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A B S T R A C T

Thanks to advances in medical care, an increased number of patients recover from coma. However, some

remain in vegetative/unresponsive wakefulness syndrome or in a minimally conscious state. Detection

of awareness in severely brain-injured patients is challenging because it relies on behavioral

assessments, which can be affected by motor, sensory and cognitive impairments of the patients.

Other means of evaluation are needed to improve the accuracy of the diagnosis in this challenging

population. We will here review the different altered states of consciousness occurring after severe brain

damage, and explain the difficulties associated with behavioral assessment of consciousness. We will

then describe a non-invasive technique, transcranial magnetic stimulation combined with high-density

electroencephalography (TMS-EEG), which has allowed us to detect the presence or absence of

consciousness in different physiological, pathological and pharmacological states. Some potential

underlying mechanisms of the loss of consciousness will then be discussed. In conclusion, TMS-EEG is

highly promising in identifying markers of consciousness at the individual level and might be of great

value for clinicians in the assessment of consciousness.

� 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All

rights reserved.

R É S U M É

Avec les avancées récentes de la médecine, de plus en plus de patients sortent du coma. Cependant,

certains restent en état végétatif/syndrome d’éveil non-répondant ou en état de conscience minimale.

L’évaluation de leur niveau de conscience reste difficile notamment parce qu’elle repose sur des examens

comportementaux qui peuvent être biaisés par des déficits moteurs, sensoriels et cognitifs. D’autres

outils d’évaluation de la conscience sont donc nécessaires afin de préciser le diagnostic des patients

sévèrement cérébrolésés. Dans cet article, nous exposerons les différents états de conscience altérée

survenant à la suite d’une grave lésion cérébrale et les difficultés liées à l’évaluation du niveau de

conscience au chevet des patients. Nous décrirons ensuite une technique non invasive, la stimulation

magnétique transcrânienne combinée à l’électroencéphalographie à haute densité (SMT-EEG) qui

permet de détecter la présence ou l’absence de conscience dans différents états physiologiques,
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pathologiques et pharmacologiques. Des mécanismes potentiels pouvant expliquer la perte de

conscience seront ensuite discutés. Dans notre conclusion, nous exposerons les avantages de la SMT-

EEG et en quoi cette technique prometteuse pourrait être d’une grande utilité pour évaluer le niveau de

conscience au chevet des patients.

� 2013 Société française d’anesthésie et de réanimation (Sfar). Publié par Elsevier Masson SAS. Tous

droits réservés.
1. Disorders of consciousness

Since the invention of mechanical ventilation in the 1950s,
many patients survive even after severe brain damage. After the
comatose phase where patients lie with eyes closed (i.e., coma),
some patients regain full consciousness while some progress to a
state of preserved wakefulness in the absence of awareness (i.e.,
unresponsive wakefulness syndrome). Others show fluctuating
signs of awareness but they remain unable to communicate
consistently (i.e., minimally conscious state). Finally, some
patients fully recover awareness but lack motor output (i.e.,
locked-in syndrome).

1.1. Coma

Coma is an acute state of non-responsiveness in which patients
cannot be awakened even when intensively stimulated [1].
Patients in a coma lack sleep-wake cycles and only show some
reflex behaviors [2]. The autonomous functions such as breathing
and thermoregulation are reduced and global brain metabolism is
significantly diminished [3]. Coma is the result of diffuse cortical or
white matter damage and/or an acute lesion in the brainstem [4]. It
lasts at least one hour (to be distinguished from syncope) and up to
a few days. The prolonged coma also exists but is rare and can last
two to five weeks (e.g., pharmacologically-induced coma).

1.2. Unresponsive wakefulness syndrome

This state was first named apallic syndrome [5] or coma vigil
[6], and in 1972 it was termed vegetative state [7]. New
terminology was proposed in 2010 – the unresponsive wakeful-
ness syndrome (UWS) [8] – to avoid the strong negative
connotation with inadvertently risking comparisons between
patients and vegetables. The term ‘‘UWS’’ also allows a more
precise description of the clinical state, referring to patients that
are unable to react to stimuli in a non-reflexive way (hence
unresponsive), whilst showing periods of time with eyes opened
(hence wakefulness). Clinically, this state is thus defined by
wakefulness without awareness, and in which patients are able to
open their eyes but remain unaware of the environment and
themselves [9]. They only show spontaneous or stimulus-induced
reflex behaviors such as grinding teeth, moving eyes, swallowing,
chewing, yawning or groaning. This state may be transitory,
chronic or permanent.

Although recovery of the sleep-wake cycle is part of the criteria
of UWS, recent studies have demonstrated an absence of
electrophysiological characteristics of sleep in UWS [10,11]. Brain
metabolism is usually diminished by 40 to 50% with impaired
cortico-thalamo-cortical circuits but relatively preserved brain-
stem functions [12]. Brain dysfunctions are more specifically
located in the frontoparietal network (including both medial and
lateral networks related to self and environment respectively) and
in the thalami [13]. During sensory stimulations, UWS patients
usually show metabolic brain activation that remains isolated in
the primary cortices [14,15]. Finally, top-down processes from
frontal to temporal cortices have been shown to be impaired in
patients in UWS when measuring the electrical activity during
auditory stimulations [16].
Please cite this article in press as: Gosseries O, et al. Assessing consc
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1.3. Minimally conscious state

The minimally conscious state (MCS) is characterized by
primary inconsistent signs of consciousness [17,18]. The criteria
of MCS, introduced in 2002, include reproducible responses to
verbal or written commands, visual pursuit, localization to pain,
intelligible verbalizations, intentional communication and reach-
ing/holding objects [18]. Adapted emotional behaviors such as
smiles, laughs or tears can also be observed [18]. This clinical entity
has been recently subcategorized in ‘‘minimally conscious plus’’
(MCS+) for patients who present high-order behavioral responses
to stimuli (e.g., response to a command which involves the
preservation of language) and ‘‘minimally conscious minus’’
(MCS�) for patients who only show low-level non-reflexive
responses to stimuli (e.g., visual pursuit or localization to
nociception) [19]. This classification is supported by neuroanato-
mical data that demonstrate better preservation of language-
related networks in MCS+ as compared to MCS� patients [20]. The
overall cerebral metabolic activity in MCS patients is usually
reduced but the autonomous functions are preserved, and cortico-
thalamo-cortical connections are partly restored [21]. The main
metabolic dysfunctions appear to be located in the lateral network
and in the thalami [13]. When patients recover the ability to
functionally communicate or to use objects adequately, this is
referred to ‘‘emergence of the minimally conscious state’’ (EMCS)
[18].

1.4. Locked-in syndrome

Locked-in syndrome (LIS), also known as pseudocoma, is not a
disorder of consciousness per se but can be mistaken as one. LIS is
characterized by a complete paralysis of the body resulting from a
lesion in the brainstem affecting the pyramidal tract, most
frequently due to an ischemic pontine lesion [17]. If the lesion
is only restricted to the brainstem, LIS patients have preserved
sensory and cognitive functions [22]. The primary way of
communication is through vertical eye movements or blinking
[23]. Through the recovery of distal movements, such as the tip of a
finger or head movement, chronic LIS patients are often able to
communicate via a computer and to control their wheelchair.
Communication has also been recently made possible by measur-
ing electrical brain activity [24] and pupil size [25]. Finally, many
chronic LIS patients report having a happy and meaningful life and
the demand for euthanasia, albeit existing, is not so frequent [26].

2. Assessment of the level of consciousness

To date, the level of consciousness is mainly assessed at the
patient’s bedside by searching for response to command or non-
reflexive behaviors in response to sensory stimulations. Assessing
the presence or absence of consciousness of non-communicative
brain-damaged patients is however difficult, as consciousness is a
subjective first-person experience, and one has necessarily to
make inferences about its presence based on the patient’s
behavior. Currently, the diagnostic decision-making process is
extremely challenging leading to a diagnostic error rate up to 40%
when not assessed with appropriate standardized scales [27]. The
Coma Recovery Scale-Revised (CRS-R) has been shown to be the
iousness in coma and related states using transcranial magnetic
Reanim (2014), http://dx.doi.org/10.1016/j.annfar.2013.11.002
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Fig. 1. Set up of the TMS-EEG technique. Hd-EEG: high-density

electroencephalography; TMS: transcranial magnetic stimulation; NBS:

navigated brain stimulation including the structural MRI of the subject.

Taken from [42].
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best scale to differentiate between UWS and MCS patients [28,29].
In the acute setting, the Full Outline of UnResponsiveness (FOUR)
has also been proposed as an alternative scale for the widely used
Glasgow Coma Scale because it facilitates the diagnosis of LIS
patients, and it includes assessment of visual pursuit (one of the
first behaviors observed when a patient emerges from coma) [30].

Even with the best clinical assessment, patients might be
underestimated in terms of residual awareness due to motor
dysfunction, sensory deficit, impaired cognition or fluctuation of
vigilance that can prevent voluntary responses [31]. Recent studies
provide evidence for preserved awareness in some UWS patients
[32]. For instance, using functional magnetic resonance imaging
(fMRI) or electroencephalography (EEG) such patients generated
appropriate brain responses, similar to those observed in healthy
controls, when instructed to perform cognitive tasks (e.g.,
activation of the supplementary motor area when asked to
imagine playing tennis) [33–35]. Despite being unresponsive at
the bedside, these patients should be considered conscious and
their diagnosis should be replaced. The terms ‘‘functional LIS’’ [19],
‘‘functional MCS’’ [36] and ‘‘MCS*’’ [37] have been recently
suggested to define patients who show non-behavioral evidence
of consciousness that is only measurable via neuroimaging testing.

These recent technologies using active EEG and fMRI paradigms
are therefore helpful in detecting consciousness in some UWS
patients but they cannot be used at the single-subject level due to a
high rate of negative results. Moreover, these tools require
preserved language comprehension and the active participation
of the patients. The combination of single-pulse transcranial
magnetic stimulation (TMS) with EEG overcomes these issues and
can be employed at the bedside to assess brain function.

3. Transcranial magnetic stimulation combined with
electroencephalography

TMS has been used for neurological and psychiatric research
applications since the early 1980s. This non-invasive technique
allows stimulating the cerebral cortex non-invasively by generat-
ing a brief but strong magnetic pulse through a coil applied to the
surface of the scalp. The fast change in magnetic field strength
induces a current flow in the tissue, which results in the activation
of underlying neuronal populations [38]. TMS was first applied to
the motor cortex with single-pulses, and electromyography
responses were recorded from peripheral muscles [39]. Repetitive
TMS has since been used to induce a sustained inhibition (i.e.,
<1 Hz) or activation (>1 Hz) of the neuronal population, which
allowed stimulating other brain areas while observing the
subsequent behavioral and cognitive changes [40]. In the last
several years, TMS has been combined with high-density EEG and a
neuronavigation system to directly measure the activity of the
brain itself (instead of measuring muscular activity or behavioral
responses induced by the TMS stimulation) (Fig. 1). In this way,
single-pulses TMS induce focal neuronal discharge at the cortex
surface, and an EEG measures cortical electrical responses both
locally and at distant sites. This enables study of cortical
excitability under the site of stimulation, and long-range cortical
effective connectivity (i.e., causal interactions between distant
brain areas) with good spatio-temporal resolution [41]. The
neuronavigation system allows precise stimulation of a selected
brain area and ensures stability of the position of the stimulation as
well as reproducibility among different sessions [42,43]. Studies
demonstrated that meaningful recordings could be derived with-
out being substantially affected by TMS-induced artifact thanks to
new hardware solutions, improved EEG amplifier technology, and
advanced data processing techniques [44]. Using recent source
modeling and statistical analyses, it is currently possible to detect
Please cite this article in press as: Gosseries O, et al. Assessing consc
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the effect of the focal perturbation both at distance and in time
[45].

3.1. TMS-EEG in healthy awake subjects

Using a 60-channel TMS-compatible EEG amplifier, Massimini
et al. [46] showed that during wakefulness, TMS triggers
sustained long-range and complex patterns of activation. TMS
induces low-amplitude  wave shapes, which are associated with
spatially and temporally differentiated responses (Fig. 2A) [47].
These brain responses vary depending on the site of stimulation,
meaning that each cortical area tends to preserve its own natural
frequency (Fig. 2B) [48]. For instance, TMS consistently evoked
dominant alpha-band oscillations (8–12 Hz) in the occipital
cortex, beta-band oscillations (13–20 Hz) in the parietal cortex,
and fast beta-/gamma-band oscillations (21–50 Hz) in the frontal
cortex [48]. Brain regions were also oscillating at their natural
frequencies when indirectly stimulated by TMS, through brain
connections. More recently, it has been shown that cortical
excitability increases with time awake [49]. Short-term memory
tasks have also been shown to increase the overall strength and
the spatial spread of the electrical currents induced by TMS [50].
Finally, intensive training on a working memory task increases
effective connectivity across frontoparietal and parieto-occipital
networks [51].

3.2. TMS-EEG in patients recovering from coma

TMS-EEG offers an effective way to assess brain functions at rest
in patients with disorders of consciousness because it does not
depend on the integrity of sensory and motor pathways, it
bypasses subcortical and thalamic gates, and it does not require
language comprehension, nor active participation of subjects
[41,52]. We recorded TMS-evoked brain responses in 17 awake
patients diagnosed in UWS, MCS and LIS. When stimulating frontal
and parietal brain areas of UWS patients, TMS triggered a large
low-frequency wave associated with strong initial cortical activa-
tion, which did not propagate to adjacent brain areas, and
dissipated rapidly. This stereotyped and local slow wave response
indicates a breakdown of effective connectivity [53]. By contrast, in
MCS patients, TMS triggered a series of lower amplitude and high-
frequency waves associated with cortical activations that sequen-
tially involved distant cortical areas ipsi- and contralateral to the
site of stimulation. These complex long-lasting widespread
activation patterns were similar to the ones recorded (Fig. 3) [52].
iousness in coma and related states using transcranial magnetic
Reanim (2014), http://dx.doi.org/10.1016/j.annfar.2013.11.002
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Fig. 2. TMS-EEG in healthy awake subjects. A. Cortical activation during wakefulness evoked by TMS delivered over the sensorimotor cortex. Averaged TMS-evoked potentials

recorded at all electrodes and superimposed in a butterfly diagram along with the current density distribution highlighting the location of maximum current sources. B.

Response under the TMS stimulation (black trace) and in other locations of the brain (grey traces) when stimulating occipital, parietal, and frontal cortices. Red spot illustrates

the site of the TMS stimulation. TMS: transcranial magnetic stimulation.

Adapted from [47] and [48].
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Through longitudinal measurements, we measured brain
activity during recovery of consciousness. When patients were
in UWS, a simple local slow wave response to TMS was recorded
and when patients recovered consciousness and functional
communication, intracortical connectivity resurged [52]. Interest-
ingly, one MCS patient was unresponsive at the bedside the day of
the experiment but still showed complex and widespread brain
responses to TMS. This suggests clear-cut differences in intracor-
tical effective connectivity that occur at an early stage during
Fig. 3. TMS-EEG responses in severely brain-injured patients. Response under the TMS sti

represent the location of the brain areas). White cross illustrates the site of the TMS stim

Adapted from [52].
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recovery of consciousness, before reliable communication can be
observed at the bedside.

Based on these results, TMS-EEG seems to constitute a novel
and interesting tool to detect subtle discrimination between UWS
and MCS at the single-subject level, as well as to track recovery of
consciousness in severely brain-injured patients. One should,
however, make sure to assess the patient in an awake state (i.e.,
eyes open), be aware of the potential risk of inducing epilepsy in
this already fragile population, and to stimulate preserved brain
mulation (black trace) and the following spreading of the activity in the brain (colors

ulation (parietal cortex). TMS: transcranial magnetic stimulation; L: left; R: right.

iousness in coma and related states using transcranial magnetic
Reanim (2014), http://dx.doi.org/10.1016/j.annfar.2013.11.002
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areas using a neuronavigation system since TMS applied on a brain
lesion might induce no response.

Another study recently confirmed the ability of the TMS-EEG to
differentiate UWS from MCS patients and showed the superiority
of the TMS-EEG compared to traditional neurophysiological
methods, such as short-latency somatosensory evoked potential
and event-related potentials [54]. In the most recent study, brain
responses were compared between conscious patients with mild
brain injury and healthy awake subjects [55]. Results showed
altered brain reactivity and connectivity in the former compared to
the latter that may be related to compensatory mechanisms of
recovery. Larger population studies are needed to confirm these
results and to better understand the neural mechanisms under-
lying the functional recovery in post-comatose patients.

3.3. TMS-EEG in sleep and anesthesia

The dynamics of TMS-EEG responses have also been studied
under physiological and pharmacological unconscious states.
During non-rapid eye movement sleep, TMS triggers a simple
positive-negative slow wave, similar to the one observed in UWS
patients [46]. Depending on the intensity of the stimulation, this
slow wave can either remain local or burst into an explosive and
stereotypical response. During deep sleep, the thalamo-cortical
system despite being active and reactive thus tends to break down
into isolated modules, and to lose the ability to produce
differentiated responses [47]. TMS-EEG responses have also been
recorded during rapid eye movement (REM) sleep during which
there are dreams. In this paradoxical state, cortical responses to
TMS propagate beyond the stimulation site and lasts longer than
during deep sleep (although still less than during wakefulness),
indicating that effective cortical connectivity is largely preserved
(Fig. 4) [56].

Finally, TMS-EEG has been employed during general anesthesia
induced by a pharmacological agent, benzodiazepine midazolam
[57]. Results showed that responsiveness of a cortical area to TMS
was maintained or even augmented, but the spread of activity to
adjacent areas and the reverberatory reactivation of the stimulated
site were quenched. Similarly in many regards to what occurs in
UWS patients and in deep sleep, midazolam anesthesia induces a
local slow wave response and a breakdown of long-range brain
connectivity in response to TMS.

4. Potential mechanisms explaining (the loss of) consciousness

As we have seen above, consciousness involves many different
cortical areas engaging in rapid causal interactions, whilst
Fig. 4. TMS-EEG responses in sleep as compared to wakefulness. Yellow cross illustrat

Taken from [56].
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unconsciousness is characterized by stereotypical positive-nega-
tive slow wave and decreased large-scale brain connectivity. One
common hypothetical neurophysiological mechanism explaining
unconsciousness is bistability, which could unable cortical neurons
to sustain balanced patterns of activation. The results would lead
to a silent, hyperpolarized downstate after the initial activation,
which could prevent the brain from successfully integrating
information [58]. Potential causes of this bistability might be
alterations in the balance between excitation and inhibition,
increased potassium currents, and cortical deafferentation [58].
Consciousness thus seems to emerge from both functional
integration (i.e., connectivity) and preserved information capacity
in the brain (i.e., differentiation responses between brain regions)
[59,60]. To achieve a most accurate estimation of the level of
consciousness, theoretical approaches such as the Integrated
Information Theory of Consciousness (IITC) aim at describing the
mechanisms involved in consciousness [60,61]. The IITC theory
emphasizes the dynamical complexity of consciousness, charac-
terized by information being simultaneously integrated and
differentiated, whereas unconsciousness results from the loss of
the brain’s ability to integrate information. These statements are in
line with our TMS-EEG observations. Moreover, we recently
designed a reliable theoretically-based measure of consciousness,
the so-called Perturbational Complexity Index (PCI), in order to
quantify in one number the TMS-EEG responses observed in the
aforementioned physiological, pathological and pharmacological
states.

5. The Perturbational Complexity Index

The PCI is a recent measure that allows estimating brain
complexity, including both the information content and the
integration of brain activations, through algorithmic compres-
sibility (‘‘zipping’’) [62]. This index has been shown to success-
fully differentiate between consciousness and unconsciousness
at the individual subject level. Indeed, the PCI is invariably high
in healthy awake subjects, in patients in MCS, EMCS and LIS as
well as in healthy subjects in REM sleep (i.e., above 0.3). In
contrast, the PCI is always low during deep sleep, in both UWS
patients and in those under general anesthesia using midazolam,
propofol or xenon (i.e., below 0.3) (Fig. 5). Further confirmation
studies should test the PCI on a larger cohort of patients to
objectively and quantitatively assess the level of consciousness,
but also to determine the efficacy of pharmacological drugs or
brain stimulation procedures in patients with disorders of
consciousness.
es the site of the TMS stimulation (frontal cortex).

iousness in coma and related states using transcranial magnetic
Reanim (2014), http://dx.doi.org/10.1016/j.annfar.2013.11.002

http://dx.doi.org/10.1016/j.annfar.2013.11.002


Fig. 5. The Perturbational Complexity Index. A. PCI values in healthy subjects. PCI measured during consciousness ranged between 0.44 and 0.67, whereas the PCI measured during

unconsciousness ranged between 0.12 and 0.31. B. PCI values in severely brain-injured patients. PCI progressively increases from unresponsive wakefulness (UWS) to minimally

conscious (MCS) and to recovery of functional communication (EMCS). PCI attains levels of healthy awake subjects in LIS patients. CRS-R: Coma Recovery Scale-Revised.
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6. Conclusion

Patients with disorders of consciousness constitute a major
challenge regarding diagnosis, prognosis and treatment. As
clinical assessment frequently leads to diagnostic errors, other
techniques are needed. TMS-EEG and PCI seem to constitute an
appropriate measure to assess the presence or the absence of
consciousness. During consciousness, the brain is able to sustain
long-range, complex patterns of activation and the PCI is high,
while during unconsciousness, this ability is lost and the PCI is
low. The PCI thus potentially provides a simple and reliable metric
to objectively measure the level of consciousness at the single-
subject level. Future studies on a larger cohort of patients should
be conducted to confirm these inaugural results. More work is also
needed before using this tool in routine clinical practice, such as
developing compact TMS-EEG equipment and fast, standardized
data analysis software. Repetitive TMS should also be investigated
for therapeutic purposes as positive effects have been observed in
a few UWS and MCS patients [63,64] as well as in patients
suffering from aphasia [65], depression [66], tinnitus [67] or
migraine [68]. The challenge in future years will also be to
combine information coming from different neuroimaging
techniques available (e.g., fMRI, TMS, EEG) in order to deepen
our understanding of brain (dys)functions and to improve the
process of diagnosis, as well as in improving the prognosis in this
challenging population.
Please cite this article in press as: Gosseries O, et al. Assessing consc
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[55] Tallus J, Lioumis P, Hämäläinen H, Kähkönen S, Tenovuo O. TMS-EEG responses
in recovered and symptomatic mild traumatic brain injury. J Neurotrauma
2013;30:1270–7.

[56] Massimini M, Ferrarelli F, Murphy M, Huber R, Riedner B, Casarotto S, et al.
Cortical reactivity and effective connectivity during REM sleep in humans.
Cogn Neurosci 2010;1:176–83.

[57] Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner BA, Angelini G, et al.
Breakdown in cortical effective connectivity during midazolam-induced loss
of consciousness. Proc Natl Acad Sci U S A 2010;107:2681–6.

[58] Massimini M, Ferrarelli F, Sarasso S, Tononi G. Cortical mechanisms of loss of
consciousness: insight from TMS/EEG studies. Arch Ital Biol 2012;150:44–55.

[59] Boly M, Massimini M, Tononi G. Theoretical approaches to the diagnosis of
altered states of consciousness. Prog Brain Res 2009;177:383–98.

[60] Tononi G. Consciousness as integrated information: a provisional manifesto.
Biol Bull 2008;215:216–42.

[61] Tononi G. Integrated information theory of consciousness: an updated
account. Arch Ital Biol 2012;150:56–90.

[62] Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, et al. A
theoretically based index of consciousness independent of sensory processing
and behavior. Sci Transl Med 2013;5:198ra05.

[63] Louise-Bender Pape T, Rosenow J, Lewis G, Ahmed G, Walker M, Guernon A,
et al. Repetitive transcranial magnetic stimulation-associated neurobeha-
vioral gains during coma recovery. Brain Stimul 2009;2:22–35.

[64] Manganotti P, Formaggio E, Storti SF, Fiaschi A, Battistin L, Tonin P, et al. Effect
of high-frequency repetitive transcranial magnetic stimulation on brain excit-
ability in severely brain-injured patients in minimally conscious or vegetative
state. Brain Stimul 2013;6:913–21.

[65] Dammekens E, Vanneste S, Ost J, De Ridder D. Neural correlates of high
frequency repetitive transcranial magnetic stimulation improvement in
post-stroke non-fluent aphasia: a case study. Neurocase 2014;20:1–9.

[66] Dumas R, Padovani R, Richieri R, Lançon C. Repetitive transcranial magnetic
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