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Variability in human milk composition: benefit of individualized
fortification in very-low-birth-weight infants’™>

Virginie de Halleux and Jacques Rigo

ABSTRACT

Background: Preterm infants fed fortified human milk (HM) grow
more slowly than those fed preterm formulas. These differences
could be related to the variability in the macronutrient composition
of expressed HM, resulting in inadequate nutrient intake in relation
to the estimated needs of the preterm infants.

Objectives: The aim of this article was to show the variability in
HM composition from an infant’s own mother’s milk (OMM) or
pooled HM from the milk bank. The second objective was to eval-
uate the advantages of individual fortification on nutritional intakes
over standard fortification.

Design: The macronutrient composition of 428 OMM, 138 HM
pools from single donors, 224 pools from multiple donors, and 14 pools
from colostral milk was determined by using a mid-infrared analyzer.
Individualized fortification was performed after analysis of the milk
samples in 2 steps: adjustment of fat content up to 4 g/dL, followed
by the addition of an HM fortifier to provide 4.3 g - kg~ ' - d™!
according to the daily prescribed volume of feeding. Nutritional in-
takes resulting from the individualized fortification were compared
with calculated intakes resulting from standard fortification (HM for-
tifier: 4 packets/dL).

Results: The variability in contents of fat, protein, and energy was
high for all types of HM samples. Compared with standard fortifi-
cation, individual fortification significantly reduced the variability
in nutritional intakes, allowing the maintenance of protein intake
and the protein:energy ratio in the range of the nutritional recom-
mendations.

Conclusions: The variability in expressed HM with respect to its
protein and energy content is high. This variability persists after
standard fortification, possibly resulting in under- or overnutrition.
Because both over- and undernutrition confer risks in later devel-
opment, individualized fortification optimizes protein and energy
intake. Am J Clin Nutr doi: 10.3945/ajcn.112.042689.

INTRODUCTION

Human milk (HM)* is regarded as the gold standard in the
provision of nutritional needs for all healthy and sick newborn
infants during the first months of life (1). It contains nutrients
necessary for growth and development but also numerous bio-
active factors contributing to beneficial effects on host defense,
gastrointestinal maturation (2, 3), infection rate (4-7), neuro-
developmental outcome (8-10), cardiovascular and metabolic
disease (11, 12), and the infant’s and mother’s psychological
well-being.

In preterm infants, there is a general agreement that the use of
exclusive HM has short- and long-term beneficial effects on
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health and neurodevelopmental outcomes (1). However, preterm
infants and particularly extremely-low-birth-weight (ELBW)
infants are at risk of cumulative nutritional deficits and postnatal
growth restriction during the first weeks of life up to the time of
discharge or theoretical term (13, 14). It has been suggested that
the neonatal period corresponds to a critical window when un-
dernutrition does affect brain development (15-17). Preterm
infants have higher protein, energy, mineral, and electrolyte
requirements than term infants. Exclusive HM, even from an
infant’s own mother’s milk (OMM) or banked HM cannot meet
nutritional recommendations for ELBW infants (18, 19). Despite
the benefits of HM fortification (20), growth in preterm infants
fed fortified HM differs qualitatively and quantitatively from the
optimal fetal growth and is also slower than that of preterm
infants fed adapted preterm formulas (21-23). These differences
could be related to the large variation in the nutritional value of
expressed OMM or banked HM, particularly in terms of fat and
protein contents (24-26). We recently suggested that the use of
individualized HM fortification improves nutritional support and
growth in very-low-birth-weight (VLBW) infants (27). As a re-
sult, since 2006, this procedure of fortification has been used for
feeding VLBW in our neonatal intensive care unit (NICU).

The aim of the present study was to evaluate the variability in
HM composition of both OMM and bank HM pools provided
daily to our NICU. The secondary objective was to evaluate the
influence of an individualized HM fortification procedure on
nutritional intakes in preterm infants compared with standard
fortification.
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FIGURE 1. Accuracy of protein (A) and fat (B) determination in human
milk (n = 40) with the use of infrared technology compared with chemical
analysis as the gold standard using Bland-Altman plots (29). HM, human
milk.

SUBJECTS AND METHODS

Validation of an infrared HM analyzer

HM analyses were performed with a mid-infrared analyzer
(Milkoscan Minor; Foss) (27, 28). The instrument, originally
developed for cow milk analysis in the dairy industry, requires
additional calibration for HM use. It needs ~10 mL HM to
provide data on protein, fat, and carbohydrate contents in 90 s.
Results of 40 HM samples from our HM bank were analyzed in
our laboratory, for comparison to chemical analysis for nitrogen
(nitrogen analyzer EP Analyzer EP 428; Leco France) and fat
(“Soxhhlet” Soxtec Aventi 2055; Foss).

TABLE 1
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Variability in daily composition of OMM and of pools of
HM from the milk bank

By using a mid-infrared analyzer (Milkoscan Minor), the
macronutrient composition of 428 OMM samples used for in-
dividualized OMM fortification were obtained. In addition, data
from HM pools from one single donor (5 L HM from one
mother), pools from multiple donors (5 L from multiple-donor
mothers), and pools of colostral milk (<8 d lactation, multiple
donors) were also obtained at the milk bank of the NICU at the
University of Liege, Belgium. HM was expressed at the hospital
or at home, by manual expression or by using an electric pump,
and transported under aseptic HACCP (Hazard Analysis Critical
Control Point) conditions in accordance with written instructions
to the mothers regarding mechanical expression, milk collection,
storage, and transport. OMM provided by the mother was kept at
4°C and used within 72 h. A bacteriologic count was performed
on the day of receipt to allow its use as raw milk or as requiring
pasteurization or elimination. Milk samples of cytomegalovirus-
positive mothers were also pasteurized. To allow individualized
fortification, a sample of 10 mL was taken from the daily pool
and analyzed before fortification. The surplus milk could be kept
in the refrigerator to be used within 72 h of extraction or frozen
for later use. All donor HM had been frozen and pasteurized by
the Holder method (62.5°C for 30 min) and warmed by thawing
to 37°C before analysis. The energy content was calculated by
using the Atwater factors: 4 kcal/g for protein and carbohydrate
and 9 kcal/g for fat.

Nutritional intakes resulting from individualized and
standard HM fortification procedures

The individualized HM fortification protocol was designed in
2 steps to meet the current nutritional recommendations for
premature growing infants (18, 19). This protocol has been
routinely in use in the NICU for VLBW infants since 2006. First,
the fat content of HM was adjusted up to 4 g/dL. when necessary
by using medium-chain triglycerides (MCTs; Liquigen Danone
Nederland), a stabilized 1:1 mixture of MCTs and water (0.5 g/
mL). Second, protein content was adjusted by using a complete
powdered HM fortifier (Enfamil Human Milk Fortifier; Mead
Johnson) to provide 4.3 g protein - kg~' - d”! according to the
daily prescribed volume of feeding. The nutritional composition
of OMM, the MCT and the fortifier supplementation, the pre-
scribed volume, and the infant’s body weight at the day of
prescription were collected at the milk bank for calculating the

Protein, fat, carbohydrate, and energy concentrations of own mother’s milk, single- and multiple-donor milk pools, and

colostral pools’

Own mother’s milk

Single-donor milk pool Multiple-donor milk pool Colostral pool

(n = 428)° (n = 138) (n =224 (n = 14)°
Protein (g/dL) 1.52 = 0.28* 134 = 0.37° 1.46 * 0.24° 2.00 * 0.09¢
Fat (/100 mL) 379 * 0.73% 3.45 * 0.60° 3.39 * 0.48° 2.92 * 0.35°
Carbohydrate (g/dL) 6.76 = 0.27° 6.93 + 0.38° 6.81 = 0.20° 6.51 = 0.14°
Energy (kcal/dL) 673 * 6.5° 64.1 = 5.9° 63.6 = 4.5° 60.3 = 3.5°

T All values are means *= SDs. Values not sharing a common superscript letter are significantly different, P < 0.05
(1-factor ANOVA with Bonferroni correction for multiple comparisons).

20Own mother’s milk: 28 + 10 d of lactation.

3 Colostral pool: donor milk <8 d.
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nutritional intakes per kilogram of body weight per day. In ad-
dition, the theoretical nutritional intakes per kilogram of body
weight per day corresponding to a standard HM procedure (4
packets complete HM fortifier/dL, providing 1.1 g protein, 1 g
lipids, and 14 kcal energy; Enfamil Human Milk Fortifier) were
also estimated.

Statistical analysis

The difference between infrared analyzer and chemical
analysis for nitrogen and fat concentrations were evaluated by
regression analysis and Bland-Altman plots (29) by using
chemical analysis as the gold standard.

Macronutrient composition and variability in OMM and HM
pools from a single donor, multiple donors, and colostral pools
were compared by using 1-factor ANOVA with Bonferroni
correction for multiple comparisons.

The variability in the nutritional content of the different milk
groups and the nutritional intakes resulting from individualized
or standard fortification were calculated as the mean value of the
absolute difference between all individual values and the mean
according to the following formula:

Variability(%) = mean||x(1 to n) — mean| X 100/mean] (1)

Nutritional intakes and variability resulting from individu-
alized and standard fortifications were compared by using paired
Student’s ¢ test. All statistical analyses were performed by using
Statistica software version 10 (StatSoft).

RESULTS

Validation of an infrared HM analyzer

Validation of the infrared HM analyzer was determined on 40
HM samples. A highly significant positive linear correlation was
found between chemical reference values and infrared analysis
(P < 0.001; r=0.97 and 0.99 for protein and fat, respectively).
Both regression lines did not differ significantly from the iden-
tity line. With the use of chemical analysis as the gold standard,
Bland-Altman plots (29) showed that the precision for nitrogen
and fat estimation using infrared analysis corresponded to 6.7%
and 4.3%, respectively, of the reference values (Figure 1).

Variability in daily composition of OMM and in HM pools
from the milk bank

Mean (£SD) values for protein, fat, carbohydrate, and energy
content of OMM (n = 428), single-donor HM pools (n = 138),
multiple-donor HM pools (n = 224), and colostral pools (n = 14)
are shown in Table 1. Significantly higher protein content and
lower fat, carbohydrate, and energy contents were observed in
the colostral pools (donor milk from 1 to 7 d of lactation) than in
all the other groups. In OMM, mean protein, fat, and energy
contents were significantly higher than in single- and multiple-
donor milk pools. In addition, the protein content of single-donor
milk pools was significantly lower compared with multiple-donor
milk pools. Overall, of the 804 samples, 80% (n = 640) had
a fat content <4 g/dL, whereas 51% (n = 413) had an energy
content <65 kcal/dL. The protein content was <1.2 g/dL in
17% of samples (n = 141), between 1.2 and 1.6 g/dL in 50% of
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samples (n = 402), and >1.6 g/dL in 30% of samples (n = 243)
(Figure 2).

The variability in protein, fat, and energy contents was high in
the various groups (Table 2 and shown in Figure S1 under
“Supplemental data” in the online issue). The variability in
protein content was higher in single-donor pools and lower in
colostral pools than in all other groups. The variability in fat
content was higher in OMM than in all other groups, but the
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FIGURE 2. Variability in protein, fat, and energy concentrations of own
mother’s milk and human milk pools (n = 804).
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TABLE 2
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Variability in protein, fat, and energy contents of own mother’s milk, single- and multiple-donor milk pools, and colostral pools’

Percentage of variability’

Own mother’s milk (n = 428)

Single-donor milk pool (n = 138)

Multiple-donor milk pool (n = 224) Colostral pool (n = 14)

Protein 14.7 * 10.6* 193 = 19.4°
Fat 14.5 = 12.7% 103 * 8.4°
Energy 7.3 *+ 6.26% 6.9 = 6.0%

13.5 £ 9.9* 3.8 = 2.4°
10.6 = 9.4° 9.7 + 6.5*°
53 +4.7° 4.4 + 3.6*°

" All values are means + SDs. Values not sharing a common superscript letter are significantly different, P < 0.05 (1-factor ANOVA with Bonferroni

correction for multiple comparisons).
2 Variability(%) = mean[|x(1 to ) — mean| X 100/mean].

difference was not significant compared with the colostral pool
(P = 0.08).

Nutritional intakes and variability resulting from
individualized and standard HM fortification procedures

Between June 2006 and December 2011, 428 daily OMM
individualized fortifications were performed in 24 VLBW pre-
term infants (mean * SD birth weight = 1140 = 230 g; gesta-
tional age = 28.6 = 1.6 wk) over >3 wk. MCT supplementation
was necessary in 64% (272 of 428) of daily OMM pools and
HM fortifier was necessary in 99.5% (426 of 428) of daily OMM
pools. The nutritional content of OMM after MCT supplemen-
tation and HM fortification is shown in Table 3. By comparison
to standard fortification, protein intakes and the protein:energy
ratio of individualized fortification were significantly lower,
whereas the fat and the energy contents were significantly
higher, with individualized fortification. The variability in nu-
tritional intakes and protein:energy ratio were significantly
lower using individualized compared with standard fortification.
Thus, the variability in protein intake after individual fortifica-
tion was reduced by 21% of the variability after standard for-
tification (Table 4 and Figure 3).

DISCUSSION

Several studies have shown an association between short- and
long-term health, as well as neurodevelopmental outcomes, and
cumulative intakes of HM during the early weeks of life in
VLBW infants (20, 30). However, the use of HM as a sole source
of nutrients is insufficient to cover the high nutritional re-
quirements of growing preterm infants. OMM, with its higher
protein content, improves growth compared with banked HM (31,
32), but remains suboptimal to support growth, especially lean
body mass gain after the second or third week of lactation.
Despite various HM fortifiers developed to increase protein,
energy, minerals, electrolytes, trace elements, and vitamin sup-
plies (20, 33), the use of fortified HM has failed to obtain
postnatal growth in the range of fetal growth or that observed in
infants fed preterm formulas (21-23).

In the present study, we showed that the macronutrient and
energy composition of OMM and banked donor HM used for
nutrition in preterm infants in the NICU are highly variable,
leading to a high rate of protein and energy deficits compared
with reference values.

As shown in Figure 1, protein, fat, and energy contents ranged
from 0.8 to 2.4 g/dL for protein, from 1.8 to 6.6 g/dL for fat, and

from 47 to 85 kcal/dL for energy. Furthermore, as shown in
Figure 2, of all daily OMM and HM pool samples, 56% were
<1.5 g protein/dL, whereas 79% were <4 g lipids/dL, and 67%
were <67 kcal energy/dL (values frequently considered as ref-
erence values for preterm milk composition). These results
differ from the recent reference values reported by Bauer and
Gerss (34) who evaluated nutritional composition of OMM
collected longitudinally from mothers of ELBW infants. In this
study, they suggested that in OMM between 28 and 32 wk the
protein content could be as high as 2.3-1.9 g/dL, whereas the fat
and the energy content accounted for 4.4 g/dL and 77 kcal/dL,
respectively.

Protein values of preterm mother’s milk are generally higher
in the early postnatal period and decrease during lactation.
However, a high variability remains between and within mothers
(34). The present study confirms these 2 observations as shown
in Figures S2 and S3 under “Supplemental data” in the online
issue. Incomplete milk expression and manipulations of HM
during expression, storage, transport, and processing are all
additional factors influencing the high variability in expressed
HM composition. Indeed, in clinical practice, it is not possible
for mothers of preterm infants to follow the strict guidelines and
methodology as proposed in a prospective study on HM com-
position (34). The fat content is highly related to manipulation
and processing between expression and delivery to the preterm
infants. As a result, the true energy and protein contents are
unpredictable and differ significantly from those calculated by
using a fixed composition for OMM or banked HM.

TABLE 3
Composition of OMM before and after individualized fortification with
MCTs and HMF’

OMM + OMM + MCTs +
OMM MCTs? HMF’
Protein (g/dL) 1.52 = 0.28 1.52 = 0.27 2.51 = 0.14
Fat (g/dL) 3.79 = 0.73 420 = 045 5.09 = 048
Carbohydrate (g/dL) 6.76 = 0.27 6.76 = 0.27 7.11 = 0.28
Energy (kcal/dL) 67.26 £ 6.49 70.13 = 452 82.66 * 4.42
Protein:energy ratio 227 = 0.37 2.17 = 0.35 3.04 = 0.19

" All values are means * SDs; n = 428. HMF, human milk fortifier;
MCT, medium-chain triglyceride; OMM, own mother’s milk.

2Fat concentration of human milk was adjusted up to 4 g/dL when
necessary by adding MCTs.

7 Protein content was adjusted by using a complete HMF to provide
43 g protein - kg~'- d”' according to daily volume of feeding.
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TABLE 4
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Comparison of individualized fortification intakes and percentage of variability with theoretical values obtained after

standard fortification’

Individualized fortification

Standard fortification

Intake
Protein (g * kg ™'+ d™") 425 + 0.13* 4.45 * 0.51
Fat (g o kg '+d™h 8.6 + 0.9% 8.1+ 13
Energy (kcal - kg~' - d™") 140 + 9% 138 * 13
Protein:energy ratio 3.04 = 0.19* 324 = 0.32
Variability (%)
Protein 2.0 = 2.3*% 9.2 * 6.8
Fat 6.6 £ 7.4% 12.1 £ 10.3
Energy 4.8 £ 4.5% 7.3 * 6.1
Protein:energy ratio 4.5 £ 43* 7.6 £ 6.5

! All values are means + SDs; n = 428. Intakes and variability resulting from individualized and standard fortifications
were compared by using paired Student’s ¢ test. *P << 0.05 when compared with standard fortification.

Growth differences between fortified HM and preterm for-
mula-fed VLBW infants receiving an apparently similar energy
and protein intake could also be related to a lower content of
metabolizable protein and energy available for new tissue syn-
thesis. Metabolic balance studies (35, 36) showed that nitrogen
absorption as well as nitrogen utilization were lower in preterm
infants fed fortified HM than in those fed preterm formulas. In all,
the mean difference in nitrogen utilization accounted for 5.5%
and could be related to nonnutritional proteins (lactoferrin, IgA)
or nonprotein nitrogen content (urea) in HM. Net absorption of
fat-derived energy was also frequently lower (78.3%) in infants
fed HM than in those fed formula (88.4%), resulting in a higher
fecal loss of energy. This difference could be increased by the use
of pasteurized HM (37). Pasteurization of HM for high-risk
preterm infants is frequently applied in milk banks and in neo-
natal units to reduce bacterial contamination and the risk of
cytomegalovirus infection (38, 39). Pasteurization leads to in-
activation of the bile salt—stimulated lipase of HM (40) as well as
possible changes in the milk fat globule structure (41).

Standard fortification, adding a fixed amount of a fortifier as
recommended by the manufacturer, is the most commonly used
method to fortify mother’s milk. This method was not associated
with a reduction in the variability in HM nutritional contents and
often failed to meet the nutritional recommendations for preterm
infants (42, 43). A more suitable fortification regimen was
suggested to improve nutritional intakes and growth in preterm
infants. Arslanoglu et al (44) adjusted the fortifier supply ac-
cording to the values of blood urea nitrogen (BUN) considered
to be a marker of protein adequacy in preterm infants. This BUN
method, which was developed to avoid inadequate and excessive
protein intake, is easy to apply and does not require daily milk
analyses. However, it has been shown that BUN is not correlated
to protein intakes during the first weeks of life but reflects the
renal immaturity of ELBW and VLBW infants (45, 46).
Therefore, the use of BUN as a threshold level to adjust protein
intake is inadequate. Polberger et al (47, 48) have proposed
analyzing, once or twice a week, the macronutrient content of
24-h OMM collections so as to adapt the fortification in the
range of nutritional needs. Recently, Miller et al (49) suggested
that an increase in the protein fortification from 1 g/dL to 1.4 g/dL
produces a minimal benefit on growth in preterm infants. They
found no significant increase in daily weight gain but a significant

reduction in incidence of growth restriction in the higher protein
group. However, such an increase in protein fortification does not
compensate for the variability in HM composition. The risk of
energy deficiency as well as of protein overload remains, with its
potential long-term adverse effects. In 2007 we suggested that
daily individualized HM fortification could provide nutritional
supplies in the range of the nutritional recommendations and
improve growth in VLBW infants (27).

In the present study, we confirm the high daily variability in the
nutritional value of HM within a large number of samples of
OMM, and that this variability could be reduced by daily in-
dividualized fortification. With standard fortification, protein
deficiency or overload, and energy deficiency were frequently
observed (Figure 3, A and B). By contrast, after individualized
fortification, the range of protein intake decreased from 3.3-6.6
to 3.6-45¢g - kg ! - d~! and that of the protein:energy ratio
from 2.4-4.7 to 2.4-3.8 g/100 kcal (Figure 3, A and C). With
this technique, we showed that appropriate nutritional intakes
could be provided daily in the upper range of recent ESPGHAN
(European Society of Paediatric Gastroenterology, Hepatology,
and Nutrition) recommendations (19). In addition, with in-
dividualized fortification, the mean use of fortifier was signifi-
cantly lower (3.6 compared with 4.0 packets/dL), decreasing the
osmolality of the fortified HM and the risk of gastric intolerance.

The currently available multicomponent HM fortifiers are not
adequately designed for use in VLBW infants. In the present
study, the relative fat deficit of expressed HM provided to the
NICU was corrected with an MCT emulsion. However, the fatty
acid profile of the fortified HM remains inadequate for preterm
infants, especially in terms of long-chain PUFA content.
Therefore, newer fortifiers providing high protein and energy
intakes with adequate long-chain PUFA content, but without
inducing a gastrointestinal osmotic load >360—400 mOsm/kg
H,O0, need to be developed to improve the nutritional supply
with minimal side effects for the preterm infants.

Although individualized fortification is time consuming and
expensive and requires additional equipment and well-trained
staff, the use of infrared technology to determine the macronu-
trient composition of HM is likely to expand its availability in
NICUs. It could have practical application in HM banks for donor
milk composition or to develop specific HM pools with higher
protein and/or energy content.
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FIGURE 3. Protein (A) and lipid (B) intakes and protein:energy ratio (C)
according to individualized or standard human milk fortification (n = 428).

As a result of the lower energy and protein bioavailability of
HM, an energy intake of 140 kcal - kg~' - d”' and a protein
intake of 42 g - kg~ ' - d”! were estimated to be necessary to
ensure an adequate growth. These values are slightly higher than
those recently recommended by the ESPGHAN Committee on
Nutrition in 2010 (19). These recommendations are more related
to preterm infants fed formula than to those fed fortified HM,
and recent studies suggest that specific recommendations for the
use of HM are necessary. These new recommendations need to

pE HALLEUX AND RIGO

consider the lower metabolizable energy and protein content of
fortified HM, the effect of pasteurization, and the additional
nutritional losses suggested during continuous feeding (27, 50).

In conclusion, the macronutrient content of expressed preterm
OMM and donor HM pools is widely variable, especially for
protein, fat, and energy. Standard fortification, as recommended
by the manufacturer, does not meet the high nutritional re-
quirements of immature infants, thereby creating conditions for
under- or overnutritional risks. Individualized fortification based
on daily HM analysis improves and regulates the protein and
energy intakes in preterm infants but requires equipment and
a well-trained staff. Further studies are necessary to improve the
fortifier formulation to meet individual needs and new recom-
mendations, and studies particularly dedicated to ELBW and
VLBW infants fed HM need to be developed.
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