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Abstract Genome-wide association interaction (GWAI) studies have increased in popularity. Yet to date, no 13 

standard protocol exists. In practice, any GWAI workflow involves making choices about quality control strategy, 14 

SNP filtering, linkage disequilibrium (LD) pruning, analytic tool to model or to test for genetic interactions. Each of 15 

these can have an impact on the final epistasis findings and may affect their reproducibility in follow-up analyses. 16 

Choosing an analytic tool is not straightforward, as different such tools exist and current understanding about their 17 

performance is based on often very particular simulation settings. In the present study, we wish to create awareness 18 

for the impact of (minor) changes in a GWAI analysis protocol can have on final epistasis findings. In particular, we 19 

investigate the influence of marker selection and marker prioritization strategies, LD pruning and the choice of 20 

epistasis detection analytics on study results, giving rise to 8 GWAI protocols. Discussions are made in the context 21 

of the ankylosing spondylitis (AS) data obtained via the Wellcome Trust Case Control Consortium (WTCCC2). As 22 

expected, the largest impact on AS epistasis findings is caused by the choice of marker selection criterion, followed 23 

by marker coding and LD pruning. In MB-MDR, co-dominant coding of main effects is more robust to the effects of 24 

LD pruning than additive coding. We were able to reproduce previously reported epistasis involvement of HLA-B 25 

and ERAP1 in AS pathology. In addition, our results suggest involvement of MAGI3 and PARK2, responsible for cell 26 

adhesion and cellular trafficking. Gene Ontology (GO) biological function enrichment analysis across the 8 27 

considered GWAI protocols also suggested that AS could be associated to the Central Nervous System (CNS) 28 

malfunctions, specifically, in nerve impulse propagation and in neurotransmitters metabolic processes. 29 
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Introduction  34 

High-throughput technologies give access to unprecedentedly vast amounts of data such as Single Nucleotide 35 

Polymorphisms (SNPs). In Genome Wide Association Studies (GWAS), thousands of these are scanned for their 36 

potential association with traits of interest, such as a disease status. Hard to disentangle are complex traits which 37 

assume an intricate interplay between genetic, environmental and/or many other unknown factors. For these traits 38 

added benefits can be obtained by using methods that account for biological and statistical interactions, rather than 39 

by adopting strategies that analyze each SNP at a time. This is the subject of Genome-wide association interaction 40 

(GWAI) studies, which usually focus on pairwise SNP x SNP interactions. It is believed that GWAI studies can lead 41 

to novel or improved clinical and biologically relevant hypotheses. 42 

 43 

Many strategies exist to carry out a GWAI study, such as those based on generalized linear regression models 44 

(GLM), BOOST (Wan et al. 2010), Dimensionality Reduction (MB-MDR) (Cattaert et al. 2011; Van Lishout et al. 45 

2013), MDR (Ritchie et al. 2001), BiForce (Gyenesei et al. 2012), Bayesian Models (e.g. BEAM) (Zhang et al. 2011) 46 

and several others (Pang et al. 2013; Van Steen 2012; Wei et al. 2014b; Zhang et al. 2008). For extensive reviews, 47 

please refer to (Gusareva and Van Steen 2014; Van Steen 2012; Wei et al. 2014a). All of these methods have their 48 

pros and cons, but the problems or hurdles encountered during the analysis are largely overlapping. Common hurdles 49 

to overcome include dealing with high dimensionality, handling a huge multiple testing problem, limiting 50 

computation time (when assessing statistical significance), and controlling false positive rates (Van Steen 2012). 51 

Unfortunately, often when novel GWAI analysis methods are introduced the impact on epistasis findings of changes 52 

in the GWAI protocol are given limited attention. Some examples of key protocol parameter changes relate to 53 

marker filtering/prioritization, LD thresholds in marker pruning, a priori assumptions about operating two-locus 54 

inheritance models, main effects correction. It is essential to differentiate between global two-locus testing (i.e. not 55 

differentiating between main effects and interaction effects) and specific interaction testing (i.e., testing for the 56 

interaction between two loci itself, above and beyond the main effects). Specific interaction testing requires making 57 

adjustments for lower-order effects, and hence proposing a particular encoding scheme for lower-order effects. 58 

Several authors have commented upon the limitations of an additive encoding scheme for SNPs in SNP x SNP 59 

interaction studies and recommended co-dominant coding (Mahachie John et al. 2011b) 60 

 61 

In this study, we investigated the impact on final epistasis results of changing one or more parameter settings in a 62 

GWAI protocol, leading to 8 interesting strategies (Fig. 1 and Table S1). These strategies are motivated by prior 63 

theoretical work (Cattaert et al. 2011; Grange 2014; Mahachie John et al. 2012). As a benchmark protocol, we took 64 

the one proposed by (Gusareva and Van Steen 2014). As analytic tools we chose BOOST (Wan et al. 2010), 65 

motivated by its popularity and computational efficiency due to a Boolean data representation, and MB-MDR (e.g., 66 

Cattaert et al. 2011), because of its non-parametric nature regarding epistasis models and its ability to correct for 67 

confounders or lower-order effects. In brief, BOOST handles binary traits and fits a full generalized linear model 68 

with main SNP effects (2 degrees of freedom (df) for each main effect) and SNP x SNP interaction effects (4 df). 69 

Significant (specific) interactions are identified via a Log-Likelihood Ratio Test (LRT) based on 4 df. The 70 



Bonferroni correction is proposed as a multiple testing corrective measure. In contrast, MB-MDR handles binary, 71 

continuous, and censored traits, and first carries out a dimensionality reduction procedure while pooling risk-alike 72 

multi-locus genotype combinations together. Its final test statistic contrasts high risk versus low risk multi-locus 73 

genotypes. While correcting for multiple testing, significance is assessed via the resampling based strategy proposed 74 

by (Westfall 1993). For additional details about MB-MDR and BOOST, we refer to (Cattaert et al. 2011; Mahachie 75 

John et al. 2012; Van Lishout et al. 2013; Wan et al. 2010). To achieve our goal, we used real-life ankylosing 76 

spondylitis (AS) data from the Wellcome Trust Case Control Consortium (WTCCC2). Ankylosing spondylitis (AS) 77 

is a common form of inflammatory arthritis occurring in approximately 1 to 14 out of 1,000 adults globally (Dean et 78 

al. 2014). Apart from confirming previously known AS associated genes (Alvarez-Navarro and Lopez de Castro 79 

2013; Evans et al. 2011), we will show that combining different protocols may give new insights into disease 80 

pathology.  81 

 82 

Materials and Methods 83 

Data Quality Control 84 

Approved access to Wellcome Trust Case Control Consortium (WTCCC2) data, in particular via EBI accession no. 85 

EGAS00000000104, EGAD00010000150, EGAD00000000024 and EGAD00000000022, resulted in a dataset 86 

composed of 2005 Ankylosing Spondylitis (AS) cohort samples, and 3000 British 1958 Birth Cohort (BC) and 3000 87 

National Blood Donors (NBS) Cohort samples. The 1788 cases were of British Caucasian origin recruited by 88 

Nuffield Orthopedic Centre, Oxford and Royal National Hospital for Rheumatic Diseases, Bath. The first batch of 89 

case samples were genotyped on an Illumina 670k platform, the last two batches of control samples were genotyped 90 

on an Illumina 1.2M platform. No imputation was done for these genotypes. We used PLINK (Purcell et al. 2007) to 91 

select 6,587 subjects (1788 cases plus 4799 controls), 3409 of which were male and 2864 female, and 487,780 SNPs, 92 

according to criteria described in (Evans et al. 2011). Briefly, SNPs showing MAF < 0.01, Hardy-Weinberg p-values 93 

< 5 × 10-20 and SNPTEST information measure < 0.975 were excluded. The dataset inflation factor (λ) was estimated 94 

as 1.02917. The QC-ed genotype data were stored in GEN format and were converted to PED and MAP files using 95 

GTOOL from Oxford University, UK (Colin Freeman 2012).   96 

Additional data handling 97 

Depending on the GWAI protocol of choice, additional data manipulations were required, such as marker 98 

prioritization or LD pruning (Fig. 1). We prioritized markers with the Biofilter 2.0 software developed by Ritchie et 99 

al. (Bush et al. 2009). The Biofilter 2.0 uses a list of public biological databases (sources) such as KEGG, BioGRID, 100 

MINT, via the Library of Knowledge Integration (LOKI), to generate pairwise gene-gene interaction models (Wan et 101 

al. 2010). No disease specific information was used, but available knowledge about gene-gene interactions from 102 

different biological resources called by Biofilter 2.0 (Bush et al. 2009). The advantage of such an approach is an 11-103 

fold reduction of the original marker set, without selection bias introduction towards a particular disease. The 104 

disadvantage of any pre-filtering method is that useful information may be disregarded and biologically relevant 105 

https://www.ebi.ac.uk/ega/studies/EGAS00000000104
https://www.ebi.ac.uk/ega/datasets/EGAD00010000150
https://www.ebi.ac.uk/ega/datasets/EGAD00000000024
file:///C:/Users/Kirill/Documents/Research2012/Ankylosing_Spondolytis_study/MANUSCRIPT/Genomics_Research_submission/EGAD00000000022


SNPs removed from further analysis protocols. In practice, taking the 487,780 SNPs from (Evans et al. 2011) as a 106 

starting point, we applied Biofilter 2.0 with a minimum implication index threshold of 3, meaning that at least 3 data 107 

sources confirmed the associated gene-gene interaction. This resulted in the generation of 8,288 gene-gene models 108 

and a set of 44,018 unique SNPs (Fig. 1).  109 

To reduce the number of tests and the number of false positives based on genomic proximity (for instance, redundant 110 

epistatic SNP pairs), some GWAI protocols involve LD filtering or pruning (Fig. 1). As motivated and recommended 111 

by (Gusareva and Van Steen 2014), we adopted a rather mild pruning threshold of r2>0.75, still allowing for 112 

moderate LD but removing strong LD. Pruning at r2>0.75 threshold implies that every SNP pair in the pruned dataset 113 

has an r2 of at most 0.75. The proposed threshold offers a balance between power gain and false positives due to high 114 

LD. In practice, LD-pruning was performed considering the sliding windows of size 50 (i.e., 50 markers) with 115 

window increments of 1 marker. For any pair of markers under testing whose r
2
>0.75, the first marker of the pair 116 

was discarded, as implemented in SVS Version 7.5 (Golden Helix, Inc.) (Bozeman 2015).  After LD pruning, the 117 

original marker dataset reduced from 487,780 to 321,565 markers. After LD pruning, the biofiltered data (Biofilter 118 

2.0) reduced from 44,018 to 30,426 markers (Fig. 1).  119 

Interaction testing   120 

To test for interactions we used two software tools: BOOST (Wan et al. 2010) and MB-MDR (Cattaert et al. 2011). 121 

We extended the original BOOST algorithm as it did not deal with missing genotypes and so as to properly adjust the 122 

number of degrees of freedom (df) in case less than 3 genotypes was observed for a marker. Our implementation of 123 

BOOST was coded in C++ and can be obtained upon request, via the corresponding author. Notably, a similar 124 

adaption of BOOST was implemented in the PLINK software (PLINK version 1.9, called via “--fast-epistasis 125 

boost”). In practice, for the MB-MDR methodology, we used the algorithms implemented in MBMDR version 3.0.2 126 

(Van Lishout et al. 2013) that provides several advantages over classic MDR (Ritchie et al. 2001) or BOOST, such 127 

as the ability to analyze different trait types within the same framework, as well as non-parametric model free testing 128 

for two or three-order interactions while adjusting for lower order effects or relevant confounders. Since MBMDR 129 

versions 2.0 – 4.1.0 require significant computational resources to run on a genome-wide scale, we were not able to 130 

use these MB-MDR versions on unfiltered data, at the time of analysis. The version that allows for exhaustive 131 

genome-wide epistasis screening is underway. Hence, in this study, all MB-MDR based protocols (Fig. 1) were 132 

implemented on a reduced dataset via Biofilter 2.0. The default main effects correction in MB-MDR is a co-133 

dominant one. As was mentioned in (Mahachie John et al. 2011b), it is important to correct for main effects in a co-134 

dominant way to avoid false epistasis signals.   135 

Results obtained from either one of the 8 GWAI protocols included in this study were compared to results obtained 136 

in the reference study (Evans et al. 2011). In particular, as statistical interactions may be indicative for important 137 

main effects (Greene et al. 2009), we compared SNPs derived from significant SNP pairs to the list of 49 SNPs in 138 

Supplementary Table S2 of (Evans et al. 2011) that passed quality control in their replication analysis. Also, 139 

significant SNP pairs obtained in this work were compared to the reference panel of 102 SNP x SNP pairs tabulated 140 

in Supplementary Table 5 of (Evans et al. 2011). The latter table lists all considered SNP pairs for interaction testing, 141 



using an additive x additive term in a logistic regression model (i.e. additive encoding of SNP main effects and 142 

interaction).  143 

 144 

Assessing consistencies between protocols 145 

The overlap between GWAI protocols (Fig. 1) in identifying the same significant SNP pairs was graphically 146 

presented via the Euler diagram (Fig. 2) with the software VennMaster 0.38 (Kestler et al. 2005). For each of the 147 

SNP pairs tested, ranks were computed, for each protocol separately, with rank 1 assigned to the SNP pair with the 148 

smallest multiple testing corrected p-value.  Then, SNP pairs that were common to each protocol were retained, in 149 

order to be able to compare exhaustive with non-exhaustive protocols. A total of 1230 SNP pairs were retained. 150 

These are listed in Table S4, together with their associated protocol-specific p-values, and were subsequently used to 151 

calculate “distances” between protocols. In particular, we calculated the squared Euclidean distance between 8 152 

GWAI protocols using 8 input vectors containing 1230 ranks each. These 1230 ranks for each protocol corresponded 153 

to relative positions of the common 1230 SNP pairs amongst all ordered SNP pairs (from highest to lowest 154 

significance). For example, the ranks for the rs12026423 x rs7528311 pair in protocols 1 to 8 were 232, 2300, 97, 155 

61, 259, 151, 59892 and 43598, respectively. We used complete linkage cluster agglomeration with hclust() to build 156 

a dendrogram (hierarchical tree) (RCoreTeam 2013) (Fig. 3). The use of SNP pair ranks coupled with hierarchical 157 

clustering allows an unbiased qualitative comparison of the top findings derived via different GWAI protocols.  158 

 159 

In addition, to assess the effects of MAFs on top findings in each protocol, we selected the top 1000 SNP pairs for 160 

each GWAI protocol. We subsequently defined the following MAF classes or bins, using interval notations: 1) (0-161 

0.05) (MAF<0.05; less common minor allele); 2) [0.05-0.10) (0.05 ≤ MAF < 0.10; moderate occurrence of the minor 162 

allele); 3) [0.10-0.50) (0.10 ≤ MAF < 0.50; rather common minor allele). Two-dimensional bins were defined by 163 

combining the aforementioned three 1-dimensional bins as follows: 1) (0-0.05)/(0-0.05); 2) [0.05-0.10)/(0-0.05); 3) 164 

[0.10-0.50)/(0-0.05); 4) [0.05-0.10)/[0.05-0.10); 5)[0.05-0.10)/[0.05-0.10); 6)[0.10-0.50)/[0.10-0.50). Note that for 165 

any SNP pair falling into one of these six 2-dimensional bins, the MAF of the first SNP in the pair will be larger or 166 

equal than the MAF of the second SNP in the pair, unless perhaps when both SNPs belong to the same one-167 

dimensional bin.  168 

 169 

Biological relevance 170 

The SNP to gene symbol annotation (when possible) was done using SCAN – a SNP and CNV Annotation Database 171 

(Gamazon et al. 2010)   The SCAN database accepts a list of SNPs, maps them to genomic coordinates and outputs 172 

corresponding gene symbols, provided that the SNP is located within a gene coding region, which is helpful in 173 

assessing putative biological function and context. We then performed GO enrichment analyses (Huang da et al. 174 

2009) on the top 1000 most significant SNP pairs, by GWAI protocol. In practice, we used the topGO library in R 175 

that takes into account the GO graph structure and removed nodes (GO terms) that had a low number of annotated 176 



genes, i.e., less than 10 (Ackermann and Strimmer 2009; Alexa et al. 2006). The weight01 algorithm was chosen 177 

based on the author’s recommendations and due to shared benefits of the elim and weight algorithms (Ackermann 178 

and Strimmer 2009). Significance of each GO term, per protocol, was based on Fisher’s exact test. Overall 179 

significance across all protocols was assessed via Fisher’s combined probability test at a significance level of 0.05  180 

 181 

 182 

Results  183 

Consistency between interaction results derived from different GWAI protocols 184 

A graphical representation, showing the overlap of significant findings between considered GWAI protocols is 185 

presented in Fig. 2. The significant SNP pairs (multiple testing corrected) retrieved via GWAI protocol #1-#8 (Fig. 186 

1) are tabulated in Table S3. The largest number of significant SNP pairs were obtained for protocols that use 187 

additive encoded corrections for main effects (protocols #7, #8).  Over 2000 significant pairs were detected with an 188 

exhaustive implementation of BOOST on LD-pruned data (protocol #2).  The number of significant SNP pairs 189 

reduces significantly when BOOST is used exhaustively on un-pruned data (protocol #1; 226 pairs). All other 190 

protocols identified less than 130 siginficant epistasis signals; the most liberal is protocol #3 (BOOST on filtered 191 

data), the most conservative is protocol #6 (MB-MDR on biofiltered and LD-pruned data), also using a co-dominant 192 

encoding scheme to correct the interaction testing for lower order SNP effects. Furthermore, only few of the findings 193 

obtained via exhaustive protocols (BOOST, #1-#2) were retrieved via protocols that first biofiltered the data 194 

(protocols #3-#8). With the same protocol for LD pruning on biofiltered data, both BOOST and MB-MDR in co-195 

dominant main effects correction mode, gave partially overlapping results (Fig. 2). In effect, over 97% of significant 196 

SNP x SNP interactions identified via MB-MDR protocols #5 and #6 were identified in BOOST protocols #3 and #4, 197 

respectively (Fig. 2 and Table S3). 198 

Via hierarchical clustering (see Methods for details), the largest distance between protocols (i.e., the smallest overlap 199 

between top findings, not necessarily significant) was obtained for exhaustive screening protocols: protocol #1 -  200 

BOOST without pruning and protocol #2 – BOOST applied on LD-pruned data (Fig. 3). The effect of LD in BOOST 201 

applications is less pronounced when data were first biofiltered. Actually, the smallest distance between protocols 202 

was observed between protocols #3 (BOOST without LD pruning) and  #4 (BOOST applied to LD-pruned data). In 203 

general, the effect of LD on SNP pair rankings seems to be smaller in non-exhaustive protocols as compared to the 204 

exhaustive protocols considered. The second smallest distances observed between protocols was between #5 and #6 205 

(MB-MDR with co-dominant correction of lower-order effects) and between #7 and #8 (MB-MDR with additive 206 

encoding of main SNP effects). Within non-exhaustive screening protocols (#3-#8), analyses that used an additive 207 

encoding to adjust for SNP main effects while testing for interactions stood out;  all protocols involving epistasis 208 

detection analytics with co-dominant encoding schemes of some sort clustered together (Fig. 3). A closer look at the 209 

overlapping significant SNP pairs across all 8 GWAI protocols, reveals that only 3 out of 1230 SNP pairs 210 



(rs12026423/rs7528311, rs11964796/rs13194019 and rs13194019/rs1784607) met statistical significance at α=0.05, 211 

according to at least one GWAI protocol (Table 1 and S4). 212 

 213 

We furthermore investigated whether any of the 49 main effects SNPs reported in (Evans et al. 2011) were supported 214 

by our SNP x SNP interaction results across the 8 tested GWAI protocols (see Methods for more details). With 215 

GWAI protocols #5, #6, #7 and #8 based on the MB-MDR framework, we were able to confirm rs9788973 (p-value 216 

0.49), which maps to HLA-B and rs30187 (p-value 1.1x10-9), which maps to ERAP1 (Evans et al. 2011). These SNPs 217 

occurred in the pairs rs2523608 x rs9788973 and rs30187 x rs284498 (see Table 2). Only GWAI protocols #7 and #8 218 

coined the aforementioned two pairs as being statistically significant. None of the 102 SNP pairs listed in (Evans et 219 

al. 2011) were found to be statistically significant in our re-analysis, regardless of the protocol used. Relaxing the 220 

conditions, we determined the number of SNP pairs with a SNP that occurred in at least one of the 102 SNP pairs 221 

reported by (Evans et al. 2011). A total of 38 such SNP pairs could be detected. These are listed in Table S5. From 222 

these, only 8 significant SNP pairs were highlighted by at least one of our GWAI protocols (in particular, protocol #7 223 

and #8 - Table 3)  224 

 225 

To investigate the influence of MAFs on epistasis findings using different protocols, we defined six 2-dimensional 226 

bins (see Methods for more information). The allocation of top 1000 epistasis findings (significant or not) to either of 227 

these bins is presented in Fig. 4. Hence, adding up the number of allocated SNP pairs to each bin (red numbers in 228 

Fig. 4), within the same protocol, gives 1000. Within the exhaustive protocols (#1 and #2, respectively BOOST 229 

applied to unpruned and LD-pruned data), there is a tendency for SNP pairs each having MAF ≥ 0.05 to occur in the 230 

top 1000. The same is observed for non-exhaustive protocols that rely on additive encodings when adjusting for main 231 

effects (protocols #7 and #8, MB-MDR applied to unpruned and LD-pruned data, respectively). The highest number 232 

of SNP pairs (out of 1000) with MAFs < 0.05 were obtained with exhaustive BOOST screening on unfiltered and 233 

unpruned data (protocol #1). In general, all protocols give rather similar results, apart from protocols with additive 234 

main effects correction (#7 and #8, MB-MDR)  for which virtually all of the top 1000 SNP pairs involved at least 235 

one SNP with MAF≥0.10 (respectively, 100% and 100%). For protocols #1-#6, the percentage of SNP pairs 236 

appearing in the top 1000 list with at least one MAF < 0.05 ranged from 0.2% (protocol #2) to 5.9% (protocol #1).   237 

 238 

Biological relevance  239 

To provide a biological context, we performed a GO functional enrichment analysis on the top 1000 SNP pairs 240 

identified within each individual GWAI protocol. Each SNP was mapped to a gene, when possible (see Methods for 241 

additional details). A GO term was considered when at least 10 of these genes could be annotated to them. This led 242 

to a total of 480 common GO terms across all 8 GWAI protocols with combined p-values < 0.05 (Table S6). Top 10 243 

GO terms are shown in Table 4. Using a significance level of 0.05, significant combined p-values were obtained for 244 

GO terms related to the central nervous system (CNS). In particular, links between AS pathology and nervous system 245 

signal transmission via synapses biological processes was observed via e.g. GO:0007411 (combined p-value: 246 

7.86x10-77), GO:0007268 (combined p-value: 2.00x10-36), and GO:0043524 (combined p-value: 2.91x10-17). To a 247 

lesser degree, we also observed a link between AS and immune system processes that involve antigen processing and 248 



presentation via MHC complex: combined p-value for GO:0002479 of 1.77x10-8 (not corrected for multiple testing). 249 

Other overall significant GO terms were linked to biological processes such as membrane transport (GO:0055085, 250 

combined p-value: 3.04x10
-50

) and sudden response to stimuli (GO:0001964, combined p-value: 1.48x10
-10

) without 251 

a clear association to AS. In addition, we detected an involvement of the Notch pathway responsible for the 252 

proliferation of neurons (GO:0007219, combined p-value of 1.02x10-5), again linking AS to CNS processes.  253 

Discussion 254 

 255 

In our study, we demonstrated that choices about data filtering, pruning and lower order effects adjustment may 256 

cause substantial variation in epistasis findings. We demonstrated this by making changes to the reference GWAI 257 

protocol we published earlier (Gusareva and Van Steen 2014), giving rise to 8 GWAI protocols under investigation 258 

in this work (Fig.1). The reference GWAI protocol consists of a set of guidelines designed to address problems of 259 

epistasis reproducibility in the context of genome-wide epistasis screening with thousands of SNP markers. It 260 

contains recommendations on rigorous data quality control steps, exhaustive or non-exhaustive marker screening, LD 261 

pruning thresholds and the selection of a suitable analytic epistasis detection tool.  262 

Based on our results (for instance Fig 2) the major cause of heterogeneity in findings is the choice about which 263 

markers to retain in the analysis. We referred to it as “pre-selection of markers”. We used filtering based on 264 

biological knowledge to make educated pre-selections, using a compendium of biological databases via Biofilter 2.0 265 

(Bush et al. 2009). The effects of pre-selections on the number of SNPs can be huge, as was exemplified on AS: 266 

before selection, 487,780 SNPs; after selection, 44,018 SNPs. This has huge consequences for subsequent analyses. 267 

In a negative sense, there is a risk of removing pairs of SNPs that may lead to interesting new hypotheses, for which 268 

no reported evidence exists in existing biological data repositories. In a positive sense, less multiple tests are need to 269 

be performed, hereby reducing computation time and potentially also the number of false positives. Seeking a 270 

balance between potentially improving the power of the GWAIs by relying on prior knowledge versus decreasing the 271 

chance of missing important findings remains a challenging task. When inspecting the overlap between significant 272 

results for each protocol, it is therefore not surprising that little overlap may exist between significant results 273 

obtained via exhaustive protocols and significant results obtained via non-exhaustive protocols. In fact, for the AS 274 

data we re-analyzed, no overlap was found at the SNP level (see Fig. 2 and Fig. 3 protocols #1-#2 versus #3-#8). 275 

Furthermore, the protocol adopted by (Evans et al. 2011) makes a heavy pre-selection of markers. Only those SNPs 276 

showing a significant association with AS via main effects GWAs were considered. This involved 15 SNPs, half of 277 

which were also included in the 487,780 SNPs that served as input to our own GWAI protocols (#1-#8): rs30187, 278 

rs10781500, rs10865331, rs11209026, rs2297909, rs378108, rs11209032. The likelihood ratio interaction tests 279 

adopted in their work were similar to the ones implemented in BOOST. However, whereas in BOOST tests are based 280 

on 4df, interaction tests in (Evans et al. 2011) were based on 1df (testing departure from additivity on the log-odds 281 

scale). Hence, it is not surprising that none of the significant SNP pairs reported in (Evans et al. 2011) could be 282 

reproduced in our study. Notably, neither BOOST nor MB-MDR in our protocols adjusted for population 283 

stratification. In contrast, (Evans et al. 2011) did correct for potential population stratification using a two-stage 284 

approach involving Bayesian clustering and Hidden Markov models. In theory, this may explain additional 285 



differences between our analyses and the ones performed in the reference study (Evans et al. 2011). However, given 286 

that the inflation factor based on median X2 for the AS data is 1.02917, we believe that no adjustments were 287 

necessary and hence no spurious results were generated as a result of not correcting for population stratification in 288 

our adopted protocols. 289 

Our results, visualized in Fig. 3, suggest that the second largest cause for heterogeneity in significant findings, 290 

derived from different protocols, is the adopted encoding scheme for genetic variants. This is clear for the non-291 

exhaustive protocols included in our study (#5-#8). It is less clear for exhaustive protocols, since the ones included in 292 

our study only considered co-dominant encoding schemes (#1-#2). However, our experience with other real-life 293 

applications seems to support our suggestion also for exhaustive protocols (data not shown). Previous theoretical  294 

work also showed that additive encodings for lower order effects may increase false positives rates in interaction 295 

studies (Mahachie John et al. 2012). This is in line with the large number of significant interactions identified via 296 

protocols #7 and #8 (Fig. 2). It is very unlikely that over 50000 significant interactions highlighted by these protocols 297 

are genuine, and are caused by the (strong) main effects blurring the epistasis signal (Mahachie John et al. 2012).  298 

The third largest cause for heterogeneity is attributed to differences in employed LD-pruning approaches. Here, the 299 

effect of LD-pruning (i.e., pruning at r2 < 0.75 or not) was more pronounced under additive encoding schemes 300 

(protocols #7 versus #8) as opposed to co-dominant encoding strategies (protocols #3 versus #4, and protocols #5 301 

versus #6). Therefore, it is important to discuss the primary interaction study performed in (Evans et al. 2011), 302 

targeting additive x additive interactions, with caution, and in the light of the adopted pruning protocol.  Fig. 3 shows 303 

that the effects of LD pruning are more severe for exhaustive protocols compared to non-exhaustive protocols. This 304 

is not surprising, given that the LD pruning in the first implies a reduction of about 150,000 SNPs, compared to less 305 

than 15,000 SNPs in the second. Hence, although potentially more significant SNP pairs can be revealed in protocol 306 

#1 (exhaustive, BOOST, unpruned), less significant pairs are highlighted as compared to protocol #2 (exhaustive, 307 

BOOST, LD-pruned; Fig. 1). This can be explained by the reduced number of tests to account for Bonferroni 308 

corrections. The reverse is observed for protocols #3 (BOOST, pre-selected) and #4 (BOOST, pre-selected and LD-309 

pruned). Here, protocol #4 gives rise to less significant SNP pairs compared to protocol #3 (Fig.2). There is still a 310 

reduction of the multiple testing burden in protocol #4 is true, but this cannot explain the phenomenon. More likely, 311 

an increased number of redundant epistasis signals (due to high LD between some marker pairs) are an explanatory 312 

factor. The same can be observed for MB-MDR-based protocols #5 and #6. In particular, again LD pruning as part of 313 

protocol #6 gives rise to a smaller number of significant SNP x SNP interactions (47 – see Fig. 2) compared to 314 

protocol #5 (no LD pruning; 77 – Fig. 2). Note that MB-MDR and BOOST use quite different multiple testing 315 

correction strategies. In case of BOOST, a conservative Bonferroni correction is advocated. In MB-MDR, a 316 

permutation-based maxT strategy is implemented, which relies on subset pivotality to guarantee strong FWER 317 

control at α = 0.05. 318 

Less common and rare variants tend to increase false positive rates, when inappropriate tests are used, as reported in 319 

(Mahachie John et al. 2011a; Tabangin et al. 2009). According to (Tabangin et al. 2009) rare SNPs with MAF < 0.05 320 

showed a significantly higher likelihood of being classified as false positives in the logistic regression based GWAS 321 

(Tabangin et al. 2009). For BOOST-based protocols (#1 - #4), the percentage of top 1000 SNP pairs with at least one 322 

MAF < 0.05 that were statistically significant (multiple testing corrected), was respectively 5.9%, 0.2%, 4.9 % and 323 



2.4% (data not shown). For MB-MDR based protocols (protocols #5-#6) the percentage of such SNP pairs was 324 

respectively 0.1% and 0.2%, smaller than with BOOST-based protocols. However, for MB-MDR based protocols #7 325 

and #8 (using additive encoding schemes for main effects adjustment), the percentages were higher (4.8% and 5.3%, 326 

respectively). This is in line with earlier findings about MB-MDR performance (Mahachie 2012; Mahachie John et 327 

al. 2012; Mahachie John et al. 2011b). When MB-MDR is applied to rare variants, three factors are at play. First, 328 

FWER can be elevated due to violations of the subset pivotality assumption in the built-in maxT multiple-testing 329 

correction procedure (Mahachie John et al. 2013). Second, when marker frequencies are rare, less than 10 individuals 330 

may contribute to a multi-locus genotype combination, in which case there is no power to assess whether this 331 

combination is related to a significantly higher or lower disease risk. As a consequence, the power to detect an 332 

interaction with such a combination may be hampered. Third, additive coding will always give rise to increased false 333 

positives, irrespective of whether rare or common variants are considered.   334 

 335 

The fact that protocols #7 and #8 were the only ones that were able to highlight significant interactions, with either 336 

one of the 49 main effects SNPs listed in Evans et al. 2011, namely rs2523608 x rs9788973 and rs310787  x 337 

rs2844498 (Table 2), is not surprising. MB-MDR with additive encodings has a tendency towards generating more 338 

liberal test results than MB-MDR with co-dominant encodings (Mahachie 2012; Mahachie John et al. 2012). The 339 

SNPs rs9788973 and rs2523608 map to the genes MAP2K4 and HLA-B. The HLA-B gene showed very strong 340 

association to AS (rs4349859 p-value <10-200) in (Evans et al. 2011) and was also related to AS in other studies 341 

(Jenisch et al. 1998; Nischwitz et al. 2010). In addition, the rs2523608 x rs9788973 pair resides in the coding regions 342 

of the HLA-B x MAP2K4 genes (Table 2), suggesting that AS pathology is not only linked to irregularities in peptide 343 

presentation to immune cells via major histocompatibility complex (MHC), but also to dysfunctions in intra-cellular 344 

signaling pathways.  345 

Focusing on the common SNP pairs between GWAI protocols in our study (1230 pairs), only 3 showed a significant 346 

interaction in at least one protocol (Table 1), pointing towards the genes MAGI3 and PARK2. The gene MAGI3 347 

controls intracellular signaling cell-cell adhesion and communication (Adamsky et al. 2003). In the context of AS, 348 

MAGI3 potentially regulates cell-cell communication and adhesion of the cells in the inflamed joint areas between 349 

spinal discs and vertebra. PARK2 was suggested before as a candidate gene for AS in (Claushuis et al. 2012). 350 

Mutations in the PARK2 gene can cause alteration in cellular trafficking and protein degradation (Verdecia et al. 351 

2003). In (Boisgerault et al. 1998), alterations in correct antigenic peptide presentation by major histocompatibility 352 

complex (MHC) class I molecules to CD8+ T lymphocytes were linked with an early onset of chronic inflammation 353 

and AS. Further alteration in protein degradation, partially controlled by PARK2, may also suggest an alteration in 354 

the proper disposal of antigens. The aberrations in this process may potentially contribute to chronic inflammation of 355 

the spine followed by AS onset. 356 

Only 20 pairs were common between our 8 protocols and the list of the 102 SNP x SNP interactions investigated in 357 

(Evans et al 2011). Clearly, several interesting pairs are missed by only looking at SNP pairs that are tested by all 358 

considered protocols (i.e. common SNP pairs). Imputation, to make the SNP x SNP pool more alike between 359 

protocols, may not only over-rule removal of SNPs after biofiltering (for which one may have had good reasons), it 360 

may also induce additional LD between SNPs, which may hugely increase false positives, depending on the analytic 361 



tool used. Interestingly, 8 significant SNP x SNP interactions were detected for which at least one SNP was present 362 

in the 102 SNP pairs of (Evans et al. 2011). These 8 pairs involved the SNPs rs30187, rs10050860 and rs10781500, 363 

and allowed to reproduce the statistically interacting gene pair ERAP1 x HLA-B reported in (Evans et al. 2011) via 364 

the interactions rs3018 x rs2523608, rs10050860 x rs2523608 and rs30187 x rs2523608 (Table 3). Notably, these 365 

findings were obtained with the only protocols using an additive main effects encodings (protocols #7 and #8); Evans 366 

and colleagues also primarily based their interaction testing on additive encodings.  367 

However, by allowing more SNPs for interaction testing than in (Evans et al. 2011), we identified gene pairs not 368 

previously associated to AS: ERAP1 x MICB, MICB x SNAPC4 and HLA-B x SNAPC4 (Table 3), pointing towards 369 

interacting loci or regions between chromosome 5 and 6, and between 6 and 9. MICB is MHC Class I Mic-B Antigen 370 

linked to cell immune response and is functionally similar to MHC Class I encoded by the HLA-B gene. MICB is 371 

implicated in rheumatoid arthritis (Lopez-Arbesu et al. 2007). SNAPC4 encodes small Nuclear RNA Activating 372 

Complex important for proper functioning of RNA Polymerase II and III. ERAP1 encodes for endoplasmic reticulum 373 

aminopeptidase that trims peptides.  374 

 375 

One of the top 480 common GO terms across GWAI protocol #1-#8 was GO:0002479 (Table S6). This term is 376 

functionally related to antigen processing and exogenous antigen presentation via MHC class I, TAP-dependent  It 377 

may suggest that that AS pathology is partially caused by the inability of ERAP1 amino-peptidase to correctly trim 378 

HLA class I-binding peptides and subsequently to present them to MHC complexes (Alvarez-Navarro and Lopez de 379 

Castro 2013). This possibly causes deregulation of the innate immunity and chronic inflammation of spine tissues 380 

that are typical symptoms displayed by AS patients (Chaudhary et al. 2011). Also appearing in the top 10 are GO 381 

terms linked to neural transmission processes (Table 4). This agrees with AS known disease pathology characterized 382 

by consistent pain and inflammation in the spine – part of the central nervous system (CNS). In particular, the GO 383 

terms highlighted in bold in Table 1 and Table S6 (column 1), even though based on the top 1000 SNP x SNP 384 

interactions (not necessarily statistically significant) may suggest a link between AS and mutations in genes involved 385 

in nerve impulse transmission and propagation (GO:0007411, GO:0007268, etc.). Furthermore, GO:0007219 (Table 386 

S6), linked to genes of the Notch signaling pathway (e.g. RBP-J, PSEN1, ADAM10), suggests AS interference with 387 

the correct development and growth of nerve tissue (Housden et al. 2013). It was shown by (Gao et al. 2013) that the 388 

Notch pathway also controls angiogenesis and that Vascular Endothelial Growth Factor (VEGF) and Angiopoietin 389 

(Ang) are both over-expressed in synovial tissues of Psoriatic Arthritis and Rheumatoid Arthritis patients. 390 

 391 

Conclusions 392 

Any GWAI analysis involves making choices about the input data (e.g., filtering using candidate genes or using prior 393 

biological knowledge), about LD-pruning thresholds, about adjusting for lower order effects (and how to encode 394 

these), and about the selection of the analytical tool (e.g., non-parametric, semi-parametric or fully parametric), as 395 

well as, the corrective method for multiple testing  (Gusareva and Van Steen 2014). We have shown that even slight 396 

differences in protocols to perform a Genome-Wide Association Interaction (GWAI) study may hamper the results 397 



reproducibility. We did so by applying the 8 GWAI protocols to real-life genome-wide SNP data on Ankylosing 398 

Spondylitis (AS) and controls.  399 

Choices about marker selection (for instance filtering based on prior knowledge) are the most severe, as it may give 400 

rise to a dramatic reduction in SNPs for further GWAI analysis (Gusareva and Van Steen 2014; Sun et al. 2014; Van 401 

Steen 2012). Although biofiltering may reduce the ability to generate novel hypotheses about interactions (Sun et al. 402 

2014), when doing so the effects of LD pruning and other protocol parameters seem to be less impactful on the final 403 

analysis results. More work is needed though to fully understand the interplay between LD-pruning and filtering 404 

strategies commonly adopted in GWAIs and to derive operational guidelines.  In general, the second largest cause for 405 

heterogeneity in GWAI results is the adopted encoding scheme to adjust the interaction analysis for the lower-order 406 

effects (Gusareva and Van Steen 2014).  The third largest cause is the adopted LD-pruning strategy. To date, no 407 

published work exists that comprehensively investigates the effect of LD on epistasis findings derived from several 408 

analytic tools. In order not to waste carefully acquired data, researchers are often tempted to adopt exhaustive 409 

screening tools whenever computationally feasible. As suggested in (Gusareva and Van Steen 2014), we nevertheless 410 

advocate LD-pruning at an r2 of 0.75, to increase power, yet to reduce the generation of redundant (significant) SNP 411 

x SNP interactions. Exhaustively applying BOOST to LD-pruned AS data at an r2 of 0.75 generated over 2,000 412 

significantly interacting SNP pairs. The existence of moderate LD may induce multicollinearity in regression models 413 

and may increase the number of false positives (even when using a conservative multiple testing correction method 414 

such as Bonferroni). It shows that when applying a GWAI protocol, the results should be interpreted and discussed 415 

under the appropriate context, which includes the limitations and strengths of the adopted protocol, hereby 416 

addressing its different components.  417 

Finally, with so many tools for GWAI analysis around, truly comparing these remains a challenging task in the 418 

absence of reference synthetic data sets that are rich enough to capture real-life complexities. Care has to be taken 419 

when “replicating” interactions with analytic tools that have a tendency to generate false positives: Can one be sure 420 

that one is not replicating a false positive? Clearly, no single tool will fit all. Tools are heterogeneous in their ability 421 

to recognize specific active epistasis modes and several such modes are likely to occur throughout the genome. This 422 

observation puts limitations to strategies that use agreement between different GWAI approaches as evidence for an 423 

interaction. It also favors the development of a hybrid SNP x SNP interaction detection tool, combining the best of 424 

several worlds when screening the genome.  425 

 426 
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Figures 570 

 571 

Fig. 1 Summary of 8 GWAI protocols included in this study and applied to AS data, the ankylosing spondylitis 572 

dataset from (Evans et al. 2011). The number of SNPs retained at each step is shown in parenthesis. The bottom 573 

nodes refer to GWAI protocol abbreviations and chosen parameters, following protocol components as described in 574 

(Gusareva and Van Steen 2014) GWAI protocol. The abbreviations additive and co-dominant refer to SNP main 575 

effects correction encodings in MB-MDR (see (Mahachie John et al. 2012)). 576 
  577 



   578 

 579 

 580 

Fig. 2 Euler diagram capturing significant SNP pairs identified in each of the 8 GWAI protocols. Each circle 581 
represents a set of the significant SNP pairs in the corresponding GWAI protocol. Protocol numbers match the 582 
protocol referencing used in Fig. 1.  583 



 584 

 585 

Fig. 3 Consistency between GWAI protocols based on 1230 common SNPs. Each SNP pair has a protocol-specific 586 
rank, which is stored in a protocol-specific vector. The dendrogram shows the distance between protocols, obtained 587 
via hierarchical clustering of 8 vectors (referring to the 8 GWAI protocols included in this study) of length 1230 and 588 
the Euclidean distance measure. The Euclidean distances themselves are listed in Table S2. 589 



 590 
 591 

 592 

Fig. 4 Effect of SNP MAFs on ranked epistasis results. For each protocol, the top 1000 epistasis results are 593 

presented. Each SNP pair was ordered such that the SNP with the largest MAF was assigned to locus A, and the SNP 594 

with the lowest MAF to locus B. The numbers in red refer to the # of SNP pairs that were assigned to each 2-595 

dimensional MAF bin.  596 
  597 



Tables 598 

Table 1 –  Most significant SNP pairs (among 1230 pairs) across 8 adopted GWAI analysis protocols. All p-values 599 

are multiple testing corrected, either Bonferroni-based (BOOST protocols) or re-sampling based (MB-MDR protocols). 600 
 601 

SNP A SNP B 

GWAI protocols 

Gene A Gene B BOOST MB-MDR 

#1 #2 #3 #4 #5 #6 #7 #8     

rs12026423 rs7528311+ 0.009 0.004 7.72E-05 3.69E-05 0.401 1 0.001 0.004 MAGI3 MAGI3 

rs11964796 rs13194019++ 1 1 0.024 0.012 0.401 1 1 0.995 PARK2 PARK2 

rs13194019 rs1784607+++ 1 1 0.144 0.069 0.401 1 1 0.995 PARK2 PARK2 

+ 
rs12026423/rs7528311 are separated by 13833 bp., r2 = 0.0178; 

++ 
rs11964796/ rs13194019 are separated by 9824 bp. and r2 = 602 

0.0309;  +++ rs13194019/rs1784607  are separated by 3127 bp. and  r2 = 0.0610 603 

 604 

Table 2  Significant pairs containing one of the 49 SNPs associated to main effects (Evans et al. 2011), obtained via 605 
the 8 GWAI protocols. 606 

SNP A SNP B 

GWAI protocols 

Gene A Gene B #1 #2 #3 #4 #5 #6 #7 #8 

multiple testing adjusted p-values 

rs2523608 rs9788973* 1 1 1 1 1 1 0.001 0.001 HLA-B  MAP2K4  

rs30187* rs2844498 1 1 1 1 1 1 0.001 0.002 ERAP1 NA 

*SNPs that occurring as main effects SNPs in Supplementary Table 2 of (Evans et al. 2011) are highlighted in bold. 607 
 608 

  609 



Table 3 – Statistically significant SNP x  SNP interactions that contain a SNP occurring in at least one of 102 SNP 610 

pairs listed in  Supplementary Table 5 in Evans et al. 2011*. 611 
GWAI 

protocol 
SNP A SNP B Chr A Chr B  p-value Gene A Gene B 

#8 

rs30187* rs2844498 5 6 0.002 ERAP1 MICB 

rs30187* rs2523608 5 6 0.038 ERAP1 HLA-B 

#7 

rs10050860* rs2844498 5 6 0.001 ERAP1 MICB 

rs10050860* rs2523608 5 6 0.001 ERAP1 HLA-B 

rs30187* rs2844498 5 6 0.001 ERAP1 MICB 

rs30187* rs2523608 5 6 0.001 ERAP1 HLA-B 

rs2523608 rs10781500* 6 9 0.001 HLA-B SNAPC4 

rs2844498 rs10781500* 6 9 0.001 MICB SNAPC4 

* - SNPs that were analyzed in Supplementary Table 5 by (Evans et al. 2011) are highlighted. 612 
 613 

Table 4 Top 10 Significant GO terms related to top 1000 SNP pairs per GWAI protocol, based on Fisher's combined 614 
p-value at a significance level of 0.05. Protocol-specific p-values are also reported. 615 

GO ID 

GO Term 

Description 

GWAI protocols 

combined* #1 #2 #3 #4 #5 #6 #7 #8 

GO:0007411 axon guidance 5.18E-02 1 4.00E-16 4.40E-18 1.90E-12 2.20E-15 1.20E-13 5.70E-16 7.86E-77 

GO:0030168 platelet activation 5.83E-01 1 2.90E-15 2.30E-15 3.20E-11 1.20E-10 4.10E-09 1.20E-11 3.95E-58 

GO:0055085 
transmembrane 

transport 
4.74E-02 1.55E-01 1.80E-09 1.00E-09 3.20E-11 5.40E-11 6.00E-09 1.00E-12 3.04E-50 

GO:0007268 
synaptic 

transmission 
2.17E-02 1 8.00E-10 3.10E-08 1.50E-06 2.40E-09 6.30E-07 5.00E-08 2.00E-36 

GO:0007173 

epidermal growth 

factor receptor 

signaling pathway 

2.10E-02 1 7.80E-10 1.40E-11 2.40E-07 6.80E-07 2.40E-05 7.20E-06 1.55E-34 

GO:0008543 

fibroblast growth 

factor receptor 

signaling pathway 

9.85E-02 1 5.40E-08 6.90E-11 5.10E-07 1.80E-08 2.20E-04 3.60E-04 2.99E-30 

GO:0007202 

activation of 

phospholipase C 

activity 

1.03E-02 1 2.60E-08 9.40E-09 1.80E-06 6.80E-06 5.10E-06 3.90E-06 6.44E-30 

GO:0006112 
energy reserve 

metabolic process 
1.76E-01 1 9.90E-07 3.40E-09 1.20E-04 1.80E-07 5.90E-06 3.60E-05 1.46E-26 

GO:0042493 response to drug 1.31E-01 5.62E-01 2.70E-05 1.40E-09 5.06E-03 9.80E-05 1.90E-07 6.60E-08 7.90E-26 

GO:0006198 
cAMP catabolic 

process 
5.17E-03 1 5.10E-04 2.50E-05 2.90E-06 5.60E-08 1.00E-05 1.50E-06 6.04E-25 

* - Combined p-values summarize information across the 8 considered protocols. The most relevant GO terms for AS are 616 

indicated in bold, as well as, GWAI-specific p-values when < 0.05. The exhaustive list of significant GO terms is shown in Table 617 

S6.   618 

 619 
 620 

 621 

 622 


