Forecasting Daily Solar Energy Production Using Robust Regression Techniques

Gilles Louppe (@glouppe)
Université de Liège, Belgium

Peter Prettenhofer (@pprett)
Graz University of Technology, Austria
Problem statement

Goal
Short-term forecasting of daily solar energy production based on weather forecasts from numerical weather prediction (NWP) models.

Challenges

- High volatility
 rapidly changing weather conditions
- Noisy response
 hardware failure
- Noisy inputs
 inaccuracy of NWP model
Data

Solar energy production

- 98 Oklahoma Mesonet sites
- Total incoming solar energy in Jm^{-2}

Numerical weather prediction

- NOAA/NCEP GEFS Reforecast, 5 forecasts per day
- Ensemble comprises 11 members (one control)
- 15 measurements (temp, humidity, upward radiative flux, ...)

Courtesy: Dr. Amy McGovern
Overview of our approach

1. **Interpolation** of meteorological measurements from GEFS grid points onto Mesonet sites;
2. Construction of **new variables** from the measurement estimates;
3. **Forecasting** of daily energy production using Gradient Boosted Regression Trees, on the basis of the local measurement estimates.
Kriging

Goal: Estimate meteorological variables (temperature, humidity, ...) locally at all Mesonet sites.

For each day d, period h and type f of meteorological measurement:

1. Build a local learning set

 $$\mathcal{L}_{dhf} = \{(x_i = (\text{lat}_i, \text{lon}_i, \text{elevation}_i), y_i = \overline{m_{idhf}})\},$$

 where $\overline{m_{idhf}}$ is the average value (over the ensemble) of measurements m_{idhf} of type f, at GEFS location i, day d and period h;

2. Learn a Gaussian Process from \mathcal{L}_{dhf}, for predicting measurements from coordinates;

 (Fitting is performed using *nuggets* to account for noise in the measurements.)

3. Predict measurement estimates \hat{m}_{jdhf} at Mesonet stations j from their coordinates.
Feature engineering

Goal : Build a learning set \mathcal{L} from the measurement estimates.

1. Concatenate the estimates at all periods h and for all types f, for each Mesonet station j and day d:

 $$\mathcal{L} = \{(x_{jd} = (\hat{m}_{jdh_1f_1}, \hat{m}_{jdh_1f_2}, \ldots), y_{jd} = p_{jd})\}$$

 where p_{jd} is the energy production at Mesonet station j and day d.

2. Extend inputs x_{jd} with engineered features:
 - Solar features (delta between sunrise and sunset)
 - Temporal features (day of year, month)
 - Spatial features (latitude, longitude, elevation)
 - Non-linear combinations of measurement estimates
 - Daily mean estimates
 - Variance of the measurement estimates, as produced by the Gaussian Processes
Predicting energy production

Goal: Predict daily energy production at Mesonet sites.

1. Learn a model using Gradient Boosted Regression Trees (`sklearn.ensemble.GradientBoostingRegressor`), predicting output y from inputs x;
 - Use the *Least Absolute Deviation* loss for robustness;
 - Optimize hyper-parameters on an internal validation set;

2. For further robustness, repeat Step 1 several times (using different random seeds) and aggregate the predictions of all models.
Results

Evaluation

- Mean Absolute Error (MAE) as metric:

\[
MAE = \frac{1}{JD} \sum_{j=1}^{J} \sum_{d=1}^{D} |p_{jd} - \hat{p}_{jd}|
\]

Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Heldout-Score [MAE]</th>
<th>(\Delta) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMM</td>
<td>4019469.94</td>
<td>46.19%</td>
</tr>
<tr>
<td>Spline Interp.</td>
<td>2611293.30</td>
<td>17.17%</td>
</tr>
<tr>
<td>Kriging + GBRT</td>
<td>2162799.74</td>
<td>-</td>
</tr>
<tr>
<td>Best</td>
<td>2107588.17</td>
<td>-2.62%</td>
</tr>
</tbody>
</table>
Error analysis
Conclusions

✓ **Competitive** results (4th position);

✓ **Robust** approach at all steps of the pipeline;

✗ Including additional data from nearest GEFS grid points might have further improved our results.

Questions? g.louppel|peter.prettenhofer@gmail.com
Kriging illustration