MR1936671 (2003j:35173) 35K57 (80A20)
Kavallaris, N. I. (GR-ATHN2S); Tzanetis, D. E. (GR-ATHN2S)
An Ohmic heating non-local diffusion-convection problem for the Heaviside function. (English summary)
ANZIAM J. 44 (2002), (E), E114-E142.
The authors study the behavior of the non-local parabolic equation $u_{t}=u_{x x}-u_{x}+\frac{\lambda f(u)}{\left(\int_{0}^{1} f(x) d x\right)^{2}}$ with certain initial and boundary conditions where f is the Heaviside function. In the case where $f(u)=$ $H(1-u)$, that is, for decreasing $f(u)$, comparison techniques can be applied. Two problems with different types of boundary conditions are studied. In both problems, there exist critical values λ_{*} and λ^{*}, such that for $0<\lambda<\lambda_{*}$, there is a unique steady state solution which is asymptotically stable and the solution u is global in time. For $\lambda_{*} \leq \lambda \leq \lambda^{*}$, there exist two steady-states and the authors study their stability, while for $\lambda>\lambda^{*}$ there is no steady-state. It is also proved that for $\lambda>\lambda^{*}$ or for $\lambda_{*} \leq \lambda \leq \lambda^{*}$, and initial data sufficiently large, the solution u "blows up" (in some sense). Moreover, for increasing f and Neumann boundary conditions, u is an unbounded solution global in time.

Reviewed by P. Rochus (Liège)
(c) Copyright American Mathematical Society 2003, 2009

