A conjecture on the 2-abelian complexity of the Thue-Morse word (Work in progress)

Aline Parreau, Michel Rigo, Elise Vandomme

Representing streams II 2014 - Leiden

Thue-Morse word

The Thue-Morse word $\mathbf{t} = t_0 t_1 t_2 \cdots$ is the infinite word $\lim_{n \to +\infty} \varphi^n(0)$ where

$$\varphi: \mathbf{0} \mapsto \mathbf{01}, \qquad \mathbf{1} \mapsto \mathbf{10},$$

 $\mathbf{t} = 01101001100101101001011001001001 \cdots$

Thue-Morse word

The factor complexity of the Thue-Morse word

 $p_{t}(n) = \# \{ \text{factors of length } n \text{ of } t \}$ is well-known : $p_{t}(0) = 1$, $p_{t}(1) = 2$, $p_{t}(2) = 4$, $p_{t}(n) = \begin{cases} 4n - 2 \cdot 2^{m} - 4 & \text{if } 2 \cdot 2^{m} < n \le 3 \cdot 2^{m}, \\ 2n + 4 \cdot 2^{m} - 2 & \text{if } 3 \cdot 2^{m} < n \le 4 \cdot 2^{m}. \end{cases}$

S. Brlek, Enumeration of factors in the Thue-Morse word, DAM'89 A. de Luca, S. Varricchio, On the factors of the Thue-Morse word on three symbols, IPL'88 $\ensuremath{\mathsf{IPL}}$

Thue-Morse word

The factor complexity of the Thue-Morse word

 $p_{\mathbf{t}}(n) = \#\{\text{factors of length } n \text{ of } \mathbf{t}\}$

is well-known : $p_t(0) = 1$, $p_t(1) = 2$, $p_t(2) = 4$,

$$p_{\mathbf{t}}(n) = \begin{cases} 4n - 2 \cdot 2^m - 4 & \text{if } 2 \cdot 2^m < n \le 3 \cdot 2^m, \\ 2n + 4 \cdot 2^m - 2 & \text{if } 3 \cdot 2^m < n \le 4 \cdot 2^m. \end{cases}$$

Definition

Two words u and v are abelian equivalent if $|u|_{\sigma} = |v|_{\sigma}$ for any letter σ .

The abelian complexity of t takes only two values

$$\mathcal{P}_{t}(2n) = 3 \text{ and } \mathcal{P}_{t}(2n+1) = 2.$$

k-abelian equivalence

Let $k \ge 1$ be an integer. Two words u and v in A^+ are k-abelian equivalent, denoted by $u \equiv_k v$, if

•
$$pref_{k-1}(u) = pref_{k-1}(v)$$
,

•
$$\operatorname{suf}_{k-1}(u) = \operatorname{suf}_{k-1}(v)$$
,

for all w ∈ A^k, the number of occurences of w in u and in v coincide, |u|_w = |v|_w.

Example

$$A = \{a, b\}, u = abbabaabb, v = aabbabbab,$$

• $u \equiv_2 v$ because $\operatorname{pref}_1(u) = a = \operatorname{pref}_1(v), \dots$, and $|u|_{aa} = 1 = |v|_{aa}, |u|_{ab} = 3 = |v|_{ab}, \dots$

•
$$u \not\equiv_3 v$$
 because $suf_2(u) = bb \neq ab = suf_2(v)$

• $abcababb \equiv_3 ababcabb$

k-abelian equivalence

Let $k \ge 1$ be an integer. Two words u and v in A^+ are k-abelian equivalent, denoted by $u \equiv_k v$, if

•
$$\operatorname{pref}_{k-1}(u) = \operatorname{pref}_{k-1}(v)$$
,

•
$$\operatorname{suf}_{k-1}(u) = \operatorname{suf}_{k-1}(v)$$
,

for all w ∈ A^k, the number of occurences of w in u and in v coincide, |u|_w = |v|_w.

Remark

• \equiv_k is an equivalence relation

•
$$u \equiv_k v \Rightarrow u \equiv_{k-1} v$$
, $\forall k \ge 1$

•
$$u = v \Leftrightarrow u \equiv_k v, \forall k \ge 1$$

The first values of the 2-abelian complexity of the Thue-Morse word

$$\mathcal{P}_{\mathbf{t}}^{(2)}(n) = \#\{\text{factors of length } n \text{ of } \mathbf{t}\}/_{\equiv_2}$$

are

$$(\mathcal{P}_{\mathbf{t}}^{(2)}(n))_{n\geq 0} = (1, 2, 4, 6, 8, 6, 8, 10, 8, 6, 8, 8, 10, 10, \\10, 8, 8, 6, 8, 10, 10, 8, 10, 12, 12, 10, 12, 12, 10, 8, 10, 10, \\8, 6, 8, 8, 10, 10, 12, 12, 10, 8, 10, 12, 14, 12, 12, 12, 12, 10, \\12, 12, 12, 12, 14, 12, 10, 8, 10, 12, 12, 10, 10, 8, 8, 6, 8, 10, \\10, 8, 10, 12, 12, 10, 12, 12, 12, 12, 14, 12, 10, 8, 10, 12, 14, \\12, 14, 16, 14, 12, 14, 14, 14, 12, 12, 12, 12, 10, 12, 12, \ldots)$$

The first values of the 2-abelian complexity of the Thue-Morse word

$$\mathcal{P}_{\mathbf{t}}^{(2)}(n) = \#\{ ext{factors of length } n ext{ of } \mathbf{t}\}/_{\equiv_2}$$

are

$$(\mathcal{P}_{\mathbf{t}}^{(2)}(n))_{n\geq 0} = (1, 2, 4, 6, 8, 6, 8, 10, 8, 6, 8, 8, 10, 10, \\10, 8, 8, 6, 8, 10, 10, 8, 10, 12, 12, 10, 12, 12, 10, 8, 10, 10, \\8, 6, 8, 8, 10, 10, 12, 12, 10, 8, 10, 12, 14, 12, 12, 12, 12, 10, \\12, 12, 12, 12, 14, 12, 10, 8, 10, 12, 12, 10, 10, 8, 8, 6, 8, 10, \\10, 8, 10, 12, 12, 10, 12, 12, 12, 12, 12, 14, 12, 10, 8, 10, 12, 14, \\12, 14, 16, 14, 12, 14, 14, 14, 12, 12, 12, 12, 10, 12, 12, \ldots)$$

Questions

- Is the sequence $(\mathcal{P}_{\mathbf{t}}^{(2)}(n))_{n\geq 0}$ bounded ?
- Is the sequence "regular" ?

A sequence $(x_n)_{n\geq 0}$ (over \mathbb{Z}) is *k*-regular of its \mathbb{Z} -module generated by its *k*-kernel

$$\mathcal{K} = \{ (x_{k^e n + r})_{n \ge 0} \mid e \ge 0, r < k^e \}$$

is finitely generated.

J.-P. Allouche, J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992)

Example

The 2-kernel of t is

$$\mathcal{K} = \{(t_{2^e n+r})_{n\geq 0} \mid e \geq 0, r < 2^e\}$$
$$= \{\mathbf{t}, \mathbf{\bar{t}}\}$$

where $\overline{\mathbf{t}} = (1 - t_n)_{n \ge 0}$.

A sequence $(x_n)_{n\geq 0}$ (over \mathbb{Z}) is *k*-regular of its \mathbb{Z} -module generated by its *k*-kernel

$$\mathcal{K} = \{ (x_{k^e n + r})_{n \ge 0} \mid e \ge 0, r < k^e \}$$

is finitely generated.

J.-P. Allouche, J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992)

Theorem (Eilenberg)

A sequence $(x_n)_{n\geq 0}$ is k-automatic iff its k-kernel is finite.

Theorem (Madill, Rampersad)

The abelian complexity of the paperfolding word

```
0010011000110110001001110011011 · · ·
```

is a 2-regular sequence.

Proposition (Karhumäki, Saarela, Zamboni)

The abelian complexity of the period doubling word, obtained as the fixed point of $\mu : 0 \mapsto 01, 1 \mapsto 00$, is a 2-regular sequence.

Question

Is the abelian complexity of a *k*-automatic sequence always *k*-regular ?

Conjecture

The 2-abelian complexity of **t** is 2-regular.

Notation : $\mathbf{x}_{2^e+r} = (\mathcal{P}_{\mathbf{t}}^{(2)}(2^e n + r))_{n \ge 0}$. We conjecture the following relations (Mathematica experiments)

We also conjecture the following relations

If the conjecture is true, then any sequence \mathbf{x}_n for $n \ge 32$ is a linear combination of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{19}$.

Proposition

For all $n \ge 0$, $\mathcal{P}_{\mathbf{t}}^{(2)}(2n+1) = \mathcal{P}_{\mathbf{t}}^{(2)}(4n+1)$.

x 19
9
x 19
$_{14} + x_{15}$
$_{14} + 2x_{15}$
$2x_{15} + x_{19}$
+ x 19

Consider the function

$$f: \mathbb{N} \to \mathbb{N}^4, n \mapsto \begin{pmatrix} |p_n|_{00} \\ |p_n|_{01} \\ |p_n|_{10} \\ |p_n|_{11} \end{pmatrix}$$

where p_n is the prefix of length n of the Thue-Morse word.

Properties
•
$$f(3 \cdot 2^{i} + 1) = (2^{i-1}, 2^{i}, 2^{i}, 2^{i-1})$$

• $f(3 \cdot 2^{i}) = \begin{cases} (2^{i-1} - 1, 2^{i}, 2^{i}, 2^{i-1}) & \text{if } i \text{ is odd} \\ (2^{i-1}, 2^{i}, 2^{i} - 1, 2^{i-1}) & \text{if } i \text{ is even} \end{cases}$

Property

The function $f_{01} : n \mapsto |p_n|_{01}$ is 2-regular.

t	0	1	1	0	1	0	0	1	1	0	0	1	0	1	1	• • •
(<i>a_n</i>)	1	0	0	1	0	0	1	0	0	0	1	0	1	0	0	• • •
(b_n)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	• • •
$(f_{01}(n))$	1	1	1	2	2	2	3	3	3	3	4	4	5	5	5	• • •

Remark

The convolution of two k-regular sequences $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$

$$(a_n)_{n\geq 0} \star (b_n)_{n\geq 0} = \left(\sum_{i+j=n} a(i)b(j)\right)_{n\geq 0}$$

is a *k*-regular sequence.

Question

Can we find a nice and useful property of the function f_{01} ?

For example, is the sequence $(f_{01}(n))$ 2-synchronized ?

 $\{(\operatorname{\mathsf{rep}}_2(n),\operatorname{\mathsf{rep}}_2(f_{01}(n))):n\in\mathbb{N}\}$ is accepted by a DFA ?

Why such a property would be useful ?

If $(f_{01}(n))$ is 2-synchronized,

- $\{(\operatorname{rep}_2(n), \operatorname{rep}_2(f_{01}(n))) : n \in \mathbb{N}\}\$ is accepted by a DFA.
- L = {(rep₂(ℓ), rep₂(f₀₁(n + ℓ) f₀₁(n))) : ℓ, n ∈ ℕ} is accepted by a DFA.
- $\ell \mapsto \#\{(\operatorname{rep}_2(\ell), L) \in L\}$ forms a 2-regular sequence.

Theorem (Charlier, Rampersad, Shallit)

Let $A, B \subset \mathbb{N}$. If the language

$$\{(\operatorname{rep}_k(n), \operatorname{rep}_k(m)) : (n, m) \in A \times B\}$$

is accepted by a DFA, then $n \mapsto \#\{(\operatorname{rep}_k(n), _) \in L\}$ forms a *k*-regular sequence.

- Assume $(f_{01}(n))$ is 2-synchronized.
- Then $(f_{01}(n) \frac{n}{3})$ is 2-synchronized.
- For *n* with $\operatorname{rep}_2(n) = (10)^{4\ell}$, $f_{01}(n) \frac{n}{3} = -\frac{2\ell}{3}$.
- For such n, the subsequence has logarithmic growth and is 2-synchronized.
- Any non-increasing k-synchronized sequence is either constant or linear.
- So $(f_{01}(n))$ is not 2-synchronized.

