to audition (e.g., tone and pitch discrimina-

tion),music, and speech (Laird et al., 2011).We canonly speculate

why the auditory network was identified most frequently in

healthy controls and not other sensory RSNs. It can be that

because this system is the sole one being probed by relevant

stimulation (i.e., background scanner noise), it can show higher

connectivity compared to the visual and somatosensory RSNs,

which do not receive any external stimulation. In any case, a less

frequently identified auditory network in patientsmight account

for their disrupted auditory perception. Indeed, patients in VS/

UWS show an absent inter-regional connectivity between pri-

mary and associative auditory cortices (Laureys et al., 2000). On

the contrary, patients in MCS show additional widespread ac-

tivity including associative auditory cortices as well (Boly et al.,

2004) allowing these patients for higher auditory function

compared to patients in VS/UWS.

Finally, our “clinical” classifier indicated that the DMN and

the auditory network elicited high accuracy (85.3%) in

discriminating patients from healthy subjects. Further in our

analysis,more patients inMCS showed ICs of neuronal activity

in the left executivecontrolnetworkas compared topatients in

VS/UWS. The left executive control network has been mainly

linked to language-related processes (Laird et al., 2011; Smith

et al., 2009), which seem preserved in MCS (Schiff et al, 2005)

but not in VS/UWSpatients (Coleman et al., 2007). Indeed, here

the majority of the assessed MCS patients (16 out of 24, see

Supplementary Table 1) showed command following when

assessed with the CRS-R (Giacino, Kalmar, & Whyte et al.,

2004). Command following was tested at the bedside by

administering two commands, one object-related (e.g., look at

the cup/look at the comb) and onenon-object related (e.g., look

up). If the patient followed both the object-related and the

non-object related command in all eight administered trials

(i.e., four trials per command), then the command following

was scored as “consistent”. If the patient showed three clearly

discernible responses over the four trials on any of the object-

related or non-object related command, command following

was scored as “reproducible”. It was recently shown that what

differentiates MCS patients showing command following

(MCSþ) compared to those who only showed non-reflex

behavior (MCS-) is preserved metabolism in the left hemi-

sphere (Bruno et al., 2012). Although a discussion on the

contribution of brain asymmetry to consciousness is beyond

the scope of this article (e.g., Bruno et al., 2011; Ovadia-Caro

et al., 2012), it seems nevertheless that the left hemisphere is

needed to make elaborations above the level of minimal sen-

sory consciousness (Turk, Heatherton, Macrae, Kelley, &

Gazzaniga, 2003) which is preserved in MCS but lacking in

VS/UWS patients.

From a methodological perspective, although the ten RSNs

have been previously reported in healthy subjects in a reliable

manner (e.g., Damoiseaux et al., 2006; Laird et al., 2011; Smith

et al., 2009), our finding of less frequently identifiable RSNs in

healthy volunteers could be explained by a number of factors.

First, so far ICA resting state analysis in healthy controls was

performed by using probabilistic (e.g., Beckmann et al., 2005) or

Group ICA (e.g., Calhounet al., 2001).What thesemethodshave in

common is individual data concatenation in space and/or time.

Here, we recognize that to concatenate data deriving both from

healthy controls and patients, we run the risk ofmixing up brain

signals of different properties. Hence, we feared that the subject-

specificRSNs,whichwouldbeeventually returned (e.g., bymeans

of dual regression) would be influenced by controls’ data. To

better account for inter-subject variability, we thus aimed for

single-subject ICA and subsequent multiple-template matching.

Following this approach, it is not surprising that healthy subjects

do not present all RSNs within their own dataset. Further, in our

adopted methodology we used a conservative approach for

the identification of the RSNs, namely we decided to apply

stricter criteria for the component selection by introducing

the neuronal constraint. Our choice was justified by the

wish to have comparable signal properties between the two

populationsandhence reducebetween-groupunknownvariance

as previously suggested when dealing with pathological groups

(D’Esposito, Deouell, & Gazzaley, 2003). Due to that, the trained

Table 2 e Results of the “clinical” classifiers.

Performance measures Accuracy TPR healthy TPR patients Selected RSNs

Healthy versus all patients

Occurrence 85.3 .82 .875 Auditory, DMN

Occurrence & visual similarity 82.6 .70 .896 Auditory, DMN, visual lateral

Visual similarity 80 .78 .813 Auditory, DMN, ECNL, visual lateral

Healthy versus patients in MCS

Occurrence & visual similarity 88.2 .89 .875 Auditory, DMN, ECNR

Occurrence 76.4 .82 .708 Auditory, DMN

Visual similarity 70.5 .78 .625 Auditory, DMN, ECNL

Healthy versus patients in VS/UWS

Occurrence 86.2 .89 .833 Auditory, DMN

Visual similarity 74.5 .78 .708 Auditory, DMN

Occurrence & visual similarity 78.4 .78 .792 Auditory, DMN, ECNL

Occurrence: a vector containing information about the presence/absence of an RSN in terms of “neuronality”-“non-neuronality”. Visual sim-

ilarity: a vector containing goodness of fit values; Occurrence & visual similarity: a vector containing the product between occurrence and visual

similarity. TPR: true positive rate; DMN, ECNL e executive control network left; ECNR: executive control network right.
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“neuronality” classifier to separate components of neuronal and

non-neuronal origin excluded those components characterized

by atypical fingerprint features. Considering the lack of under-

standing whether and how an injured brain can constitute a

whole “new” system instead of an “abnormal’ one (He, Shulman,

Snyder, & Corbetta, 2007), we recognize that our hypothesis on

comparable neuronal function between controls and patients

was strong. Nevertheless, we insisted on this neuronal control

because in thatwaywe could account for artifactual BOLD signal.

Indeed, as shown by an illustrative example in Fig. 5, the selected

neuronal ICs are tightly linked to corticalmetabolism. Finally, the

non-identification of some components as RSNs in the healthy

control group could also be attributed to excessive motion in the

scanner. Indeed, motion has been reported as a major source of

artifact influencing intrinsic functional connectivity network

measures;assuch,subtlydifferent levelsofheadmotioncanyield

statistical maps, which can be mistaken for neuronal effects in

other contexts (Van Dijk, Sabuncu, & Buckner, 2012). Here,

although our healthy subjects moved less (mean speed

index ¼ .31 � .12) compared to patients (mean speed

index¼ .74� .49, p< .001) (Soddu et al., 2012), the number of total

neuronal components correlatednegativelywithmotionspeed in

controls (Kendall’s tau ¼ �.35, p ¼ .013) but not in patients (Ken-

dall’s tau ¼ �.078, ns). In other words, higher motion in healthy

controls was associated with less frequently classified ICs as

neuronal. Therefore, motion could have affected the fingerprint

space in controls more than in patients, possibly because for

controls motion is the main artifactual source affecting the

quality of the BOLD signal (Van Dijk et al., 2012). In patients,

excessive motion in the scanner can also lead to erroneous

functional connectivity, although not to the same degree as in

healthy subjects because in patients the BOLD signal is contam-

inated by many sources of noise due to the underlying neuropa-

thology (D’Esposito et al., 2003). Indeed, we recently showed that

inabraindeadpatientan identifiedresidual connectivitycouldbe

explained bymotion artifacts (Soddu et al., 2011).

5. Conclusions

FMRI multiple-network connectivity is disrupted in severely

brain-injured patients suffering from disorders of conscious-

ness. When performing ICA, the identification of the “right”

network may not be feasible due to structural and temporal

Fig. 5 e Upper panels: In a patient in VS/UWS, fMRI functional connectivity in the DMN and auditory network is excluded

due to abnormal neuronal activity of the corresponding independent components (i.e., fingerprint time courses pick at very

high frequency bands). Therefore, the network is considered absent. In the same patient, this disrupted fMRI connectivity

parallels reduced metabolic activity (winter-colored maps) in most areas of each network (black contours) as measured with

PET. Lower panels: For the executive control networks, preserved fMRI functional connectivity (warm-colored maps) in the

anterior parts of each network coincides with preserved metabolism in these regions (i.e., empty black contours). This

illustrative example implies a close link between the neuronality implicitly measured by fMRI and the neuronal function

directly measured by PET. FMRI maps are rendered on the patients’ structural T1 MRI and PET maps are superimposed on

patient’s computed tomography scan (p < .05 uncorrected; x, y and z values indicate Montreal Neurological Institute

coordinates, neurological convention). Fingerprint labels: 1. degree of clustering, 2. skewness, 3. kurtosis, 4. spatial entropy,

5. one-lag autocorrelation, 6. temporal entropy. FMRI maps are superimposed on the patient’s MRI scan.
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alterations in patients’ BOLD signal. By multiple-network

testing and controlling for neuronal properties of the identi-

fied RSN, we can advance fMRI system-level characterization.

Automatic data-driven patient classifications based on fMRI

resting state acquisitions are the first step towards single-

subject objective diagnostics. The future challenge is to

identify those fMRI-based features (at the single network or

multiple-network level), which will promote diagnostic

accuracy by correctly identifying true positives and true

negative classes. We align with this network approach to the

understanding of severe brain injury (Corbetta, 2012) and we

foresee that the characterization of network spatiotemporal

dynamics will further shed light on the patient-level cortical

dysfunction.
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