A conjecture on the 2-abelian complexity of the Thue-Morse word
 (Work in progress)

Aline Parreau, Michel Rigo, Elise Vandomme

Representing streams II 2014 - Leiden

Université de Liège

Thue-Morse word

The Thue-Morse word $\mathbf{t}=t_{0} t_{1} t_{2} \cdots$ is the infinite word $\lim _{n \rightarrow+\infty} \varphi^{n}(0)$ where

$$
\begin{gathered}
\varphi: 0 \mapsto 01, \quad 1 \mapsto 10 \\
\mathbf{t}=01101001100101101001011001101001 \cdots
\end{gathered}
$$

The Thue-Morse word \mathbf{t} is 2-automatic.

n	0	1	2	3	4	5	6	7	8	\ldots
$\operatorname{rep}_{2}(n)$	0	1	10	11	100	101	110	111	1000	\ldots
t_{n}	0	1	1	0	1	0	0	1	1	\ldots

Thue-Morse word

The factor complexity of the Thue-Morse word

$$
p_{\mathbf{t}}(n)=\#\{\text { factors of length } n \text { of } \mathbf{t}\}
$$

is well-known : $p_{\mathbf{t}}(0)=1, \quad p_{\mathbf{t}}(1)=2, \quad p_{\mathbf{t}}(2)=4$,

$$
p_{\mathbf{t}}(n)= \begin{cases}4 n-2 \cdot 2^{m}-4 & \text { if } 2 \cdot 2^{m}<n \leq 3 \cdot 2^{m}, \\ 2 n+4 \cdot 2^{m}-2 & \text { if } 3 \cdot 2^{m}<n \leq 4 \cdot 2^{m} .\end{cases}
$$

S. Brlek, Enumeration of factors in the Thue-Morse word, DAM'89
A. de Luca, S. Varricchio, On the factors of the Thue-Morse word on three symbols, IPL'88

Thue-Morse word

The factor complexity of the Thue-Morse word

$$
p_{\mathbf{t}}(n)=\#\{\text { factors of length } n \text { of } \mathbf{t}\}
$$

is well-known : $p_{\mathbf{t}}(0)=1, \quad p_{\mathbf{t}}(1)=2, \quad p_{\mathbf{t}}(2)=4$,

$$
p_{\mathbf{t}}(n)= \begin{cases}4 n-2 \cdot 2^{m}-4 & \text { if } 2 \cdot 2^{m}<n \leq 3 \cdot 2^{m}, \\ 2 n+4 \cdot 2^{m}-2 & \text { if } 3 \cdot 2^{m}<n \leq 4 \cdot 2^{m} .\end{cases}
$$

Definition

Two words u and v are abelian equivalent if $|u|_{\sigma}=|v|_{\sigma}$ for any letter σ.

The abelian complexity of \mathbf{t} takes only two values

$$
\mathcal{P}_{\mathbf{t}}(2 n)=3 \text { and } \mathcal{P}_{\mathbf{t}}(2 n+1)=2 .
$$

k-abelian equivalence

Let $k \geq 1$ be an integer. Two words u and v in A^{+}are k-abelian equivalent, denoted by $u \equiv_{k} v$, if

- $\operatorname{pref}_{k-1}(u)=\operatorname{pref}_{k-1}(v)$,
- $\operatorname{suf}_{k-1}(u)=\operatorname{suf}_{k-1}(v)$,
- for all $w \in A^{k}$, the number of occurences of w in u and in v coincide, $|u|_{w}=|v|_{w}$.

Example

$A=\{a, b\}, u=a b b a b a a b b, v=a a b b a b b a b$,

- $u \equiv_{2} v$ because $^{\operatorname{pref}_{1}}(u)=a=\operatorname{pref}_{1}(v), \ldots$, and $|u|_{a a}=1=|v|_{a a},|u|_{a b}=3=|v|_{a b}, \ldots$
- $u \not \equiv \equiv_{3} v$ because $^{\operatorname{suf}_{2}}(u)=b b \neq a b=\operatorname{suf}_{2}(v)$
- $a b c a b a b b \equiv{ }_{3} a b a b c a b b$

k-abelian equivalence

Let $k \geq 1$ be an integer. Two words u and v in A^{+}are k-abelian equivalent, denoted by $u \equiv_{k} v$, if

- $\operatorname{pref}_{k-1}(u)=\operatorname{pref}_{k-1}(v)$,
- $\operatorname{suf}_{k-1}(u)=\operatorname{suf}_{k-1}(v)$,
- for all $w \in A^{k}$, the number of occurences of w in u and in v coincide, $|u|_{w}=|v|_{w}$.

Remark

- \equiv_{k} is an equivalence relation
- $u \equiv_{k} v \Rightarrow u \equiv_{k-1} v, \forall k \geq 1$
- $u=v \Leftrightarrow u \equiv_{k} v, \forall k \geq 1$

2-abelian complexity of \mathbf{t}

The first values of the 2-abelian complexity of the Thue-Morse word

$$
\mathcal{P}_{\mathbf{t}}^{(2)}(n)=\#\{\text { factors of length } n \text { of } \mathbf{t}\} / \equiv_{2}
$$

are

$$
\begin{aligned}
\left(\mathcal{P}_{\mathbf{t}}^{(2)}(n)\right)_{n \geq 0}= & (1,2,4,6,8,6,8,10,8,6,8,8,10,10 \\
& 10,8,8,6,8,10,10,8,10,12,12,10,12,12,10,8,10,10 \\
& 8,6,8,8,10,10,12,12,10,8,10,12,14,12,12,12,12,10 \\
& 12,12,12,12,14,12,10,8,10,12,12,10,10,8,8,6,8,10 \\
& 10,8,10,12,12,10,12,12,12,12,14,12,10,8,10,12,14, \\
& 12,14,16,14,12,14,14,14,12,12,12,12,10,12,12, \ldots
\end{aligned}
$$

2-abelian complexity of \mathbf{t}

The first values of the 2-abelian complexity of the Thue-Morse word

$$
\mathcal{P}_{\mathbf{t}}^{(2)}(n)=\#\{\text { factors of length } n \text { of } \mathbf{t}\} / \equiv_{2}
$$

are

$$
\begin{aligned}
\left(\mathcal{P}_{\mathbf{t}}^{(2)}(n)\right)_{n \geq 0}= & (1,2,4,6,8,6,8,10,8,6,8,8,10,10, \\
& 10,8,8,6,8,10,10,8,10,12,12,10,12,12,10,8,10,10 \\
& 8,6,8,8,10,10,12,12,10,8,10,12,14,12,12,12,12,10 \\
& 12,12,12,12,14,12,10,8,10,12,12,10,10,8,8,6,8,10 \\
& 10,8,10,12,12,10,12,12,12,12,14,12,10,8,10,12,14, \\
& 12,14,16,14,12,14,14,14,12,12,12,12,10,12,12, \ldots
\end{aligned}
$$

Questions

- Is the sequence $\left(\mathcal{P}_{\mathbf{t}}^{(2)}(n)\right)_{n \geq 0}$ bounded ?
- Is the sequence "regular" ?

2-abelian complexity of \mathbf{t}

A sequence $\left(x_{n}\right)_{n \geq 0}$ (over \mathbb{Z}) is k-regular of its \mathbb{Z}-module generated by its k-kernel

$$
\mathcal{K}=\left\{\left(x_{k^{e} n+r}\right)_{n \geq 0} \mid e \geq 0, r<k^{e}\right\}
$$

is finitely generated.
J.-P. Allouche, J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992)

Example

The 2-kernel of \mathbf{t} is

$$
\begin{aligned}
\mathcal{K} & =\left\{\left(t_{2^{e} n+r}\right)_{n \geq 0} \mid e \geq 0, r<2^{e}\right\} \\
& =\{\mathbf{t}, \overline{\mathbf{t}}\}
\end{aligned}
$$

where $\overline{\mathbf{t}}=\left(1-t_{n}\right)_{n \geq 0}$.

2-abelian complexity of \mathbf{t}

A sequence $\left(x_{n}\right)_{n \geq 0}$ (over \mathbb{Z}) is k-regular of its \mathbb{Z}-module generated by its k-kernel

$$
\mathcal{K}=\left\{\left(x_{k^{e} n+r}\right)_{n \geq 0} \mid e \geq 0, r<k^{e}\right\}
$$

is finitely generated.
J.-P. Allouche, J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992)

Theorem (Eilenberg)

A sequence $\left(x_{n}\right)_{n \geq 0}$ is k-automatic iff its k-kernel is finite.

Related work

Theorem (Madill, Rampersad)

The abelian complexity of the paperfolding word

$0010011000110110001001110011011 \ldots$

is a 2-regular sequence.

Proposition (Karhumäki, Saarela, Zamboni)

The abelian complexity of the period doubling word, obtained as the fixed point of $\mu: 0 \mapsto 01,1 \mapsto 00$, is a 2 -regular sequence.

Question

Is the abelian complexity of a k-automatic sequence always k-regular ?

Conjecture

The 2-abelian complexity of \mathbf{t} is 2-regular.

Notation : $\mathbf{x}_{2^{e}+r}=\left(\mathcal{P}_{\mathbf{t}}^{(2)}\left(2^{e} n+r\right)\right)_{n \geq 0}$.
We conjecture the following relations (Mathematica experiments)

$$
\begin{aligned}
& \mathbf{x}_{5}=\mathbf{x}_{3} \\
& \mathbf{x}_{9}=\mathbf{x}_{3} \\
& \mathbf{x}_{12}=-\mathbf{x}_{6}+\mathbf{x}_{7}+\mathbf{x}_{11} \\
& \mathbf{x}_{13}=\mathbf{x}_{7} \\
& \mathbf{x}_{16}=\mathbf{x}_{8} \\
& \mathbf{x}_{17}=\mathbf{x}_{3} \\
& \mathbf{x}_{18}=\mathbf{x}_{10} \\
& \mathbf{x}_{20}=-\mathbf{x}_{10}+\mathbf{x}_{11}+\mathbf{x}_{19} \\
& \mathbf{x}_{21}=\mathbf{x}_{11} \\
& \mathbf{x}_{22}=-\mathbf{x}_{3}-2 \mathbf{x}_{6}+\mathbf{x}_{7}+3 \mathbf{x}_{10}+\mathbf{x}_{11}-\mathbf{x}_{19} \\
& \mathbf{x}_{23}=-\mathbf{x}_{3}-3 \mathbf{x}_{6}+2 \mathbf{x}_{7}+3 \mathbf{x}_{10}+\mathbf{x}_{11}-\mathbf{x}_{19} \\
& \mathbf{x}_{24}=-\mathbf{x}_{3}+\mathbf{x}_{7}+\mathbf{x}_{10} \\
& \mathbf{x}_{25}=\mathbf{x}_{7} \\
& \mathbf{x}_{26}=-\mathbf{x}_{3}+\mathbf{x}_{7}+\mathbf{x}_{10} \\
& \mathbf{x}_{27}=-2 \mathbf{x}_{3}+\mathbf{x}_{7}+3 \mathbf{x}_{10}-\mathbf{x}_{19} \\
& \mathbf{x}_{28}=-2 \mathbf{x}_{3}+\mathbf{x}_{7}+3 \mathbf{x}_{10}-\mathbf{x}_{14}+\mathbf{x}_{15}-\mathbf{x}_{19} \\
& \mathbf{x}_{29}=\mathbf{x}_{15} \\
& \mathbf{x}_{30}=-\mathbf{x}_{3}+3 \mathbf{x}_{6}-\mathbf{x}_{7}-\mathbf{x}_{10}-\mathbf{x}_{11}+\mathbf{x}_{15}+\mathbf{x}_{19} \\
& \mathbf{x}_{31}=-3 \mathbf{x}_{3}+6 \mathbf{x}_{6}-2 \mathbf{x}_{11}-3 \mathbf{x}_{14}+2 \mathbf{x}_{15}+\mathbf{x}_{19}
\end{aligned}
$$

We also conjecture the following relations

$$
\begin{aligned}
& x_{32}=x_{8} \\
& x_{33}=x_{3} \\
& x_{34}=x_{10} \\
& \mathrm{x}_{35}=\mathrm{x}_{11} \\
& \mathrm{x}_{36}=-\mathrm{x}_{10}+\mathrm{x}_{11}+\mathrm{x}_{19} \\
& x_{37}=x_{19} \\
& x_{38}=-x_{3}+x_{10}+x_{19} \\
& x_{39}=-x_{3}+x_{11}+x_{19} \\
& x_{40}=-x_{3}+x_{10}+x_{11} \\
& \mathrm{x}_{41}=\mathrm{x}_{11} \\
& \mathrm{x}_{42}=-\mathrm{x}_{3}+\mathrm{x}_{10}+\mathrm{x}_{11} \\
& \mathrm{x}_{43}=-2 \mathrm{x}_{3}+3 \mathrm{x}_{10} \\
& \mathrm{x}_{44}=-2 \mathrm{x}_{3}-\mathrm{x}_{6}+\mathrm{x}_{7}+3 \mathrm{x}_{10} \\
& \mathrm{x}_{45}=-\mathrm{x}_{3}-3 \mathrm{x}_{6}+2 \mathrm{x}_{7}+3 \mathrm{x}_{10}+\mathrm{x}_{11}-\mathrm{x}_{19} \\
& \mathrm{x}_{46}=-2 \mathrm{x}_{3}-3 \mathrm{x}_{6}+2 \mathrm{x}_{7}+5 \mathrm{x}_{10}+\mathrm{x}_{11}-2 \mathrm{x}_{19} \\
& \mathrm{x}_{47}=-2 \mathrm{x}_{3}+\mathrm{x}_{7}+3 \mathrm{x}_{10}-\mathrm{x}_{19} \\
& \mathrm{x}_{48}=-\mathrm{x}_{3}+\mathrm{x}_{7}+\mathrm{x}_{10} \\
& \mathbf{x}_{49}=\mathbf{x}_{7} \\
& \mathrm{x}_{50}=-\mathrm{x}_{3}+\mathrm{x}_{7}+\mathrm{x}_{10} \\
& x_{51}=-x_{3}-3 x_{6}+2 x_{7}+3 x_{10}+x_{11}-x_{19} \\
& \mathrm{x}_{52}=-2 \mathrm{x}_{3}-3 \mathrm{x}_{6}+2 \mathrm{x}_{7}+5 \mathrm{x}_{10}+\mathrm{x}_{11}-2 \mathrm{x}_{19} \\
& x_{53}=-2 x_{3}+x_{7}+3 x_{10}-x_{19} \\
& x_{54}=-4 x_{3}+3 x_{6}+x_{7}+3 x_{10}-x_{11}-2 x_{14}+x_{15} \\
& x_{55}=-4 x_{3}+3 x_{6}+x_{7}+3 x_{10}-x_{11}-3 x_{14}+2 x_{15} \\
& x_{56}=-x_{3}+x_{10}+x_{15} \\
& x_{57}=x_{15} \\
& x_{58}=-x_{3}+x_{10}+x_{15} \\
& \mathrm{x}_{59}=-2 \mathrm{x}_{3}+3 \mathrm{x}_{6}-\mathrm{x}_{7}-\mathrm{x}_{11}+\mathrm{x}_{15}+\mathrm{x}_{19} \\
& \mathrm{x}_{60}=-4 \mathrm{x}_{3}+6 \mathrm{x}_{6}+\mathrm{x}_{10}-2 \mathrm{x}_{11}-3 \mathrm{x}_{14}+2 \mathrm{x}_{15}+\mathrm{x}_{19} \\
& \mathrm{x}_{61}=-3 \mathrm{x}_{3}+6 \mathrm{x}_{6}-2 \mathrm{x}_{11}-3 \mathrm{x}_{14}+2 \mathrm{x}_{15}+\mathrm{x}_{19} \\
& \mathrm{x}_{62}=-\mathrm{x}_{3}+3 \mathrm{x}_{6}-\mathrm{x}_{7}-\mathrm{x}_{10}-\mathrm{x}_{11}+\mathrm{x}_{15}+\mathrm{x}_{19} \\
& \mathrm{x}_{63}=\mathrm{x}_{15}
\end{aligned}
$$

If the conjecture is true, then any sequence \mathbf{x}_{n} for $n \geq 32$ is a linear combination of $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{19}$.

Proposition

For all $n \geq 0, \mathcal{P}_{\mathbf{t}}^{(2)}(2 n+1)=\mathcal{P}_{\mathbf{t}}^{(2)}(4 n+1)$.

\times_{32}	$=$	x_{8}
$\times 33$	=	x_{3}
\times^{34}	$=$	x_{10}
x_{35}	$=$	x_{11}
${ }^{36}$	$=$	$-\mathrm{x}_{10}+\mathrm{x}_{11}+\mathrm{x}_{19}$
$\times 37$	$=$	x_{19}
x_{38}	$=$	$-\mathrm{x}_{3}+\mathrm{x}_{10}+\mathrm{x}_{19}$
${ }^{3} 39$	$=$	$-\mathrm{x}_{3}+\mathrm{x}_{11}+\mathrm{x}_{19}$
x_{40}	$=$	$-x_{3}+x_{10}+x_{11}$
${ }^{4} 41$	$=$	x_{11}
x_{42}	$=$	$-x_{3}+x_{10}+x_{11}$
x_{43}	$=$	$-2 x_{3}+3 x_{10}$
x_{44}	$=$	$-2 \mathrm{x}_{3}-\mathrm{x}_{6}+\mathrm{x}_{7}+3 \mathrm{x}_{10}$
${ }^{4} 45$	=	x_{23}
x_{46}	$=$	$-2 \mathrm{x}_{3}-3 \mathrm{x}_{6}+2 \mathrm{x}_{7}+5 \mathrm{x}_{10}+\mathrm{x}_{11}-2 \mathrm{x}_{19}$
x_{47}	=	$-2 x_{3}+x_{7}+3 x_{10}-x_{19}$
${ }^{4} 48$	$=$	$-\mathrm{x}_{3}+\mathrm{x}_{7}+\mathrm{x}_{10}$
$\times 49$	=	${ }^{1} 7$
$\times 50$	$=$	$-\mathrm{x}_{3}+\mathrm{x}_{7}+\mathrm{x}_{10}$
x_{51}	$=$	$-\mathrm{x}_{3}-3 \mathrm{x}_{6}+2 \mathrm{x}_{7}+3 \mathrm{x}_{10}+\mathrm{x}_{11}-\mathrm{x}_{19}$
$\times 52$	$=$	$-2 x_{3}-3 x_{6}+2 x_{7}+5 x_{10}+x_{11}-2 x_{19}$
$\times 53$	=	x_{27}
x_{54}	$=$	$-4 \mathrm{x}_{3}+3 \mathrm{x}_{6}+\mathrm{x}_{7}+3 \mathrm{x}_{10}-\mathrm{x}_{11}-2 \mathrm{x}_{14}+\mathrm{x}_{15}$
x_{55}	$=$	$-4 x_{3}+3 x_{6}+x_{7}+3 x_{10}-x_{11}-3 x_{14}+2 x_{15}$
${ }^{56}$	$=$	$-\mathrm{x}_{3}+\mathrm{x}_{10}+\mathrm{x}_{15}$
$\times 57$	$=$	x_{15}
$\times 58$	$=$	$-\mathrm{x}_{3}+\mathrm{x}_{10}+\mathrm{x}_{15}$
$\times{ }_{59}$	$=$	$-2 x_{3}+3 x_{6}-x_{7}-x_{11}+x_{15}+x_{19}$
$\times 60$	$=$	$-4 \mathrm{x}_{3}+6 \mathrm{x}_{6}+\mathrm{x}_{10}-2 \mathrm{x}_{11}-3 \mathrm{x}_{14}+2 \mathrm{x}_{15}+\mathrm{x}_{19}$
\times_{61}	$=$	x_{31}
x_{62}	$=$	$-\mathrm{x}_{3}+3 \mathrm{x}_{6}-\mathrm{x}_{7}-\mathrm{x}_{10}-\mathrm{x}_{11}+\mathrm{x}_{15}+\mathrm{x}_{19}$
x_{63}	$=$	x_{15}

Another approach

Consider the function

$$
f: \mathbb{N} \rightarrow \mathbb{N}^{4}, n \mapsto\left(\begin{array}{l}
\left|p_{n}\right|_{00} \\
\left|p_{n}\right|_{01} \\
\left|p_{n}\right|_{10} \\
\left|p_{n}\right|_{11}
\end{array}\right)
$$

where p_{n} is the prefix of length n of the Thue-Morse word.

Properties

- $f\left(3 \cdot 2^{i}+1\right)=\left(2^{i-1}, 2^{i}, 2^{i}, 2^{i-1}\right)$
- $f\left(3 \cdot 2^{i}\right)= \begin{cases}\left(2^{i-1}-1,2^{i}, 2^{i}, 2^{i-1}\right) & \text { if } i \text { is odd } \\ \left(2^{i-1}, 2^{i}, 2^{i}-1,2^{i-1}\right) & \text { if } i \text { is even }\end{cases}$

Property

The function $f_{01}: n \mapsto\left|p_{n}\right|_{01}$ is 2-regular.

\mathbf{t}	0	1	1	0	1	0	0	1	1	0	0	1	0	1	1	\cdots
$\left(a_{n}\right)$	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	\cdots
$\left(b_{n}\right)$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	\cdots
$\left(f_{01}(n)\right)$	1	1	1	2	2	2	3	3	3	3	4	4	5	5	5	\cdots

Remark

The convolution of two k-regular sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$

$$
\left(a_{n}\right)_{n \geq 0} \star\left(b_{n}\right)_{n \geq 0}=\left(\sum_{i+j=n} a(i) b(j)\right)_{n \geq 0}
$$

is a k-regular sequence.

Question

Can we find a nice and useful property of the function f_{01} ?
For example, is the sequence $\left(f_{01}(n)\right) 2$-synchronized ?

$$
\left\{\left(\operatorname{rep}_{2}(n), \operatorname{rep}_{2}\left(f_{01}(n)\right)\right): n \in \mathbb{N}\right\} \text { is accepted by a DFA ? }
$$

Why such a property would be useful ?

If $\left(f_{01}(n)\right)$ is 2 -synchronized,

- $\left\{\left(\operatorname{rep}_{2}(n), \operatorname{rep}_{2}\left(f_{01}(n)\right)\right): n \in \mathbb{N}\right\}$ is accepted by a DFA.
- $L=\left\{\left(\operatorname{rep}_{2}(\ell), \operatorname{rep}_{2}\left(f_{01}(n+\ell)-f_{01}(n)\right)\right): \ell, n \in \mathbb{N}\right\}$ is accepted by a DFA.
- $\ell \mapsto \#\left\{\left(\operatorname{rep}_{2}(\ell),{ }_{-}\right) \in L\right\}$ forms a 2-regular sequence.

Theorem (Charlier, Rampersad, Shallit)

Let $A, B \subset \mathbb{N}$. If the language

$$
\left\{\left(\operatorname{rep}_{k}(n), \operatorname{rep}_{k}(m)\right):(n, m) \in A \times B\right\}
$$

is accepted by a DFA, then $n \mapsto \#\left\{\left(\operatorname{rep}_{k}(n),{ }_{-}\right) \in L\right\}$ forms a k-regular sequence.

$\left(f_{01}(n)\right)$ is not 2-synchronized

- Assume $\left(f_{01}(n)\right)$ is 2 -synchronized.
- Then $\left(f_{01}(n)-\frac{n}{3}\right)$ is 2-synchronized.
- For n with $\operatorname{rep}_{2}(n)=(10)^{4 \ell}, f_{01}(n)-\frac{n}{3}=-\frac{2 \ell}{3}$.
- For such n , the subsequence has logarithmic growth and is 2-synchronized.
- Any non-increasing k-synchronized sequence is either constant or linear.
- So $\left(f_{01}(n)\right)$ is not 2-synchronized.

