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One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the
discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define
several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor
biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the
Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of
blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for
impairment of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according
to their specificity for the Egf pathway.
In conclusion, we show that developmental indicators can help to discriminate between specific effects on the
target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal
systems.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Introduction

During the past decades, molecularly targeted therapies for various
diseases have been developed, offering a more rational approach than
classical drug development due to a higher efficiency against the drug tar-
get combinedwithminimized secondary effects. Althoughbiochemical or
cell-based assays are efficient at detecting pathway-specific drugs, whole
animal systems are more reliable for detection of unwanted side effects.
Toxicity of such targeted drugs may result from off-target effects due to
lack of specificity, but also from specific effects due to inhibition of the
intended target also required in healthy cells (Gibbs, 2000). For example,
inhibition of gamma-secretase for treatment of Alzheimer's disease will
also affect Notch signaling (Bulic et al., 2011). Similarly, inhibition of the
Egfr pathway for cancer therapy leads to skin rash after two weeks due
to Egfr inhibition (Li and Perez-Soler, 2009). Although unwanted, such a
mechanism-based toxicity is however useful as evidence for specific
pathway inactivation (Dienstmann et al., 2011). Moreover, while ob-
served lethality or teratogenicity might in general exclude a tested com-
pound for direct clinical application, the detection of specific effects could
however qualify it for investigation of related molecules that could de-
crease the unwanted side effects. Thus, one of the major challenges
when screening for new compounds affecting specific pathways in a
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whole animalmodel such as zebrafish is the discrimination between spe-
cific effects on the targeted pathway and more general off-target effects.

In thefield of tumor biology, the EpidermalGrowth Factor (EGF) path-
way has been a preferred target for inhibition due to its involvement in a
wide variety of cancer types (Bianco et al., 2007; Eccles, 2011;Harari et al.,
2007; Shilo, 2003; Sibilia et al., 2007). The EGF ligand family consists of
one member in Caenorhabditis elegans (Chang and Sternberg, 1999), five
in Drosophila melanogaster and ten in vertebrates (Olayioye et al., 2000;
Yarden and Sliwkowski, 2001), while the EGF receptor belongs to a family
of four receptors in humans. The latter includes EGF receptor (EGFR), also
known as ErbB1 or HER1 (Human EGF Receptor 1), ErbB2/neu/HER2,
ErbB3/HER3 and ErbB4/HER4 (Olayioye et al., 2000; Yarden and
Sliwkowski, 2001). Similar to other ErbBmembers, EGFR is a 170 kDa gly-
coprotein containing a cystein-rich extracellular ligand binding domain, a
hydrophobic transmembrane domain and a cytoplasmic tyrosine kinase
domain. In mammals, a large variety of ligands are recognized by ErbB
members that can form homo- or heterodimers and consequently, ErbB
signaling displays a remarkable diversity (Holbro and Hynes, 2004;
Seshacharyulu et al., 2012).

EGFs and their receptors are regulators of cell proliferation, differ-
entiation, survival, motility, and apoptosis (Olayioye et al., 2000;
Yarden and Sliwkowski, 2001). Moreover, their involvement in
many normal physiological processes such as embryonic tissue devel-
opment, skin (Luetteke et al., 1994; Pastore et al., 2008), kidney (Zeng
et al., 2009), mammary gland (Hardy et al., 2010), heart (Iwamoto and
Mekada, 2006) lung, intestine, myelination (Aguirre et al., 2007), cra-
niofacial skeleton (Miettinen et al., 1999; Sibilia et al., 2003; Wang
et al., 2004) confer a key regulatory role to the EGF pathway. EGFR
ved.
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signaling was previously shown to be involved in cartilage (Fisher
et al., 2007; Pan et al., 2011; Saito et al., 2013; Shum et al., 1993;
Takeda et al., 2010) and bone (Schneider et al., 2009; Wang et al.,
2004; Zhang et al., 2011; Zhu et al., 2011) development. Disruption
of this pathway also revealed its involvement in renal pathologies
(Zeng et al., 2009), bone pathologies (Schneider et al., 2009), bone
metastasis (Lu and Kang, 2010) or skin inflammation (Pastore et al.,
2008). Amplification and inappropriate activation of EGF receptor
family members are associated with tumor growth (Blume-Jensen
and Hunter, 2001; Hardy et al., 2010; Yarden and Sliwkowski, 2001),
psoriasis (Jost et al., 2000) or cardiomyopathy (Asakura et al., 2002;
Crone et al., 2002). In particular, its potential as a target for anti-
tumor drug development (Seshacharyulu et al., 2012) triggered re-
search to inhibit EGFR function using various approaches such as
monoclonal antibodies (cetuximab and panitumumab) or tyrosine ki-
nase inhibitors (TKI, erlotinib or gefitinib) (Harari et al., 2007; Langer,
2007;Maccari et al., 2007; Scaltriti and Baselga, 2006). Numerous pro-
tein tyrosine kinase inhibitors, named tyrphostins (TYRosine PHOS-
phorylation Inhibitors) naturally exist, such as quercetin, genistein,
erbstatin or lavendustin, which inhibit Ser/Thr kinases and several
other enzymes, but were found to have a low specificity for EGFR. To
enhance their specificity, synthetic tyrphostins have been developed.
The anilinoquinazoline AG-1478 was found to reversibly inhibit
EGFR with high specificity (Barker et al., 2001) and efficacy in liver
tumors (Caja et al., 2011), laryngeal cancers (Kang et al., 2010) and
glioblastoma (Carrasco-Garcia et al., 2011).

Although few studies have been carried out in zebrafish and medaka,
two copies of EGFR (egfra and egfrb) genes have beendescribed in teleosts
(Laisney et al., 2010; Morizot et al., 1998). Compared to humans, an 89%
protein sequence similarity is observed in the intracellular kinase do-
mains, while the extracellular domains of zebrafish Egfrs are less con-
served (58% similarity). Expression of egfr1a was shown to be
ubiquitous in adults (Wang and Ge, 2004). Four zebrafish homologs for
members of the Egf ligand family (egf, btc, tgfα, hb-egf) have been isolated
(Laisney et al., 2010; Tse andGe, 2009) and their expression in adultswas
evaluated. All four exhibited ubiquitous expression, except that egf was
absent from gills and pituitary. In female gonads, expression of all four li-
gandswas detected in the oocyte,whereas egfr1wasonly found in the fol-
licular layer (Tse and Ge, 2009). Expression of hb-egf, egf and btc was
detected by in situhybridization in the retina (Wan et al., 2012). Three ad-
ditional members (Areg, Ereg and Epgn) have been identified (Laisney
et al., 2010), but no information on their expression pattern is available
to date. In zebrafish, EGFR signaling is involved in cardiovascular develop-
ment (Goishi et al., 2003) and in oocyte maturation (Pang and Ge, 2002;
Wang and Ge, 2004), disruption of hb-egf expression leads to myocardial
contractile dysfunction (Friedrichs et al., 2009). The specific inhibitor
AG-1478 was also shown to have an effect on blood vessel develop-
ment in a chemical screening experiment using a transgenic vegfr2-
GFP line expressing GFP in the blood vessels (Tran et al., 2007).

Many investigations into the role of Egf signaling are based on
the study of its receptor Egfr/ErbB1. Here, we concentrate on the biologi-
cal functions of the Egf pathwayby determining the effect of Egf depletion
on developing zebrafish during the first 4 days and comparing these de-
fects to those observed upon inhibition of Egfr function.

Materials and methods

Substances. AG-18, AG-213, AG-490, AG-825 and AG-1478 were
purchased from Tocris (Bristol, UK). Stock solutions were prepared by
dissolving the pure chemicals in DMSO and then diluted to the desired
concentrations in E3 medium. Final DMSO concentrations were b1% in
the final solution. Effects of DMSO alone were evaluated at 1%, the
maximum concentration used during the assays.

Zebrafish maintenance. Adult strain AB zebrafish (ZIRC, Eugene, OR)
were kept at 28 °C as described (Westerfield, 2007). The light:dark
cycle was 14:10 h. Wild-type fish were mated and spawning was stim-
ulated by the onset of light. Then, eggs were collected and placed at
28 °C in Petri dishes containing E3 medium (5 mM NaCl, 0.17 mM
KCl, 0.4 mM CaCl2, and 0.16 mM MgSO4). Embryos and larvae
were staged according to Kimmel et al. (Kimmel et al., 1995). The
age of the embryos and larvae is indicated as hours post fertilization
(hpf) or days post fertilization (dpf). Animal care and all experimenta-
tion were conducted in compliance with Belgian and European laws
(Authorization: LA1610002, Ethical commission protocols ULg1076
and ULg624).

Drug treatment and larvae observation. Treatments were adminis-
tered to 4 hpf zebrafish larvae distributed in pools of 25 into 6 well
plates in E3 medium. The treatment solution was renewed every 24 h.
All experiments were carried out at least in duplicate on n = 25 larvae
per test and repeated at least three times. Survival andmorphological or
developmental defects were assessed every day from 1 dpf to 4 dpf
using an Olympus SZX10 stereomicroscope coupled with an Olympus
XC50 camera. To assess teratogenicity, the surviving larvae were ob-
served for morphological defects and the number of larvae presenting
at least one morphological defect was reported as percentage of the
surviving larvae. For calculation of LC50, LC10, EC50 and EC10 values,
the Graphpad software was used. The teratogenic index (TI), defined
as the ratio between LC50 and EC50, was calculated; a substance is
considered to be teratogenic when TI N 1, and considered as producing
embryo lethal effects when TI ≤ 1.

Whole mount in situ hybridization (WISH). Whole mount in situ hy-
bridization was performed as previously described (Hauptmann and
Gerster, 2000) using an Insitu Pro VSi robot (Intavis, Koeln, Germany).
Antisense RNAprobeswere synthesized by transcription of cDNA clones
with T7, T3 or SP6 RNA polymerase using digoxigenin labeling mix
(Roche Applied Science). Treated and non-treated larvae were fixed
4 days post fertilization (4 dpf) in PFA 4%. In situ labeling was observed
using an Olympus SZX10 stereomicroscope coupled with an Olympus
XC50 camera.

Alcian blue staining. Cartilage was stained with Alcian Blue 8 GX
(Sigma®) as previously described (Dalcq et al., 2012). Briefly, four days
old larvae were fixed in PFA 4% for 2 h at room temperature, rinsed with
PBST and finally stained overnight with 10 mMMgCl2/80% ethanol/0.04%
Alcian Blue solution. Embryos were rinsed with 80% ethanol/10 mM
MgCl2. Pigments were bleached in H2O2 3%/KOH 0.5% for 1 h.

Morpholino antisense knock down analysis. A morpholino oligonucle-
otide (MO) was synthesized by Gene Tools (Philomath, OR, USA) that
is complementary to the splice donor site of exon 4. MO stock solutions
were prepared as suggested byGene Tools. Tetramethylrhodamine dex-
tran (Invitrogen, Belgium) was added at a concentration of 0.5% to sort
correctly injected embryos a few hours after injection. The MOegf
morpholino sequence is: 5′-AAGAGAAACCGAGGCTGTACCTTCA-3′.

Reverse transcription and real-time PCR analysis. Total RNA from
pools of 100 treated or control larvae was isolated with Trizol
(Invitrogen, Cergy Pontoise, France) using the RNeasy extraction kit
(Qiagen, Venlo, Netherlands) and reverse transcribed by Moloney
murine leukemia virus reverse transcriptase (Promega, Madison, WI)
using random hexamer primers (Promega, Madison, WI). At least
three pools were analyzed for each treatment and the corresponding
control. Real-time quantitative PCR (qPCR) was performed with
AmpliTaq Gold polymerase in an Applied Biosystem 7500 Fast
thermocycler using the standard SyBr Green detection protocol
(Applied Biosystems, Foster City, CA). Briefly, 12 ng of total cDNA,
50nM (each) primers, and 1× SyBr Green mixture were used in a
total volume of 20 μL. The results were analyzed using the β-actin
cDNA amplification as internal standard and fold-change was
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calculated relative to untreated control using the ΔΔCt method
(Pfaffl, 2001). qPCR analysis on each RNA sample was performed
in triplicate and one representative result out of at least three
independent experiments is shown.

The following PCR primers were used: β-actin: 5′-CAGACATCA
GGGAGTGATGG-3′ (forward) and 5′-ATGGGGTATTTGAGGGTCAG-
3′ (reverse); mbp: 5′-CCGTCGTGGAGACGTCAA-3′ (forward) and 5′-CG
AGGAGAGGACACAAAGCT-3′ (reverse).

Microangiography. Microangiography was performed by injecting
isolectine GS-IB4 Alexa Fluor 568 conjugate (Invitrogen, Gent,
Belgium) into the sinus venosus of 4 dpf larvae. Injected larvae were
observed using an Olympus SZX10 stereomicroscope coupled with an
Olympus XC50 camera.
Fig. 1.Developmental defects as a result of egf knock down in 96 hpf zebrafish embryos. (A) Ob
tilage patterns in control andmorphants (I. no observable defect; II. ShortenedMeckel's cartilage; I
formation). (C)Myelin basic protein expression analyzed bywholemount in situ hybridization or (
genic fli-GFP embryos. A: aorta; CV: Cardinal vein; DLAV: Dorsal longitudinal anastomotic vessel
Statistical analysis. All statistical analyses were performed using
Graphpad prism for Windows (version 5.03). LC50, LC10, EC50 and
EC10 were calculated by plotting the surviving/affected larvae against
the log transformed tested concentration and the obtained curve was
fitted to a sigmoid concentration-response relation according to the fol-
lowing equation: Y = Bottom + (Top–Bottom) / (1 + 10 logEC50 − x)
where bottom and top represent respectively the lowest and the highest
y-value (% survivors/affected). The resulting calculated logEC/LCwere ex-
tracted and their corresponding SD given (Table 5).

The decrease/increase in gene expression as determined by qPCR
was analyzed using one-way ANOVA followed by Dunnett's multiple
comparison test (Steel and Torrie, 1996). Significance was considered
when P values were lower than 0.05. (***) indicates statistical signifi-
cance P b 0.005 (**) P b 0.01 (*) P b 0.05. The results are expressed as
mean plus or minus SD.
servable impairment ofmandibular tissues in 96 hpfmorphants. (B) Proportions of head car-
II. ShortenedMeckel's cartilage and attenuated or absent ceratobranchials and IV. No cartilage
D) qPCR. Effects of Egf depletion on trunk vessel formation bymicroangiography (E) in trans-
and Se: intersegmental vessels.

image of Fig.�1
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Results

Developmental defects caused by inhibition of EGF expression

To define the developmental defects caused by inhibition of EGF sig-
naling, we decided to perform genetic knock-down of the Egf pathway.
In zebrafish, two homologs have been described for the human EGF
receptor gene (egfra and egfrb), while only one gene is found coding
for Egf (Laisney et al., 2010). Thus, we decided to genetically inhibit
expression of the endogenous egf gene by microinjection of a specific
antisense morpholino oligonucleotide targeting the splice donor site
of exon 4 into the one-cell stage embryo.

In afirst exploratory experiment, injection of 2 ng ofMOegf led to 6%
mortality at 4 dpf, while no occurrence of morphological defects or ne-
crosis was observed. Close inspection of 4 dpf egf morphants revealed
an apparent absence of ventral tissue in the anterior head region,
presumably the mandibular cartilage (Fig. 1A). This effect was further
characterized by microinjection of various amounts of MOegf.
Morpholino-injected and control embryos were analyzed by alcian
blue staining for the cartilage extracellular matrix. Four different
head cartilage patterns were observed on those larvae (Fig. 2): type I
with no observable defect; type II presenting shortened Meckel's
cartilage; type III with shortenedMeckel's cartilage associatedwith at-
tenuated or absent ceratobranchials and type IV without any cartilage
formation.While 0.5 ngMOegf caused weak cartilage defects (type II)
Fig. 2. Observed head cartilage patterns. Observable head cartilage patterns stained with
alcian blue in 4 dpf embryos upon Egf pathway disruption. Type I: no observable defect;
type II: shortened Meckel's cartilage; type III: shortened Meckel's cartilage associated with
attenuated or absence of ceratobranchials and type IV: without any cartilage formation.
in 20% and more severe (type III and IV) in 22% of the observed larvae,
injection of 1 ng led to a higher proportion of type II defects (39%),
type III (39%) and type IV (10%) cartilage defects inmorphants. Finally,
injection of 2 ng of MOegf led to type III malformations in 27% and to
severe type IV defects in 72% of injected larvae (Table S1, Fig. 1B).

We also determined the effect of Egf knock down on myelin forma-
tion. Myelin basic protein (Mbp) is one of the major components of
myelin both in the central and peripheral nervous system. In situ
hybridization of 4 dpf control embryos revealed mbp expression in the
midbrain–hindbrain, the oligodendrocytes of the anterior lateral line
(ALL) and in the medial longitudinal fascicle bifurcating rostrally into
cranial nerves. In MOegf morphants, a dose dependant decrease of
mbp expression was clearly observed (Fig. 1D). Quantitative analysis
by RT-PCR on total mRNA revealed a 2-fold, 3-fold and 5-fold decrease
of mbp mRNA levels upon injection of, respectively 0.5, 1 or 2 ng of
MOegf relative to larvae previously injected with a control morpholino
(Fig. 1C).

Finally, we investigated the effect of Egf depletion on trunk vessel
formation and function. We performed micro-angiography on trans-
genic fli1-GFP embryos in order to compare the presence of the green
fluorescent blood vessels to the blood flowvisualized by the redfluores-
cence of previously microinjected isolectine GS-IB4 Alexa Fluor 568. In
control larvae (MOCon 2 ng), the aorta (A), the cardinal vein (CV), the
dorsal longitudinal anastomotic vessel (DLAV) and the intersegmental
(Se) vessels were clearly distinguished (green) and blood circulation
was observed in all these vessels (Fig. 1E). Larvae injected with MOegf
exhibited clear circulation defects, while the blood vessels appeared to
be correctly formed. At 1 ng of morpholino, the larvae were character-
ized by a lack of circulation in the caudal vein (CV), dorsal longitudinal
anastomotic vessel (DLAV) and intersegmental vessels (Fig. 1E). These
defects were even more pronounced after injection of 2 ng MOegf.

Taken together, our results clearly show that inhibition of the Egf
pathway, by genetic down-regulation of Egf expression, leads to com-
bined defects in cartilage development, blood vessel function in the
trunk and mbp expression.

Developmental defects caused by inhibition of EGFR function

Having established several developmental defects resulting from
inhibition of Egf expression,we decided to investigate the effects caused
by tyrphostins known to inhibit Egf signaling, such as AG-1478, AG-18,
AG-213 (Szende et al., 1995), AG-490 and AG-825.

Lethality and morphological defects caused by EGFR inhibitors. As a first
step in the characterization of their biological properties, the survival
of zebrafish larvae exposed to different concentrations of the selected
EGFR inhibitors was determined. Inhibitor treatments were initiated
at 4 hpf during 4 days and survival rates were determined. LC50 and
LC10 concentrationswere calculated at 96 hpf (Table 1).While no effect
on survival was observed at any time point following exposure to 1%
DMSO, the highest concentration of solvent used in these experiments,
AG-1478 was found to be lethal at 4 dpf with LC50 = 9.5 μM and
LC10 = 7.7 μM (Fig. 3A, Table 1). AG-490, AG-825 and AG-18 exposure
proved to be lethal with respectively calculated LC50 = 60, 11 and
77 μM, while AG-213 caused no lethality at the highest concentration
tested (Fig. 3B–E, Table 1).

We also determined themorphological defects present in the surviv-
ing larvae at 4 dpf. The results of these observations and the proportions
of the larvae presenting the various defects are summarized in Table 2.
EC50 concentrations were determined for occurrence of any morpho-
logical defect and the teratogenic index (TI = LC50/EC50)was calculat-
ed (Fig. 3A–E, Table 3). AG-1478 exposure induces edema (from2 ± 2%
at 2.5 μM to 97 ± 3% at 10 μM) and tail curvatures (from 4 ± 4% at
7.5 μM to 64 ± 8% at 10 μM) at 4 dpf with EC50 and EC10 of, respec-
tively 7.8 and 7 μM (Table 2). AG-18 at 10 μM exposure induced
edema and growth retardation (respectively 12 ± 10 and 40 ± 20%

image of Fig.�2


Table 1
Molecules tested and their effects on lethality. The table shows the name, chemical structure and molecular weight of the different inhibitors tested here. The results of the lethality tests
after exposure from 4 hpf to 4 dpf are given as LC50 and LC10 and their known pharmacological effects are indicated.

MW LC50 LC10

AG-1478 352.2 9.5 μM 7.7 μM EGFR kinase inhibitor

AG-18 186.2 77 μM 40 μM EGFR/PDGFR inhibitor

AG-213 220.2 N100 μM N100 μM EGFR receptor kinase inhibitor

AG-490 294.3 60 μM 49 μM EGF receptor tyrosine kinase inhibitor

AG-825 397.5 11 μM 4.4 μM ErbB2 inhibitor
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of observed larvae). At 25 μM, AG-18 caused additional tail curvature in
10 ± 7% of the exposed larvae, while at 100 μMall observed larvae pre-
sented morphological defects (Table 2). EC50 was calculated to be
53 μM. AG-213 exposure did not cause significant morphological de-
fects at the different tested concentrations, its EC50 is higher than
100 μM. Zebrafish larvae exposed to AG-490 10 μM presented growth
retardation and tail curvature in 42 ± 2% of observed larvae, while
additional edema and shorter tails were observed at higher concentra-
tions. EC50 for AG-490 was found to be 20 μM. AG-825 caused growth
retardation in all larvae, even at the lowest tested concentration
(5 μM),while 55 ± 30% of those larvae also presented edema. At higher
concentrations (10 and 25 μM), edemawasobserved inmost larvae (re-
spectively 90 ± 14% and 100%) in addition to growth retardation and a
shorter tail reported in all larvae. EC50was lower than 5 μM for AG-825.

The teratogenic index (TI) was also calculated as LC50/EC50
(Table 3). While the effects observed with AG-18 (TI = 1.43) and AG-
1478 (TI = 1.22) may be closely related to their lethality, AG-825
(TI = 2.37) and AG-490 (TI = 3.04) clearly revealed their teratogenic-
ity (TI ≫ 1).

Egfr inhibitors cause developmental defects in head cartilage. To inves-
tigate the defects in skeletal development associated with Egfr inhibi-
tion in zebrafish, we analyzed head cartilage formation at 4 dpf by
alcian blue staining. The resulting cartilage profiles were classified in
the four types (Fig. 2) and cartilage EC50 (cE50) was calculated based
on the presence of any cartilage defect (type II, III or IV) (Fig. 3F-J,
Table S1) as described above.

Exposure to AG-1478 lead to concentration-dependant cartilage
malformations, ranging from 37 ± 30% type II cartilage at 1 μM to
93 ± 4 at 2.5 μM. More severely altered patterns were observed at
5 μM (14 ± 13 type III), 7.5 μM (25 ± 31 type III and 6 ± 8 type IV)
and 10 μM (88 ± 12 type III and 12 ± 12 type IV (Fig. 3F, Table S1).
cEC50 was found to be 1.12 μM for AG-1478 (Fig. 3F, Tables S1 and 4).
To assess the specificity of the cartilage defects generated by the inhib-
itor, a “cartilage defect index” (CI) was calculated (CI = LC50/cEC50)
similar to the well-known teratogenic index. The CI for AG-1478
exposure was CI = 8.50 (Table 4), indicating that inhibition of the Egf
pathway leads to specific defects in cartilage development (CI ≫ 1).

When exposed to AG-18, the larvae presented a significantly altered
cartilage only at 100 μMexposure, characterized by type III (50 ± 17%)
and type IV (50 ± 17%) patterns (Fig. 3G; Table S1). AG-213 caused a
weak, but dose-dependant increase of abnormal cartilage formation
(10 ± 5% type II cartilage at 100 μM (Fig. 3H and Table S1). AG-490 ex-
posure led to type II (33 ± 27%) and type III (20 ± 7%) cartilage defects
at 50 μM,while 7 ± 10% of exposed larvae exhibited a severe alteration
(type IV) (Fig. 3I; Table S1). At 5 μM, AG-825 exposure led only to
34 ± 4% ofweakly affected (type II) cartilage profiles, a 10 μMexposure
caused type II (28 ± 24%), type III (39 ± 18%) and type IV (33 ± 9%)
patterns (Fig. 3J, Table S1).

While cEC50 for AG-213was found to be higher than 100 μM, cEC50
of AG-18, AG-490, AG-825 were found to be respectively 60 μM, 45 μM
and 5 μM (Table 4). cEC50 were found to be close to LC50 for AG-18
(CI = 1.3) and AG-490 (CI = 1.3), whereas AG-825 (CI = 2.2) pre-
sents a specific effect on cartilage development (Table 4).

Effects of Egfr inhibitors on myelin formation. Previously, AG-1478 ex-
posure was shown to prevent expression of the myelin-specific protein
Mbp (myelin basic protein) in zebrafish larvae (Lyons et al., 2005). To
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Fig. 3. Survival, teratogenicity and cartilage defects upon exposure to EGF pathway inhibitors. (A–E) Fraction of surviving larvae (black line); larvae presenting any morphological defect
(orange dotted line) or any cartilage defect (purple dotted line) at 4 dpf upon daily exposure to different concentrations of AG-1478 (A) AG-18 (B), AG-213 (C), AG-490 (D) or AG-825(E)
with their corresponding SD. (F–J) proportions of head cartilage patterns observed on larvae exposed to AG-1478 (F) AG-18 (G), AG-213 (H), AG-490 (I) and AG-825(J) at the indicated
concentrations from 4 hpf to 4 dpf. (I. no observable defect; II. shortened Meckel's cartilage; III. shortened Meckel's cartilage associated with attenuated or absence of ceratobranchials;
IV. without any cartilage formation.). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 2
Inhibitors and associatedmorphological defects.The table shows theproportions of larvae presenting the differentmorphological defects (edema, growth retardation, curved tail, short tail
and hemorrhages) upon exposure to the different drugs at the indicated concentrations from 4 hpf to 4 dpf.

Concentration (μM) Edema Growth retardation Curved tail Short tail Hemorrhages

AG-1478 1 – – – – –

2.5 2 ± 2 – – – 2 ± 2
5.0 5 ± 5 – 0.7 ± 1 – 9 ± 5
7.5 15 ± 14 – 4 ± 4 0.7 ± 1 14 ± 12
10 97 ± 3 4 ± 4 64 ± 8 4 ± 4 5 ± 2

AG-18 10 12 ± 10 40 ± 20 – – –

25 18 ± 10 14 ± 13 10 ± 7 – –

50 12 ± 6 23 ± 17 20 ± 16 – –

100 100 ± 0 100 ± 0 100 ± 0 100 ± 0 –

AG-213 10 – – – 4 ± 6 –

25 – – – – –

50 5 ± 3 – – 4 ± 3 –

100 6 ± 8 5.7 ± 0.2 2 ± 2 – –

AG-490 10 – 42 ± 2 42 ± 2 – –

25 11 ± 11 34 ± 6 3 ± 3 6 ± 6 –

50 83 ± 1 83 ± 1 83 ± 1 92 ± 7 –

AG-825 5 55 ± 30 100 ± 0 – – –

10 90 ± 14 100 ± 0 – 100 ± 0 –

25 100 ± 0 100 ± 0 – 100 ± 0 –
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confirm and extend this observation, we analyzed mbp expression
in 4 dpf larvae by RT-qPCR quantification of whole body mRNA levels.
AG-1478 inhibited mbp expression in larvae exposed to 0.5, 1.1
and 1.5 μM with respectively 2.2-, 3.3- and 3.6-fold decreases
(Fig. 4A). By whole-mount in situ hybridization, we observed that AG-
1478 treatment resulted in a drastic, dose-dependant decrease of mbp
expression, leaving only a weak expression in the hindbrain at 1.5 μM
(Fig. 4B).

The expression of mbp was also analyzed following exposure to the
other tyrphostins at concentrations corresponding to the previously
determined cEC50 values. While no alteration of mbp expression could
be associated to AG-213 exposure, a weak decrease (1.24 fold) was ob-
served in larvae exposed to AG-825 by RT-qPCR. AG-18 caused a stron-
ger decrease (1.6 fold) in mbp expression, while AG-490 treatment
resulted in a dramatic (5.7 fold) inhibition (Fig. 5A).WISH analysis con-
firmed the impact of AG-490 exposure onmbp expression, especially in
the lateral line (Fig. 5B).
Table 3
Molecules tested and their effects on morphology.The effective concentrations (EC50,
EC10) to cause any morphological defect are given for exposure to the indicated
inhibitors from 4 hpf to 4 dpf with a daily renewal, as well as the teratogenic index (TI)
and the morphological defects that were observed for each drug.

EC50 EC10 TI Morphological defects

AG-1478 7.8 μM 7.0 μM 1.22 Edema
Curved tail
Hemorrhages

AG-18 53 μM 50.5 μM 1.43 Edema
Growth retardation
Short curved tail

AG-213 N100 μM N100 μM / Edema
Growth retardation
Curved tail

AG-490 19.6 μM 3.8 μM 3.04 Edema
Growth retardation
Short curved tail

AG-825 4.7 μM 3.8 μM 2.37 Edema
Growth retardation
Short tail
Tyrphostins inhibit blood flow in intersomitic vessels of the trunk.
Previously, 10 μM AG-1478 treatment was shown to impair inter-
somitic blood vessel development (Tran et al., 2007). To confirm and
further characterize those results, micro-angiography was performed
on tyrphostin-exposed larvae as described above. In AG-1478 treated
larvae, blood circulation was interrupted in the most posterior regions
and in patches of the cardinal vein and the intersomitic vessels
(Fig. 6). These defects were more intense at higher inhibitor concentra-
tions, although the formation of the various blood vessels seemed only
slightly affected at the concentrations used here.While AG-213 exposed
larvae appeared unaltered, AG-18 exposure led to an absence of cir-
culation in the caudal tip, especially in the dorsal longitudinal anasto-
motic vessel (DLAV) and a reduced circulation in the caudal vein (CV)
(Fig. 6). The same effect on CV was obtained upon AG-490 exposure
associated with the absence of circulation in some intersegmental
vessels (Se). AG-825 induced a strong circulation defect characterized
by a complete absence in the caudal tip and absence of blood flow in in-
tersegmental vessels, the posterior part of DLAV and also in the caudal
vein.

Thus, we observe clear developmental defects in cartilage, myelin
and blood circulation upon treatment with the Egf inhibitors at suble-
thal concentrations.
Discussion

In this study, we decided to define several developmental defects
resulting from impairment of the Egf signaling pathway by comparing
the effects due to direct, genetic knock-down of Egf expression with
those observed upon treatment with known inhibitors of its signaling
pathway.

When Egf expressionwasdecreased bymicroinjection of specific an-
tisense morpholinos to block correct splicing of the egfmRNA, nomajor
morphological defects, such as edemaor necrosiswere observed even at
the highest concentration of MOegf tested and lethality was very low.
In contrast, we observed a decrease ofmpb expression by in situ hybrid-
ization and we further confirmed mbp mRNA depletion by qRT-PCR
analysis already at the smallest amount (0.5 ng) of MOegf injected.
This observation is consistent with the previously observed decrease
ofmbp expression in erbb2 and erbb3 mutants (Lyons et al., 2005), indi-
cating that these receptors are required for transmission of the Egf signal
in these cells. Similarly, we observed a clear interruption of blood circu-
lation in the trunk vessels by microangiography at this concentration,
reminiscent of the previously observed effect on angiogenesis of the



Table 4
Molecules tested and their effects on cartilage.The effective concentrations (cEC50, cEC10)
to cause any cartilage defect are given for exposure to the indicated inhibitors from 4 hpf
to 4 dpf with a daily renewal, as well as the cartilage defect index (CI) for each drug.

cEC50 cEC10 CI

AG-1478 1.1 μM 0.68 μM 8.50
AG-18 60 μM 51 μM 1.28
AG-213 N100 μM ND –

AG-490 45 μM 26 μM 1.33
AG-825 5.0 μM 4.3 μM 2.23
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inhibitor AG-1478 (Tran et al., 2007). In addition,we describe for thefirst
time that Egf signaling is required for the formation of head cartilage in
96 hpf zebrafish embryos. egf knock-down leads to dose-dependent de-
fects in cartilage formation, consistent with the previously described in-
volvement of the Egf pathway in cartilage and bone formation in rats
(Zhang et al., 2011), mutant mice (Miettinen et al., 1999; Sibilia et al.,
2003; Wang et al., 2004), cartilage explants (Shum et al., 1993) and cell
lines (Fisher et al., 2007; Takeda et al., 2010). Taken together,wedescribe
three developmental defects in 96 hpf zebrafish larvae that are observed
upon knock-down of Egf expression without any evidence of unspecific
teratogenic effects or lethality: impaired cartilage formation, decrease
ofmbp expression and partial interruption of blood flow in the trunk.

Having defined these specific indicators for Egf signal depletion, we
determined the biological effects of several tyrphostins known to inhibit
Egfr function. Concerning lethality and morphological defects, AG-490
and AG-825 are clearly teratogenic (TI of, respectively 3 and 2.37),
while AG-213 did not cause any significant effect at the highest con-
centration tested (100 μM). AG-18 was only weakly teratogenic
(TI = 1.43), similar to AG-1478 (TI = 1.22), albeit at a much higher
concentration (EC50 = 53 μM). The consequences of tyrphostin expo-
sure on cartilage formationwere then determined and cEC50was calcu-
lated for all tested compounds. In contrast to the effect of AG-1478 at
clearly non-teratogenic concentrations, AG-18, AG-490 and AG-825
were found to impair cartilage development after exposure at concen-
trations close to teratogenic conditions.

To be able to compare the effects on different processes for each
compound, we used the response on cartilage formation as a reference.
We chose the corresponding cEC50 concentration to determine the
extent of impairment of mbp expression and blood flow in the trunk.
Consistent with previous data (Lyons et al., 2005), AG-1478 treatment
Fig. 4.Myelin basic protein expression upon AG-1478 exposure in 96 hpf zebrafish embryos. M
ization (B) upon exposure to AG-1478 at the indicated concentrations from 4 hpf to 4 dpf. The
(P b 0.005).
caused a reduction of mbp expression by 70% at 1.1 μM (cEC50) and
by 55% at 0.5 μM (below cEC10). AG-18, AG-490 and, to a lesser extent,
AG-825 exposure lead to a significant decrease of myelination in
zebrafish larvae at their respective cEC50. Microangiography revealed
circulatory defects upon AG-1478, AG-18, AG-490 or AG-825 treatment,
while no alteration of the vessel pattern could be observed. Our ap-
proach to test in parallel the effects of various inhibitors on different
processes allows a direct comparison of their dose-response relation-
ship and thus their link to the targeted pathway. The fact that the carti-
lage, blood circulation and mbp expression effects are observed at the
same, largely sub lethal concentrations (0.5–1.5 μM) of the inhibitor
AG-1478 further supports their specificity for the Egf pathway. In
contrast, morphological malformations such as edema, hemorrhage
or curved tail were observed at about 10-fold higher concentrations
of AG-1478, but were not observed even at the highest concentrations
of MOegf tested. Their occurrence at close to lethal concentrations
(TI close to 1) argues in favor of an unspecific effect, however they
could also be caused by inhibition of receptor activation by another
Egfr ligand (Tgfα, HBEgf). The same high concentration of AG-1478
(10 μM) was previously shown to impair blood vessel formation (Tran
et al., 2007), while knock-down of Egf expression did not cause these
defects, indicating yet another unspecific or off-target effect.

A comparison of the effects on developmental impairment observed
for the different treatments is summarized in Table 5. AG-213 seems to
be inactive and will not further be discussed. The other inhibitors affect
cartilage formation, mbp expression and blood circulation at varying
degrees, indicating that they act on the Egf pathway. AG-1478 appears
as the most specific, as expected, as it exerts its specific effects at
concentrations much lower than its LC50 or EC50 (cEC50 = 1.1 μM
and 0.3-fold expression of mbp at this concentration). AG-18, AG-490
and AG-825 all present a cEC50 for cartilage defects below their LC50,
but close to or higher than their EC50, indicating that they cause addi-
tional, morphological defects. However, despite these morphological
defects, we could readily observe the three indicators for impairment
of the Egf pathway at this concentration. AG-490 caused a decrease of
mbp expression by 80% relative to control, close to the 70% observed
upon AG-1478 treatment. AG-18 and AG-825 caused a weaker, but
significant reduction of mbp expression by, respectively 40 and 20%.
Similarly, all inhibitors (except AG-213) were shown to affect trunk
blood circulation at their corresponding cEC50. Taken together, these
observations lead to the conclusion that AG-1478 is a specific Egf
inhibitor at concentrations with only little side effects, AG-490 is able
yelin basic protein gene expression analysis by qPCR (A) and whole mount in situ hybrid-
columns represent themean ± SD of three samples; *** statistically different from control

image of Fig.�4


Fig. 5.Myelin basic protein expression upon AG-18, AG-213, AG-490 or AG-825 exposure
in 96 hpf zebrafish embryos. Myelin basic protein gene expression analysis by qPCR
(A) and whole mount in situ hybridization (B) upon exposure to EGFR inhibitors at
cEC50 concentrations from 4 hpf to 4 dpf. The columns represent the mean ± SD of
three samples; *** statistically different from control (P b 0.005).

Fig. 6. Effects of EGF pathway inhibitors on trunk vessel formation and function.
Microangiography in transgenic fli-GFP embryos exposed to solvent or to EGFR inhibitors
at cEC50 concentrations from 4 hpf to 4 dpf. (A: aorta; CV: Cardinal vein; DLAV: Dorsal
longitudinal anastomotic vessel and Se: intersegmental vessels.).
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to inhibit Egf signaling but at concentrations where it causes serious
side effects, while AG-18 and AG-825 are poorly specific inhibitors.

Our observation that Egf signaling is specifically involved in cartilage
formation, mbp expression and blood circulation indicates that the
maintenance, restoration or even pharmacological activation of this
pathway might represent a promising target for treatment of disorders
affecting one of these phenomena.

In addition to the three developmental defects associated to disrup-
tion of Egf signaling, other morphological effects were observed upon
treatment by the different inhibitors. Although these effects might be
considered as non-specific, some interesting differences are however
apparent. AG-1478 caused growth retardation and shortened tails only
very marginally (4% at 10 μM), similar to Egf knock-down, in contrast
to AG-18, AG-490 or AG-825 (Table 2). These effects are probably
due to inhibition of some other signaling pathway, erbB2, erbB3, erbB4
or Pdgf (Bilder et al., 1991; Osherov et al., 1993; Rendu et al., 1992).
AG-1478 also had a low, but significant incidence of hemorrhages that
was not observedwith any other tyrphostin or even the highest concen-
tration of MOegf, suggesting yet another off-target effect. Chemically,
AG-1478 is related to other quinazolin-derived compounds (Table 1)
that present a good specificity for egfr1, such as erlotinib or gefitinib,
but were shown to also inhibit ErbB3 and ErbB4 phosphorylation
on cells cultured in vitro (Carrasco-Garcia et al., 2011). The other com-
pounds tested here are benzenemalononitrile derivatives (Levitzki and
Gazit, 1995) that also inhibit Pdgf signaling to various degrees (Bilder
et al., 1991). Compounds that couple a hydroxy-benzyl group to the
malononitrile group through a double bond such as AG-18 (Table 1)
present an additional activity as mitochondrial uncouplers (Soltoff,
2004). Substitution of one nitrile group in AG-490 leads (Table 1) to ad-
ditional inhibition of Jak-2 (Meydan et al., 1996) and Jak2a in zebrafish
(Ma et al., 2007), while multiple substitutions as in AG-825 lead to spe-
cific inhibition of egfr2. Further experimentswill be required to attribute
the observed off-target effects to one or several alternative pathways.

In conclusion, by combining genetic inactivation and specific inhibi-
tion of the pathway, we were able to define developmental defects that
can serve as indicators for inactivation of Egf signaling: impairment of
cartilage formation, decrease of mbp expression and perturbation of
trunk blood circulation. Genetic inactivation of Egf expression resulted
in the lowest occurrence of non-specific effects, while chemical inhibi-
tors of Egfr function caused these indicator defectswith various specific-
ities. In future drug screening efforts, instead of rejecting a compound
because of excessive teratogenicity and/or lethality, observation of the
three independent developmental defects specific for Egf inactivation

image of Fig.�5
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Table 5
Developmental defects due to impairment of Egf signaling.Summary table showing the
lethal and effective concentrations for each tested inhibitor as well as their effect, in
comparison to MO concentrations, onmbp expression and blood circulation.

LC50 μM EC50 μM cEC50 μM Mbp fold inhib circulation

MOegf 0.5 ng 0.5 +
MOegf 1 ng 0.4 +
MOegf 2 ng 0.2 +
AG-1478 9.5 7.8 1.1 0.3 +
AG-18 77 53.5 60 0.6 +
AG-213 N100 N100 N100 1.0 −
AG-490 60 19.6 45 0.2 +
AG-825 11 4.7 5.0 0.8 +
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will justify further investigations into increasing the specificity of that
compound. On the other end, knowledge of the specific developmental
defects will also allow evaluating off-target effects in a whole animal
setting of compounds considered as highly specific by in vitro tests. In
addition, observation of specific off-target effects might lead to new
applications, if a possible target causing this defect is known. Other
target-oriented drug screening programs will benefit from comparison
of drug effects on zebrafish development to those caused by genetic
inactivation of the target molecule.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.taap.2013.11.006.
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