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Abstract 

 

The objectives of this paper are threefold. The first objective is to propose to use an Improved 

Particle Filtering (IPF) based on minimizing Kullback-Leibler divergence for crop models' 

predictions. The performances of the proposed technique are compared with those of the 

conventional Particle Filtering (PF) for improving nonlinear crop model predictions. The main 

novelty of this task is to develop a Bayesian algorithm for nonlinear and non-Gaussian state and 

parameter estimation with better proposal distribution. The second objective is to investigate the 

effects of practical challenges on the performances of state estimation algorithms PF and IPF. 

Such practical challenges include (i) the effect of measurement noise on the estimation 

performances and (ii) the number of states and parameters to be estimated. The third objective is 

to use the state estimation techniques PF and IPF for updating prediction of nonlinear crop model 

in order to predict winter wheat biomass. PF and IPF are applied at a dynamic crop model with 

the aim to predict a state variable, namely the winter wheat biomass, and to estimate several 

model parameters. Furthermore, the effect of measurement noise (e.g., different signal-to-noise 

ratios) on the performances of PF and IPF is investigated. The results of the comparative studies 

show that the IPF provides a significant improvement over the PF because, unlike the PF which 

depends on the choice of sampling distribution used to estimate the posterior distribution, the IPF 

yields an optimum choice of the sampling distribution, which also accounts for the observed 

data.  
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1. Introduction 

 

Dynamic crop models such as EPIC [1], SALUS [2], and STICS [3] are non-linear models that 

describe the growth and development of a crop interacting with environmental factors (soil and 

climate) and agricultural practices (crop species, tillage type, fertilizer amount…). They are 

developed to predict crop yield and quality or to optimize the farming practices in order to satisfy 

agricultural objectives, as the reduction of nitrogen lixiviation. More recently, crop models are 

used to simulate the effects of climate changes on the agricultural production. Nevertheless, the 

prediction errors of these models may be important due to uncertainties in the estimates of initial 



values of the states, in input data, in the parameters, and in the equations. The measurements 

needed to run the model are sometimes not numerous, whereas the field spatial variability and 

the climatic temporal fluctuations over the field may be high. The degree of accuracy is therefore 

difficult to estimate, apart from numerous repetitions of measurements. For these reasons, the 

problem of state/parameter estimation represents a key issue in such nonlinear and non-Gaussian 

crop models including a large number of parameters, while measurement noise exists in the data.  

For example, it is useful to predict the evolution of variables, such as the biomass and the 

grain protein content during the crop lifecycle. State estimation techniques can be of a great 

value to solve that problem since they have the potential to estimate simultaneously the variables 

and several parameters. As an example, involved parameters are the radiation use efficiency, the 

maximal value of the ratio of intercepted to incident radiation, the coefficient of extinction of 

radiation, the maximal value of LAI.  Several estimation techniques, such as Particle filtering [4] 

method has been developed and utilized in many applications. PF methods approximate the 

posterior probability distribution by a set of weighted samples, called particles. Since real world 

problems usually involve high dimensional random variables with complex uncertainty, the 

nonparametric and sample-based estimation of uncertainty has thus become quite popular to 

capture and represent the complex distribution in nonlinear and non-Gaussian models [5]. PF 

methods offer a number of significant advantages over other conventional methods. However, 

since they use the prior distribution as the importance distribution [6], the latest data observation 

is not considered and not taken into account when evaluating the weights of the particles. While 

the importance sampling distribution has computational advantages, it can cause filtering 

divergence. In cases where the likelihood distribution is too narrow compared to the prior 

distribution, few particles will have significant weights. Hence, a better proposal distribution that 

takes the latest observation data into account is needed. In other words, new adaptive methods 

that incorporate better feedback and smoothing in the selection or deletion of particles and their 

weights need to be investigated.  The objectives of this paper are twofold. The first objective is 

to develop an improved Particle filtering (IPF) for improving nonlinear and non-Gaussian crop 

model predictions. In case of standard PF, the latest observation is not considered for the 

evaluation of the weights of the particles as the importance function is taken to be equal to the 

prior density function. This choice of importance sampling function simplifies the computation 

but can cause filtering divergence. In cases where the likelihood function is too narrow compared 

to the prior distribution, very few particles will have significant weights. Hence, a better proposal 

distribution that takes the latest observation into account is needed. The objectives of this paper 

are threefold. The first objective is to develop a new Particle filtering (IPF) for improving 

nonlinear and non-Gaussian crop model predictions. In case of standard PF, the latest 

observation is not considered for the evaluation of the weights of the particles as the importance 

function is taken to be equal to the prior density function. This choice of importance sampling 

function simplifies the computation but can cause filtering divergence. In cases where the 

likelihood function is too narrow compared to the prior distribution, very few particles will have 

significant weights. Hence, a better proposal distribution that takes the latest observation into 

account is needed. The main novelty of this task is to develop new Bayesian algorithm for 

nonlinear and non-Gaussian state and parameter estimation with better proposal distribution 

based on minimizing Kullback-Leibler divergence.  

The second objective is to investigate the effects of practical challenges on the 

performances of state estimation algorithms PF and IPF. Such practical challenges include (i) the 



effect of measurement noise on the estimation performances and (ii) the number of states and 

parameters to be estimated.  

The third objective is to apply the proposed state estimation techniques PF and IPF for 

predicting and modeling biomass and grain protein content. We present an application of  Pf and 

IPF to a dynamic crop model with the aim to predict a single state variable, namely winter wheat 

biomass.  

The rest of the paper is organized as follows. In Section II, a description of proposed 

improved particle filtering for nonlinear crop model predictions and modeling is presented. Then, 

in Section III, the performances of the proposed new improved particle filtering are evaluated 

and compared to the standard particle filtering through the application cases. Finally, some 

concluding remarks are presented in Section IV. 

 

2. Improved  Particle  Filtering Description 

 

The choice of optimal proposal function is one of the most critical design issues in 

importance sampling schemes. In [7], the optimal proposal distribution ( )kkk yzzp :01:0 ,ˆ
−

 is 

obtained by minimizing the variance of the importance weights given the states 1:0 −kz and the 

observations data ky :0 . This selection has also been studied by other researchers. However, this 

optimal choice suffers from one major drawback. The particles are sampled from the prior 

density ( )1:0 −kk zzp  and the integral over the new state need to be computed. In the general case, 

closed form analytic expression of the posterior distribution of the state is untractable [8]. 

Therefore, the distribution ( )1:0 −kk zzp  is the most popular choice of proposal distribution. One of 

its advantages is its simplicity in sampling from the prior functions ( )1:0 −kk zzp  and the 

evaluation of weights )(i

kl  (as presented in the previous section). However, the latest observation 

is not considered for the computation of the weights of the particles as the importance density is 

taken to be equal to the prior density ([8]). The transition prior ( )1:0 −kk zzp does not take into 

account the current observation data
ky , and many particles can be wasted in low likelihood 

areas. This choice of importance sampling function simplifies the computational complexity but 

can cause filtering divergence [8]). In cases where the likelihood density is too narrow as 

compared to the prior function, very few particles will have considerable weights. Next, we 

present an overview of KLD-based improved particle filter. 

a. Improved Particle Filter based on KLD minimization 

As mentioned above, the distribution of interest for the state takes the form of a marginal 

posterior distribution ( )kk yzp :0
. The proposed extended Bayesian sampling algorithm (also 

named as improved particle filtering, IPF) is proposed for approximating intractable integrals 

arising in Bayesian statistics. By using a separable approximating distribution 

( ) )(,ˆ)(ˆ
:01:0

i

kikkkk zpyzzpzq Π== −  to lower bound the marginal likelihood, an analytical 

approximation to the posterior probability ( )kk yzp :0  is provided by minimizing the Kullback-

Leibler divergence (KLD): 
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Minimizing the KLD subject to the constraint 1)()( =Π= ∫∫
i
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kikk dzzqdzzq , the Lagrange 

multiplier scheme is used to yield the following approximate distribution, 
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where ( )
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denotes the expectation operator relative to the distribution )(ˆ j

k
zq

. Therefore, these dependent parameters can be jointly and iteratively updated. Taking into 

account the separable approximate distribution )(ˆ
1
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−
at time 1−k , the posterior distribution 

)( :0 kk yzp is sequentially approximated according to the following scheme: 
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The recursive estimate of the importance weights can be derived as follows: 
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Equation (6) provides a mechanism to sequentially update the importance weights, given an 

appropriate choice of proposal distribution, )(ˆ
:0

)(

:0 k

i

k yzq . Then, the estimate of the augmented 

state kẑ can be approximated by a Monte Carlo scheme as follows: 
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2. Simulation Results Analysis 

 

2.1. A dynamic model simulating wheat biomass 

 

2.1.1.  The overall formalism 



 

In this section, we describe a simple dynamic crop model that will be used to compare the 

performances of PF and IPF. The crop model has a single state variable representing above-

ground winter-wheat biomass. This state variable is simulated on a daily basis in function of the 

daily temperature and the daily incoming radiation according to the classical method presented in 

([9]). The biomass at time k+1 is linearly related to the biomass at time k as follows: 

 

                                   ( ) kk

LAIK

ibkk wPAReEEBiomBiom k +−+= −

+ 1max1    ,                            (8) 

where k  is the day number since sowing, 
kBiom  is the true above-ground plant biomass on day 

k , 
kPAR is the incoming photossynthetically active radiation on day k , 

kLAI is the leaf-area 

index on day k  and 
kw  is a random term representing the model error. The crop biomass at 

sowing is set equal to zero: 01 =Biom . 
kLAI is calculated in function of the cumulative degree-

days (over a basis of 0°C) from sowing until day k , noted 
tT  , as follows ([10]): 

             
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where the parameter 2sT is set equal to ( )11log

1
sAT

eB +
 in order to have 01 =LAI . 

The model includes two input variables '
],[ kkk PARTX =  and seven parameters

( )1maxmax ,,,,,, sib TBALKEE . bE  is the radiation use efficiency which expresses the biomass 

produced per unit of intercepted radiation, 
maxiE  is the maximal value of the ratio of intercepted 

to incident radiation, K  is the coefficient of extinction of radiation, 
maxL is the maximal value of 

LAI, 
1sT  defines a temperature threshold, and A  and B  are two additional parameters. At this 

stage, the parameter values are assumed to be known and obtained from ([10]). 

 

We suppose that N measurements of biomass, Nyyyy ,...,,, :32:1 , are made at different 

times before harvest on the site-year of interest. In practice, values of ky  can be derived from 

plant samples or from remote-sensing data. We assume that each measurement ky is related to 

the biomass kBiom  by 

                              kkk vBiomy +=                                                          (10) 

 

where kv  is a random term representing measurement errors. In the next section we show how 

such measurements can be used to improve the accuracy of biomass predictions. 

 

2.1.2. Numerical application 

 

2.1.2.1. Estimation of the biomass 

 

Based on the equation (9), the Biomass is estimated at each date of measurement using both IPF 

and PF algorithms (Fig. 1).  Table 1 illustrates the Root Mean Square Error (RMSE) using the 



two algorithms PF and IPF. Fig. 1 and Table 1 show that IPF outperforms PF, these advantages 

of the IPF are due to the fact it provides an optimum choice of the sampling distribution used to 

approximate the posterior density function, which also accounts for the observed data. 

 
 

 
Fig. 1. Estimation of state variable Biomass (g/m2) versus N (days) using PF and IPF techniques.  

 

                                                          Technique         ERROR                          

 Biomass 
Kg/ha 

PF 6.328 

IPF 3.743 

  Table 1. ERROR of estimated Biomass 

 

2.1.2.2. Estimation of the biomass and of several parameters 

 

The model (9) assumes that the parameters are fixed and/or have been determined 

previously. However, the model involves several parameters that are usually not exactly known, 

or that have to be estimated. Estimating these parameters to completely define the model usually 

requires several experiment setups, which can be expensive and challenging in practice. Hence, 

in a second step, we propose to use PF and IPF to simplify the task of modeling compared to the 

conventional experimental intensive methods. Let’s thus consider some of the parameters that 
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have to be estimated to improve the simulations, by example: 
bE  is the radiation use efficiency 

which expresses the biomass produced per unit of intercepted radiation, 
maxiE  is the maximal 

value of the ratio of intercepted to incident radiation, K  is the coefficient of extinction of 

radiation, maxL is the maximal value of LAI, 1sT  defines a temperature threshold, and A  and B  

parameters. To estimate these parameters, the following equations that describe their evolution 

are also needed: 

 
1

11,, −− += kkbkb EE γ , 2

11max,max, −− += kkiki EE γ ,  3

11 −− += kkk KK γ ,  4

11max,max, −− += kkk LL γ  

                                      5

11 −− += kkk AA γ , 6

11 −− += kkk BB γ , 7

11,1,1 −− += kksks TT γ                        (11) 

where, 
j

j }7,...,1{∈γ is a process Gaussian noise with zero mean and known variance 
2

γσ . Combining 

(11), (10) and (9), one obtains: 

 

The biomass at time k+1 is linearly related to the biomass at time k as follows: 

                               ( ) kk

LAIK
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+ 1max,,1 ,                       (12) 

and the leaf-area index 
kLAI  on day k  is given by: 
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where the parameter ksT ,2 is set equal to 
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k eB ,11log
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+
 in order to have 01 =LAI . 

Combining (12) and (13), one obtains: 
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2

11max,max,3 : −− += kkiki EEf γ , ,: 3

114 −− += kkk KKf γ  ,: 4
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(14) 

where }8,...,1{∈kf  are some nonlinear functions and where w  and  
j

j }7,...,1{∈γ are respectively the 

measurement and process noise vector, which quantify randomness at both levels. In other 

words, we are forming the augmented state:  T

kkk xz ][ θ= which is the vector that we wish to 

estimate. It can be given by a 8 by 1 matrix: 

 

,:),1( kk Biomx → ,:),2( ,kbk Ex →
kik Ex max,:),3( → , 

kk Kx →:),4(  

,:),5( max,kk Lx → kk Ax →:),6( , ,:),7( kk Bx → ksk Tx ,1:),8( →   (15) 

The idea here is that, if a dynamic model structure is available, the model parameters can 

be estimated using one of state estimation technique, PF and IPF. To characterize the ability of 

the different approaches to estimate both the states and the parameters at same time, we have 



chosen true parameter values and then tested each technique to see how well it could retrieve 

these true parameter values given the data. It was thus possible to calculate the quality of the 

estimated parameters and the predictive quality of the adjusted model for each method. 

It can be seen from the results presented in Table 1 and Table 2 that the IPF outperforms 

PF (i.e., provides smaller ERROR for the state variables). These results confirm those obtained 

in the first comparative study, where only the state variables are estimated. The advantages of the 

IPF over the PF can also be seen through its abilities to estimate the model parameters. The 

results also show that the number of estimated parameters affect the estimation accuracy of the 

estimated state variables. In other words, for all estimation techniques, the estimation ERROR of 

Biomass increases from the first comparative study (where only the state variables are estimated) 

to case 1 (where seven parameters, bE , maxiE , K , maxL , 1sT , A  and B , are estimated).  

 In order to investigate the performance of the PF and IPF estimation algorithms versus 

the number of states and parameters to be estimated. Tables 1 and 2 compare the estimated of the 

crop model parameters using the two techniques PF and IPF for the different number of states 

and parameters to be estimated. For example, for the PF estimation technique, the estimation 

error of the Biomass ��	
�, increases from the first comparative study (states and parameters to 

be estimated = 2) to case (where the number of states and parameters to be estimated = 8). For 

example, the ERRORs obtained using PF the Biomass ��	
�	where the number of states and 

parameters to be estimated = 2 and = 8 are 6.346, and 6.768, respectively, which increase as the 

number of states and parameters to be estimated increases (refer to Table 1). This observation is 

valid for IPF technique (refer to Table 2). 

 

True parameter set 
bE  maxiE  K  

maxL  1sT  A  B  Error 

 1 0.48 0.52 6.2 1200 0.0032 0.0024  

 

6.346            Number of states and parameters to be estimated=2 (
T

kbkk EBiomz ][ ,= ) 

 1 -- -- -- -- -- --  

 

6.394 
T

kikbkk EEBiomz ][ max,,=  

 1 0.48 -- -- -- -- --  

 

6.414 
T

kkikbkk KEEBiomz ][ max,,=  

 1 0.48  0.52 -- -- -- --  

 

6.459 
T

kkkikbkk LKEEBiomz ][ max,max,,=  

 1 0.48  0.52 6.18 -- -- --  

 

6.564 
T

kskkkikbkk TLKEEBiomz ][ ,1max,max,,=  

 1 0.48 0.52 6.175 1198 -- --  

 

6.621 
T

kkskkkikbkk ATLKEEBiomz ][ ,1max,max,,=  

 1 0.48 0.52 6.178 1197 0.00318 --  

 

6.768 
T

kkkskkkikbkk BATLKEEBiomz ][ ,1max,max,,=  



 1 0.48 0.52 6.172 1196 0.00172 0.0022  

Table 1. PF estimations of the values of the crop model parameters versus the nnumber of states 

and parameters to be estimated 

 

 

True parameter 

set 
bE  maxiE  K  

maxL  1sT  A  B  Error 

 1 0.48 0.52 6.2 1200 0.0032 0.0024  

 

3.573            Number of states and parameters to be estimated=2 (
T

kbkk EBiomz ][ ,= ) 

 1 -- -- -- -- -- --  

 

3.653 
T

kikbkk EEBiomz ][ max,,=  

 1 0.48 -- -- -- -- --  

 

3.765 
T

kkikbkk KEEBiomz ][ max,,=  

 1 0.48  0.52 -- -- -- --  

 

3.891 
T

kkkikbkk LKEEBiomz ][ max,max,,=  

 1 0.48  0.52 6.2 -- -- --  

 

3.927 
T

kskkkikbkk TLKEEBiomz ][ ,1max,max,,=  

 1 0.48 0.52 6.2 1200 -- --  

 

3.953 
T

kkskkkikbkk ATLKEEBiomz ][ ,1max,max,,=  

 1 0.48 0.52 6.2 1198 0.00318 --  

 

3.984 
T

kkkskkkikbkk BATLKEEBiomz ][ ,1max,max,,=  

 1 0.48 0.52 6.2 1197 0.003178 0.0023875  

Table 2. IPF estimations of the values of the crop model parameters versus the number of states 

and parameters to be estimated 

 

 

2.1.2.3. Presence of a noise in the data 

 

Here, we assume that a Gaussian noise is added to the time profiles of Biomass. In order 

to show the performance of the PF and IPF estimation algorithms in the presence of 

measurement noise, four different measurements noise values,	10��		 , 10��,10��		and10��, are 

considered. The final estimated values of the crop model parameters are summarized in Tables 3 

and 4. The simulation results of estimating the states Biomass using PF and IPF when the 

variances noise vary in {10��, 10��} are shown in Tables 3 and 4. In other words, for the PF 

estimation technique, the estimation ERROR of the Biomass ��	
�, increases from the first 

comparative study (noise variance = 10��) to case (where the noise variance = 10��). For 

example, the ERRORs obtained using PF for Biomass where the noise variance=10��		and = 



10
�� are 6.248, and 6.674, respectively, which increase as the noise variance increases (refer to 

Table 3). This observation is valid for the IPF algorithm (refer to Table 4). 

 

 

 

True parameter set 
bE  maxiE  K  

maxL  1sT  A  B  Error 

 1 0.48 0.52 6.2 1200 0.0032 0.0024  

 

6.248                                PF estimates: noisy measurement variance= 10�� 

 0.99 0.479 0.519 6.19 1199 0.00319 0.00238  

 

6.314 
PF estimates: noisy measurement variance= 10�� 

 0.98 0.475 0.518 6.18 1198 0.00318 0.00236  

 

6.453 
PF estimates: noisy measurement variance= 10�� 

 0.97 0.469 0.517 6.16 1197 0.00315 0. 

00231 

 

 

6.674 PF estimates: noisy measurement variance= 10�� 

 0.95 0.46 0.515 6.14 1195 0.00312 0.00223  

Table 3. PF estimations of the values of the crop model parameters versus noisy measurement 

variances 

 

True parameter 

set 
bE  maxiE  K  

maxL  1sT  A  B  Error 

 1 0.48 0.52 6.2 1200 0.0032 0.0024  

 

3.641 PF estimates: noisy measurement variance= 10�� 

 1 0.48 0.52 6.2 1200 0.0032 0.0024  

 

3.683 
PF estimates: noisy measurement variance= 10�� 

 1 0.48 0.52 6.2 1200 0.0032 0.0024  

 

3.724 
PF estimates: noisy measurement variance= 10�� 

 0.986 0.475 0.5185 6.18 1198 0.00318 0. 

00236 

 

 

3.815 PF estimates: noisy measurement variance= 10�� 

 0.95 0.471 0.5179 6.173 1197 0.00316 0.00231  

Table 4. IPF estimations of the values of the crop model parameters versus noisy measurement 

variances 

CONCLUSIONS 

 

In this paper, we applied the state estimation techniques for crop model predictions and 

modeling. In the comparative study, we presented an application of  PF and IPF to a linear 

dynamic crop model predicting only one state variable, namely winter wheat biomass and 



estimating several model parameters.  In addition to comparing the performances of the state 

estimation techniques; Particle Filter (PF), and improved Particle Filter (IPF), the effect of 

number of estimated model parameters on the accuracy and convergence of these techniques are 

also assessed.  

The results of the comparative studies show that the IPF provides a significant 

improvement over the PF because, unlike the PF which depends on the choice of sampling 

distribution used to estimate the posterior distribution, the IPF yields an optimum choice of the 

sampling distribution, which also accounts for the observed data. We have investigated the 

effects of practical challenges on the performances of Particle Filter (PF), and improved Particle 

Filter (IPF). The comparative analysis is conducted to study the effects of two practical 

challenges (measurement noise, and the number of states and parameters to be estimated) on the 

estimation performances of PF, and IPF.  To study the effect of measurement noise on the 

estimation performances, several measurement noise contributions (e.g., different signal-to-noise 

ratios) are considered. Then, the estimation performances of PF and IPF are compared for 

different noise levels. Similarly, to investigate the effect of the number of states and parameters 

to be estimated on the estimation performances of PF and IPF, the estimation performance is 

analysed for different numbers of estimated states and parameters. The performance of the 

proposed method is evaluated on a synthetic example in terms of estimation accuracy, and root 

mean square error.  
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