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The first chapter of this excellent book introduces the finite element method in the context of sim-
ple one-dimensional model problems. The different steps in the approximation and discretization
of the problem are clearly presented, in particular the Galerkin approximation method, starting
from the strong form of the problem, then its weak form, then the Galerkin approximation and
finally the matrix equation, equivalent to the Galerkin approximation, to be numerically solved
in the F.E. approximation. Several illustrative examples are developed and some general prop-
erties are demonstrated: properties of the stiffness matrix, properties of the approximate F.E.
solution, the superconvergence phenomena, Gaussian elimination,. . . .Chapter 2 deals with vari-
ational formulations of two- and three-dimensional boundary value problems in heat conduction
and elastostatics theory (in fact, all the problems governed by Laplace/Poisson equations, such
as electrostatics, potential flow, elastic membranes and flow in porous media). These serve as the
basis for finite element discretization and the techniques developed, and illustrate the relation-
ship between “strong” or classical statements of boundary value problems and their “weak” or
variational counterparts. The definition of element arrays and pertinent data processing concepts
are also discussed. The Galerkin method of approximate solution is emphasized in Chapter 2 and
throughout the book, rather than “variational principles” due to the significantly greater generality
of the former approach.

In Chapter 3, the shape functions are defined in such a way that, as the finite element mesh is
refined, the approximate Galerkin solution converges to the exact solution; sufficient conditions for
convergence (the shape functions should be smooth on each element interior, continuous across
each element boundary and complete) are stated and a variety of finite element interpolatory
schemes are developed. These apply to triangles, quadrilaterals, tetrahedra, hexahedra, wedges,
etc. The isoparametric concept is emphasized and special-purpose interpolatory strategies are
also developed (e.g. “singular element”). Three of the most important implementational styles
of stiffness formulation are described. Programming techniques are introduced for numerically
integrated finite elements.

Chapter 4 deals with basic error estimates for standard “displacement” finite element methods
and introduces mixed and penalty methods for constrained media applications such as incom-
pressible elasticity and Stokes flow. It is shown how an arbitrary combination of displacement and
pressure interpolations may prove ineffective in incompressible cases; the Babuška-Brezzi sta-
bility condition is presented. A heuristic approach for determining the ability of an element to
perform well in incompressible and nearly incompressible applications is explained. A variety of
“variational crimes” (as termed by Strang) are described: for example, incompatible elements, re-
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duced and selective integration, strain projection (i.e.,B-) methods, etc. (Most of these have been
“decriminalized” in recent years.) The mathematical analysis of finite element methods for incom-
pressible media is rather complex. David Malkus, an authority on this subject, explains some of
the subtleties in an appendix to Chapter 4.

Chapter 5 is concerned with finite element methods for Reissner-Mindlin plates and elastic
frame structures composed of straight beam elements accounting for axial, torsional, bending
and transverse shear deformations (i.e. Timoshenko beams). This chapter discusses the basic
techniques and considerations involved and summarizes recent developments in this area.

Chapter 6 deals with three-dimensional curved shell elements and two-dimensional special
cases such as rings, tubes, and shells of revolution. A general formulation for curved structural
elements is first presented. Throughout, transverse shear deformations are accounted for. This
makes possible the use ofC0 interpolation as in the plate and beam theories of Chapter 5.
Many different approaches have been developed in finite element shell analysis and an enormous
literature now exists. No attempt to review the literature is made in this brief chapter, for a literature
review in finite element shell analysis would entail in itself a major work. The approach presented
herein is quite general and the one currently gaining favor. As for beams and plates in Chapter 5, the
shell theory is derived directly from three-dimensional elasticity theory with certain kinematic and
mechanical assumptions built in. The reduction to practically important two-dimensional cases is
then treated.

The problem classes discussed in Chapters 1–6 give rise to associated time-dependent, tran-
sient, initial value problems (the parabolic heat equation and the hyperbolic elastodynamics and
structural dynamics) and the associated eigenvalue problems (frequency analysis and buckling).
The following chapters present a comprehensive presentation and analysis of algorithms for time-
dependent phenomena. The formulations of problems of these types are the subjects of Chapter 7.
Standard error estimates, eigenvalue estimates, error estimates for semidiscrete Galerkin approxi-
mation, alternative definitions of the mass matrix and the absence of a general theory for obtaining
higher-order accurate mass matrices are also discussed among other subjects.

Chapter 8 presents time-stepping algorithms for first-order ordinary differential equation systems
such as those arising from unsteady heat conduction (“parabolic case”). The classical family of
generalized trapezoidal methods (forward and backward Euler, Crank-Nicolson,. . . ) is presented
in a consistent way as well as the different possible implementations, the stability, the consistency,
the convergence and the accuracy of these algorithms, the von Neumann stability analysis applied
to elementary finite difference equations for the 1-dimensional heat equation. The implicit meth-
ods such as the trapezoidal rule, which are unconditionally stable, second-order accurate, perform
very well in heat conduction analysis. The drawbacks are the storage and equation-solving bur-
den engendered by the coefficient matrix. Recently, using the element-by-element concept, the
author and his collaborators developed methods which possess the desirable properties of im-
plicit methods but in a simple computational setting. A product approximation of the element
assembly is made so that the inversion of the coefficient matrix is replaced by sequential inver-
sions of element matrices. Two methods of that type are outlined: one-pass and two-pass EBE
(element-by-element) algorithms and the second method which solves the equations of the gen-
eralized trapezoidal algorithm by preconditioned conjugate gradients with an EBE approximate



factorization preconditioner. The potential of this EBE method is greatest in three-dimensional
applications where the bandwidth of the coefficient matrix is large, or especially in nonlinear ap-
plications where frequent refactorizations are typically necessary. The different steps of the modal
analysis, which is an alternative method to the step-by-step integration, are explained.

Chapter 9 deals with algorithms for second-order ordinary differential equation systems such
as those emanating from elastodynamics and structural dynamics (“hyperbolic and parabolic-
hyperbolic case”).

Chapter 10 presents basic algorithmic strategies for symmetric elliptic eigenvalue problems
such as those encountered in free vibration and structural stability. A very efficient major software
package for matrix eigenvalue and eigenvector calculations based on the Lanczos method is
also presented in Chapter 10. The documentation of the Lanczos algorithm and software were
written by Bahram Nour-Omid, an expert on procedures of this type. Chapter 11 presents an
extensive linear static and dynamic finite element analysis computer program DLEARN, specially
prepared and based on the methods developed in the book. It contains a very complete library
of finite element software tools. This program is suitable for homework assignments, projects
(e.g., programming additional elements), and research studies. DLEARN is highly structured for
readability, maintainability and extendability and has been written specifically to complement and
enhance the procedures described in the remainder of the book.

It should be stressed that some sections touch upon the frontiers of research and that many
of the procedures described in this book are presented in book form for the first time, for ex-
ample: strain projection (i.e.B-) methods, implicit-explicit finite element mesh partitions in
transient analysis, element-by-element iterative solvers, complete computer implementation of
predictor/multicorrector implicit/explicit algorithms based upon the Hilber-Hughes-Taylor alpha
method, etc.
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