
1 INTRODUCTION 

Shallow rectangular reservoirs are common structures in the field and they are used for water 
storage or sediment trapping. Their optimal exploitation strongly depends on the accurate 
prediction of the flow patterns that develop inside. Previous studies emphasized that, depending 
on the shape factor, SF = L/B0.6b0.4 (L the reservoir length, b the width of the inlet channel and 
B the width of the sudden expansion), and on the Froude number at the inlet, F = Uin/√gH (Uin 
the velocity at the inlet, H the mean water depth in the reservoir), different types of flow occur 
(Peltier et al., 2014a): 
- Symmetric with a straight central jet (SF ≤ 6.2 and F < 0.21), 
- Asymmetric with the central jet impinging one or several times the lateral wall of the 

reservoir (SF ≥ 8.1). 
- Meandering SF ≤ 6.2 and F > 0.21.  
The existence of meandering flows was recently highlighted by Camnasio et al. (2012) and 

Peltier et al. (2014a). This flow is characterized by spatial and temporal periodical oscillations 
of the central jet from the beginning to the end of the reservoir. The meandering of the jet is the 
hallmark of the presence of large-scale vortices in the flow, which transfer momentum from the 
jet towards the rest of the reservoir and induce changes in the velocity distribution, as well as in 
the sediment transport, compared to a configuration without meandering jet (Peltier et al., 
2013). The wave-length of the meander is proportional to the width of the reservoir and/or to the 
friction coefficient, while the lateral spreading of the jet is affected by the shallowness of the 
flow , i.e. it decreases with increasing friction number, S / 8f B H  (f the Darcy-Weisbach 
friction coefficient) (Chu et al., 1983).  

Although the physics of the symmetric and asymmetric configurations are now relatively well 
understood (Mullin et al., 2003, Canbazoglu and Bozkir, 2004, Kantoush et al., 2008, Dufresne 
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et al., 2010, Camnasio et al., 2011) and the flow modellers have successfully demonstrated that 
these flow features can be reproduced using an operational numerical model, where only the 
friction modelling is adjustable (Dewals et al., 2008, Dufresne et al., 2011, Peng et al., 2011, 
Camnasio et al., 2013, Khan et al., 2013), many questions remain regarding meandering flows.  

In the present article, two meandering flows are experimentally and numerically investigated. 
The experimental setup is first described. Information is then given on the operational numerical 
model WOLF2D and the k- model we used. A Proper Orthogonal Decomposition (POD) is 
used for describing the transient behaviour of the jet in the description. The POD analysis 
enables the comparison of spatial, temporal and energetic characteristics of the experimental 
and numerical modelling. The results are finally discussed.  

2 MATERIAL AND METHOD 

2.1 Experimental set-up 

The experiments were performed without sediments in a flume located in the hydraulic 
laboratory of the research group HECE of the University of Liège (ULg), Belgium. The 
experimental device consists of a horizontal glass channel of 10.40 m long and 0.98 m wide, in 
which movable blocks were placed to build the rectangular reservoir (Figure 1).  

For these experiments, the inlet channel was 2.00 m long and 0.08 m wide. The reservoir 
length was set to 1.00 m and the width to 0.98 m. The outlet channel was 1.50 long with the 
same width as the inlet channel and a tailgate ends the flume. All the surfaces were made of 
glass, except for the bottom of the flume (polyvinyl chloride) and the converging section 
(metallic sheets). 

The discharge, Q, was measured with an electromagnetic flow-meter (uncertainty of 
0.025 L/s). The mean water depth, H, in the reservoir was measured using an ultrasonic probe 
and the uncertainty was estimated to be equal to 1% of the mean value. The flow dynamics was 
video-recorded using a high-resolution camera at a rate of 25 Hz during 6’30’’ and the surface 
velocity fields were calculated by LSPIV (Hauet et al., 2008, Kantoush and Schleiss, 2009). The 
uncertainty on the mean surface velocity was estimated to 5%.   

 
Figure 1. Sketch and pictures of the experimental device and the simulation domain.  

 
 
In the present paper, x, y and z denote the longitudinal, the lateral and the vertical directions 

respectively of the Cartesian reference frame attached to the flume; x = 0 immediately 
downstream from the inlet channel and y = 0 at the right bank of the reservoir. z = 0 at the 
bottom of the reservoir.  

Two discharges were used, resulting in two different mean water depths in the reservoir. The 
corresponding Froude number, F, friction number, S, and Reynolds number, R /inU D   (D 
the hydraulic diameter of the inlet channel and  the kinematic viscosity of the water at 20°C), 
in the inlet channels are summarized in Table. 1. The Froude numbers of both experiments are 



close to 0.4 and are a direct consequence of the geometry of the reservoir and of the downstream 
boundary condition. The friction numbers are characteristic of two different friction regimes. 
Referring to the work of Chu et al. (2004), the flow-case F belongs to the frictional regime (the 
turbulence scale is mainly driven by the water depth), while the flow-case NF belong to the non-
frictional regime (the turbulence scale is mainly driven by the horizontal length-scale). The 
Reynolds numbers in both cases confirm that the flows are turbulent, but they are hydro-
dynamically smooth. 

 
 

Table. 1. Main characteristics of the measured flows. 
Test ID Q (L/s) H (cm) F S R

F 0.50 1.80 0.41 0.10 8,456
NF 1.00 4.20 0.46 0.03 24,267

2.2 Numerical model: WOLF2D 

The numerical modelling of the flows was performed using the flow model WOLF2D 
developed at the University of Liege (Dewals et al., 2008). It is an operational code used for 
engineering studies, as well as research applications.  

The space discretization of the 2D-H shallow water equations was performed by means of a 
Finite Volume scheme. The variable reconstruction at cells interfaces was linear and was 
combined with a slope limiter, leading to second-order space accuracy. The convective fluxes 
were computed by a Flux Vector Splitting (FVS) method developed by Erpicum et al. (2010), 
which requires low computational cost, is completely Froude-independent and facilitates a 
satisfactory balance with the discretization of the bottom slope term.  

The time integration was performed by means of a 3-step third-order accurate Runge-Kutta 
algorithm, limiting the numerical dissipation in time that smears the dynamics of the vortex 
generation in the jet. For stability reasons, the time step was constrained by a Courant-
Friedrichs-Lewy condition based on gravity waves and set to 0.2.  

The Darcy-Weisbach standard formulation was used for the friction modelling (Dufresne et 
al., 2011) and the bottom roughness was set to ks = 0.1 mm (representative of the polyvinyl- 
chloride state during the experiments). 

A depth-averaged k- model with two different length-scales accounting for vertical and 
horizontal turbulence mixing was used (Erpicum et al., 2009). The horizontal turbulence mixing 
was classically modelled using the two additional transport equations k and , while the vertical 
turbulence mixing was treated with an algebraic model (Fisher Model: t = 0.08Hu*, t the 
turbulent eddy viscosity and u* the friction velocity). 

In the simulations, the inlet channel of 2 m was reproduced in order to have an injection in 
the reservoir as close as possible to the experimental configuration (Figure 1). The experimental 
discharges were used as inflow conditions at the beginning of the inlet channel, but the unit 
discharge was not uniformly distributed. As prescribed by Dewals et al. (2008), the unit 
discharge distribution must be slightly disturbed for introducing an asymmetry in the flow, 
which will generate the oscillation of the jet. The disturbance linearly varied from -1% to 1% 
across the inflow cells. The water depth measured 13 cm downstream from the outlet of the 
reservoir was prescribed as downstream boundary condition.  

The simulation was performed in two steps. (i) a periodic regime was reached after a run of 
3000 s. (ii) The last time step of the first simulation was then used as initial and boundary 
conditions for the second simulation, which was recorded during 500 s at 25 Hz in order to be 
compared with experiments.  

2.3 Proper Orthogonal Decomposition (Holmes et al., 2012) 

The meandering of the jet is characterised by spatial and temporal periodical oscillations (Figure 
2), which are the hallmarks of the contribution of different types of coherent structures 
convected in the flow (Peltier et al., 2014a, Peltier et al., 2014b). Given the unsteady nature of 
the flows, the classical parameters (velocity fields, Reynolds shear stresses) usually used for 



describing the flows are not sufficient here for comparing experiments and numerical 
modelling. A method is needed for describing the unsteady characteristics of the flow. 
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Figure 2. Experimental instantaneous velocity fields of flow-case F. The black area around x = 0.8 m is a 
blank zone in the measurements. 

 
 

Considering a collection of N snapshots of the fluctuating horizontal velocity fields, 
uʹ(xp,yp,tn) = uʹ(x,t) (n,p œ N*, t=tn+1-tn=CST and x œ Ω Õ R²), which are square integrable 
functions (i.e. uʹ(x,t) œ L²(Ω)), the Proper Orthogonal Decomposition (POD) provides an 
orthonormal basis of M spatial functions m(x) of L²(Ω), called spatial modes, and an orthogonal 
basis of M temporal coefficients, am(t) (m œ {1, …, M ≤ N} and M, N œ N*) , such that:  
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|| ||L² being the induced norm in L²(Ω) (i.e. the root mean square of the inner product for L²(Ω)).  
The POD proceeds in three steps.  

1) The temporal correlation matrix C is first calculated: 
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W is a diagonal weighting matrix, for which the elements along the diagonal are the cell 
volumes of each of the P grid points of one snapshot.   

2) The temporal coefficients am(t) are secondly deduced from the resolution of the 
following eigenvalue problem with the eig function of Matlab: 
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C is definite, positive and symmetric. As a consequence, the eigenvalues m are all real with 
1 ≥ 2 ≥ … ≥ N > 0, and the eigenvectors m(t) are orthonormal. The temporal coefficients, 
am(t), are function of the eigenvectors and of the eigenvalues and they are orthogonal:  
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3) The spatial modes are thirdly computed by projecting the fluctuating velocity ensemble 
onto the temporal coefficients, i.e.:   
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The spatial modes are orthonormal with respect to the inner product in L², m
TWm.  



3 RESULTS AND DISCUSSION  

The POD of the experimental and numerical fluctuating velocity fields allows us to describe 
unsteady flows by analysing the behaviour of the first spatial modes and temporal coefficients, 
which are representative of the most energetic coherent structures. The POD was applied on 
9,000 fields/snapshots of each measurement and numerical simulation of the flow-cases 
presented in Table. 1. 

3.1 Energy 

By construction of the POD basis, the mth eigenvalues calculated with Equation (3) correspond 
to the mean fluctuating kinetic energy per unit mass captured by the mth mode, Em, and the sum 
of the N non-zero eigenvalues is equal to the mean total fluctuating kinetic energy per unit mass, 
ET. The mean fluctuating kinetic energy contained in the mth modes is plotted in Figure 3 and is 
compared with the simulations. For both cases, the numerical model is able to capture the 
energy of the first and second modes. For the frictional case F, the third and the fourth modes 
are paired in the simulation while it is not the case in the experiments, but the energy levels are 
still in good agreement. From the fifth modes the numerical model underestimated the energy. 
For the non-frictional case NF, the level of energy from the third mode to the sixth mode of the 
simulation is similar to the experiment. From the seventh the simulation fails to reproduce the 
energy distribution and very quickly underestimates the energy level, which indicates that the 
small random structures with low energy cannot be well rendered by the model. 
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Figure 3. Mean fluctuating kinetic energy contained in the mth mode. 

 
 
The computation of the total mean fluctuating kinetic energy indicates that for the frictional 

case, ETnum is equal to 86% of ETexp, while for the non-frictional case ETnum is only equal to 49% 
of ETexp. This indicates that the model well captured the essential structures for representing the 
energy in the F-case, while for the NF-case, some essential structures are missing. This is due to 
the energy drop between modes 2 and 3 in the F-case compared to the NF-case. 

3.2 Temporal coefficients 

The temporal coefficients were calculated with Equation (4) and they are represented for the 
four first modes for both flow-cases in Figure 4. For the frictional flow case, mode 1 and mode 
2 of the experiment have the same patterns and are phase-shifted in time, which indicates that 
both modes are related to the same structures (Rempfer and Fasel, 1994). The numerical model 
well represents this behaviour. When considering the third and the fourth modes, no pairing is 
observed for experiments, while a clear pairing is obtained with the numerical model. 

For the non-frictional case NF, a pairing is observed for the four first modes of the 
experiment and simulation. The complex patterns of the temporal coefficients are well 



represented for the two first modes. For modes 3 and 4, the simulated patterns are simpler, but 
numerical and experimental frequencies are close.  

The numerical model cannot represent modes greater than 4 for F-case, modes greater than 6 
for NF-case. Linking the temporal coefficients with the energy indicates that modes with an 
energy Em smaller than 1×10-5 m²/s² cannot be well rendered by the numerical model. These low 
energy modes are parasite motions due to measurement errors or high frequency motions. They 
have low incidence on the main flow feature (Peltier et al., 2014b). 
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Figure 4. Temporal coefficients of the fourth first modes of the POD analysis. Plain lines correspond to 
experiments and dotted lines to simulations. (left figure) flow-case F. (right figure) flow-case NF. 

3.3 Spatial modes 

The vorticity of the spatial modes calculated with Equation (5) were used for describing the 
rotating nature of the meandering flows. Seven transversal profiles of vorticity are plotted in 
Figure 5 for each flow case (experiments and simulations) and the longitudinal distribution of 
the vorticity long the reservoir centreline is displayed in Figure 6. 

For the frictional-case the numerical model is able to reproduce the lateral distribution of the 
vorticity of the two first modes until 40 cm downstream from the reservoir inlet. Downstream 
from this point, the numerical model fails at representing the distribution; some extreme values 
are indeed simulated. Nevertheless, the meander oscillations along the centreline reservoir are 
well represented. Concerning mode 3 and mode 4, the model completely fails at representing the 
spatial modes.  
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Figure 5. Lateral profiles of vorticity of the spatial modes;  experiments, — simulations. (Top figures) F-
case. (Bottom figures) NF-case. 



The numerical model captures better the physics of the non-frictional flow. Except at some 
locations for the third mode, the model and the experiments are in good agreement. The 
computed lateral distribution of vorticity as well as the longitudinal one are in a good agreement 
with the experiments.  
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Figure 6. longitudinal profile of vorticity of the fourth first spatial modes;  experiments, — simulations. 
(Left figure) F-case. (Right figures) NF-case.  

 
 
The previous observations are consistent with the findings obtained for the temporal 

coefficients. When a spatial mode corresponds to a mode with low energy, the numerical model 
fails to reproduce it accurately. As the non-frictional flow is more energetic than the frictional 
flow, and has more modes with energy greater than 1×10-5 m²/s², the overall characteristics of 
the non-frictional flow-case are better reproduced. 

4 CONCLUSION  

The present paper investigates experimentally and numerically two meandering flows in 
shallow rectangular reservoir. In the experiments, the reservoir boundary conditions were 
chosen to obtain flows with different friction regimes (frictional and non-frictional, see Chu et 
al. (2004)) and the flow dynamics was quantified by LSPIV. The flows were then modelled 
using WOLF2D, which solves the shallow water equations and uses a depth-averaged k- 
turbulence model. The numerical boundary conditions were taken as close as possible to the 
experiments. 

A Proper Orthogonal Decomposition was performed on the measured and simulated 
fluctuating velocity fields for describing the main flow features. The POD indeed discriminates 
the structures in the flow in terms of their relative contributions to the mean total fluctuating 
kinetic energy and enables the description of unsteady flows.  

The numerical model is able to represent POD modes, which have a mean fluctuating kinetic 
energy at least greater than 1×10-5 m²/s², whatever the friction regime of the modelled flow. This 
corresponds generally to the two to four first modes of the POD. 
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