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Abstract 
 

Background: Recent neuroimaging research has strikingly demonstrated the existence 

of covert awareness in some patients with disorders of consciousness (DoC). These 

findings have highlighted the potential for the development of simple brain-computer 

interfaces (BCI) for the significant minority of behaviourally unresponsive patients 

who display consistent signs of covert awareness. 

Objectives: In this article, we review current EEG-based BCIs that hold potential for 

assessing and eventually assisting patients with DoC. We highlight key areas for 

further development that might eventually make their application feasible in this 

challenging patient group. 

Methods: We consider the major types of BCIs proposed in the literature, namely 

those based on the P3 potential, sensorimotor rhythms, steady state oscillations, and 

slow cortical potentials. In each case, we provide a brief overview of the relevant 

literature, and then consider their relative merits for BCI applications in DoC. 

Results: Over the last few decades, a range of BCI designs have been proposed and 

tested for enabling communication in fully conscious, paralysed patients. Though 

many of these have potential applicability for patients with DoC, they share some key 

challenges that need to be overcome, including limitations of stimulation modality, 

feedback, user training and consistency. 

Conclusion: Developing feasible BCIs for diagnostics and communication in DoC 

will require parallel strands of enquiry. Preliminary exploratory research will need to 

specifically tailor cognitive tasks that can tap into the forms in which patients could 

potentially express volition. Alongside, future work will need to address the technical 

and practical challenges facing reliable implementation at the patient’s bedside. 



1. Introduction 

 

In recent years, research into disorders of consciousness (DoC) has seen some key 

advances, with the successful demonstration of modern neuroimaging techniques for 

diagnosis and prognosis [1, 2]. These disorders, encompassing the vegetative (VS; 

also called the unresponsive wakefulness syndrome (UWS) [3]) and minimally 

conscious states (MCS), are marked by inconsistent signs of awareness with standard 

behavioural tests of command following. As a result, misdiagnosis rates among 

patients have been relatively high, ranging between 37-43% [4]. Owen et al. [5] were 

among the first to use functional magnetic resonance imaging (fMRI) to show that 

command following purely by thought could be detected in such patients. In that 

study, a patient clinically diagnosed as being in a VS/UWS performed mental imagery 

tasks in response to command. These tasks produced neuroanatomically distinct 

patterns of haemodynamic responses that were very similar to those observed in 

healthy, awake controls performing the same tasks. Monti et al. [6] exploited the 

potential of the paradigm by mapping these imagery tasks to yes/no responses. 

Remarkably, this allowed a patient behaviourally diagnosed as 

vegetative/unresponsive to answer correctly a series of autobiographical questions in 

real-time, by producing clearly discriminable brain activations. This striking result 

has demonstrated the possibility of establishing binary communication using thought 

alone. Consequently, the further development of such techniques could have 

tremendous potential for use with the small but significant minority of patients with 

DoC who retain most of their higher cognitive functions, but are unable to produce 

any consistent overt behaviour. 

 



Though fMRI has many advantages with regard to detecting neural activation, 

availability, affordability and ease of use are not among them. This is where the older 

science of cognitive electroencephalography (EEG) offers potential for the 

development of relatively cheap, simple, compact systems that can be readily 

deployed at the bedside to detect volitional brain activity in a patient with DoC, and 

then used to enable basic communication with the outside world. EEG offers further 

comparative advantages to fMRI in this context. Firstly, it can be used in the presence 

of metallic implants that would make fMRI impossible. Secondly, it is relatively more 

resilient to noise artifacts generated by frequent, uncontrollable physical movements 

observed in patients with DoC, something that can present a difficult problem for 

MRI data analysis. As a third point, EEG seems to be better suited for repetitive 

assessment for patient with fluctuating vigilance. Monti et al. [6] reported a 

behavioural misdiagnosis rate of 17% using their fMRI imagery paradigm; EEG could 

give us a better estimate of this by allowing for a much larger, geographically 

distributed population of patients with DoC to be evaluated. 

 

To support this effort, there exists an extensive body of research into EEG-based 

brain computer interfaces (BCIs), conducted mostly over the last two decades. In the 

past, these technologies have employed neural responses detectable with EEG to 

provide patients with motor impairments, often affected by the locked-in syndrome 

(LIS), the ability to control a computer interface. These interfaces usually drive 

software for simple communication, or control devices that influence some aspect of 

patient’s external environment. In addition, they provide the patient with valuable 

real-time feedback on their performance, enabling them to learn to use the interface 

better over time. The objectives of this article are to review this literature in order to 



assess the challenges and possibilities for applications that could improve the quality 

of life for patients with DoC and their families. In particular, we will focus on non-

invasive EEG-based BCIs, as they are likely to be applicable to the widest range of 

patients. We will not address the literature on invasive BCIs (based on, for example, 

on electrocorticography), as these are currently thought to be ethically and technically 

infeasible in this patient population. 

This review is structured as follows: in section 2, we review the literature relating to 

the major types of EEG-BCI designs with an eye toward their suitability in DoC. In 

section 3, we discuss the comparative merits and demerits of the previously discussed 

BCIs, and highlight some general design constraints that will need to be addressed for 

feasible DoC applications. We conclude in section 4 with an outlook toward the key 

challenges for future research. 

 

2. Brain-Computer Interfaces 

 

BCIs, by definition, only use brain activity to drive external devices or computer 

interfaces, to enable communication without motor responses [7]. A typical BCI (see 

figure 1) is composed of several functional components linked together; beginning 

with the input originating from a user who initiates “thought actions”, indexed by 

brain signals (recorded by EEG, fMRI, ECoG or fNIRS) and ending with the output 

(e.g., commands for a spelling program or a simple yes/no response). As outlined in 

figure 1, these two components are connected by a sequence of hardware and 

software components to pre-process the signal, extract predictive features, and 

classify the signal into one of many response classes that represent the intent of the 

user [8, 9]. There is normally a training phase before any feedback is provided. 



During this phase, key system parameters are tuned to the user’s activation patterns, 

using supervised learning algorithms. 

 

<Insert figure 1 and caption about here> 

 

Before adapting a BCI design for a patient with DoC, the first step would be to 

establish, beyond reasonable doubt, that they are able to follow commands with 

adequate consistency. Indeed, some patients might be able to follow command, but 

not well enough to make BCIs feasible. Hence, BCIs in DoC will have to follow a 

two-step approach: the first would be to establish successful command following. The 

second would be to try and establish communication (simple binary communication to 

begin with). Ideally, software and hardware components used for the first step would 

be readily extensible for the second. 

 

Toward this end goal, we describe specific BCI implementations published in the 

literature, which are based on characteristic brain signals that can be volitionally 

controlled by the user. Amongst the most popular examples are the P3 event-related 

potential [ERP; 10], sensorimotor rhythms [SMR; 11, 12, 13] steady-state evoked 

potentials [SSEP; 14, 15], and slow cortical potentials [SCP; 16, 17]. We discuss each 

of these in turn, with a view toward evaluating their suitability for use with patients 

with DoC. 

 

2.1. P3-based BCIs  

 



The P3 component of the ERP is a positive deflection in the EEG time-locked to 

salient stimuli, typically evoked over the parietal cortex, and occurs between 200-

500ms after stimulus onset [18-20]. The P3 is considered to include two distinct 

subcomponents, the P3a and the P3b. Similar to the MMN, the ‘bottom-up’ P3a is 

elicited by novel, unpredictable stimuli, even if they are irrelevant to the task being 

performed. It is typically seen in oddball paradigms [21] in which participants are 

attending to a sequence containing frequent stimuli interspersed with rare deviant 

ones, usually referred to as targets [22]. The deviant stimulus will elicit different 

ERPs, the most prominent being the frontally centered P3a. However, if the deviant is 

deemed task-relevant (for example, if it is being counted), it evokes a posterior, later 

P3b (peaking at around 300-350ms). From a cognitive perspective, the P3b is seen as 

a marker of consolidation into conscious awareness of a task-relevant, unpredictable 

target. For the purposes of BCI design in DoC, we will focus on the P3b. This is 

because, unlike the P3a, the P3b is only evoked in the presence of ‘top-down’ 

selective attention, strongly indicative of conscious control. As an evoked response 

for use in BCIs, the P3 has the advantage of requiring minimal training on the part of 

the user.  

 

Some of the earliest BCI systems were P3-based, designed with visual stimuli. 

Donchin and his colleagues [10, 23] implemented a visual BCI by presenting letters in 

a 6 x 6 matrix and repeatedly flashing each row and column. To make a selection, the 

user had to count the number of times the row or column containing the desired letter 

was flashed. To identify this letter, the BCI averaged responses to each row and 

column over multiple flashes. The ones containing the largest P3 responses were 

assumed to contain the letter, enabling the BCI to detect the user’s choice. 



 

Since then, a range of improvements has been proposed to the original interface [24-

26] and the EEG signal processing techniques [27, 28]. Recently, a large group study 

by Guger et al. [29] reported that in 81 healthy users , 89%  were able to successfully 

use a P3-based BCI for spelling, with accuracies of 80% and above. Alongside, many 

studies have shown that this system is feasible and practical for patient groups [see 30 

for a review; also see ]. Nijboer et al. [31, 32] showed that five out of six patients 

affected by Motor Neuron Disease or Amyotrophic Lateral Sclerosis (ALS) could use 

the P3-based BCI for communication after one training session. Thereafter, four of 

them continued using it for functional communication in a second phase of the study, 

and all were able to spell messages of considerable length when more features were 

extracted from the EEG [32]. Going further, P3-based BCIs have been applied for 

other thought-controlled tasks, including simple games [33], navigation [e.g. to move 

a mouse; 34] and even control of a virtual environment [35]. 

 

The question remains, however, as to whether these BCIs could be adapted for 

detecting command following in patients with DoC. To do so, the patient would need 

to be able to understand the task requirements, attend to stimuli, and selectively 

process the salient ones, while retaining information in working memory. Hence its 

presence can be used to test for command following, and then to set up a BCI. This 

final step is straightforward, as the patient can be asked to deem one amongst two or 

more equally frequent stimuli as being task-relevant. Counting their occurrences in an 

unpredictable stimulus stream will produce a P3b for the chosen stimulus. For 

example, the answer words “YES” and “NO” in a stream of unrelated words, will 

produce a P3b for the chosen word. 



In recent years, there have been some prominent findings in the literature, suggesting 

that some patients with DoC might retain most of these high-level cognitive abilities. 

Firstly, fMRI evidence suggests that some patients might retain near-normal levels of 

language comprehension [36-38]. In addition, they appear to be able to selectively 

attend to and process their own names as compared to unfamiliar names [39-41] This 

finding has been confirmed with EEG data: ERPs evoked by increased mismatch 

negativity (MMN) have been observed when some patients with DoC heard their own 

names presented infrequently amongst tones and other names [42]. Closer in design to 

P3 BCI-type active paradigms, Schnakers et al. [43] employed a setup where patients 

were instructed to count the number of instances of their own names presented within 

an auditory sequence consisting of other names. They found that 5 out of 14 (36%) 

MCS patients tested produced reliably larger P3 responses when actively counting the 

occurrence of their own name as compared to when only passively listening to them. 

From this important result, the authors inferred that these patients demonstrably 

retained the ability to volitionally follow command with EEG, even though unable to 

do so behaviourally with the same level of consistency. Moreover, they used this 

paradigm to detect signs of consciousness in a patient behaviourally diagnosed as 

being comatose [44]. Promisingly, this finding has been corroborated and extended by 

Monti et al. [45], though in fMRI. They found increased haemodynamic response 

when a MCS patient actively counted occurrences of an arbitrarily chosen target 

word, indicative of high-level cognitive functions like top-down attention and 

working memory. 

 

Taken together, these findings are certainly encouraging for the development of P3-

based BCI systems that tap into these volitional abilities retained by some patients 



with DoC. However, active tasks will be required for such BCIs (e.g., requiring the 

patient to count target stimuli), as P3s in response to highly salient stimuli (like the 

patient’s own name) have been observed in VS/UWS patients even in passive 

listening conditions [43]. 

 

Crucially, there is a practically motivated need for further research into auditory 

variants of P3 BCIs. It is often the case that patients with DoC lose the ability to 

fixate their gaze and attend visually. Consequently, auditory BCIs are more likely to 

be usable by a greater number of patients with DoC who could demonstrate signs of 

awareness. Recently, some auditory P3-based BCI designs have been proposed for 

patient groups unable to control eye movements. In one of the first of these, Hill et al. 

[46] allowed a healthy user to make a binary decision by focusing attention on one of 

two concurrent auditory stimuli differing in location (on the left or right of the 

subject) and pitch. The user’s task was to report the number of deviant target beeps 

contained in the sequences. The study suggested that it is possible for users to 

generate a detectable P3 at the single-trial level by focused auditory attention. Using 

classifiers developed by Hill et al. [46], Sellers and Donchin [47] tested an auditory 

P3-based BCI asking  severely physically disabled patients to pay attention on one of 

four randomly presented stimuli (yes, no, pass, end). Results suggested that it is a 

promising tool for use as a non-muscular communication device. To address the 

reduction in efficiency commonly found with auditory BCIs, Schreuder et al. [48] 

used spatial hearing as an additional auditory cue to enhance performance. By 

presenting target and non-target sounds from different spatial locations surrounding 

the user, they demonstrated P3 classification accuracies of over 90%. Halder et al. 

[49] demonstrated the viability of fast binary (yes/no) communication with an 



auditory BCI based on a three-stimulus (two target stimuli, one frequent stimulus) 

paradigm, instead of the more common two-stimulus design. 

 

Several studies have also investigated whether it is possible to operate the standard 

matrix P3 speller with auditory stimuli instead of flashes. Klobassa et al. [50] used six 

environmental sounds to represent the six rows and the six columns of a standard 

speller matrix. They reported online results and offline analyses showing that eight 

out of ten participants achieved accuracies of 50% or more. An alternative auditory 

adaptation of the visual speller was reported by Furdea et al. [51]. They coded the 

rows of a 5x5 matrix with numbers from 1 to 5, and the columns with numbers from 6 

to 10. These numbers were then presented auditorily. To select a letter, users had to 

focus their auditory attention on the numbers corresponding to the row and then the 

column containing the desired letter. When tested with four severely paralyzed 

patients in the end-stage of a neurodegenerative disease, the system performed above 

chance level [52]. However, as one might expect, spelling accuracy was significantly 

lower with the auditory variant than with the original visual speller. Moreover, 

participants reported difficulties in concentrating on the auditory task, indicative of 

the increased difficulty. 

 

An alternative paradigm for a two-choice auditory P3-based BCI, based on the 

phenomenon of auditory stream segregation has been described by Kanoh et al. [53]. 

When two or more repeating sounds differ in at least one acoustic attribute (e.g., the 

sequence …ABAB…), they are perceived as two or more separate sound streams 

(i.e.,…AAA.. and …BBB…). By randomly placing infrequent deviant tones within 

these streams, an oddball paradigm is created. The auditory N200 ERPs generated 



when the user pays selective attention to one of the tone sequences can be detected 

and used to convey intent. Based on this idea, they developed a Morse code speller. 

To use it, the user focuses their auditory attention on the deviant tones in one of the 

two streams to generate one of two possible symbols (“dash” and “dot”), to 

effectively spell letters in Morse code. 

 

To a relatively limited extent, researchers have explored the use of tactile stimulation. 

In a study by Brouwer and van Erp [54], two, four or six vibro-tactile stimuli were 

applied around the waist of healthy participants. These tactile stimuli have the 

advantage of not taxing the auditory or visual system, and being mostly unnoticeable 

to other people. The participants were asked to focus on one (target) stimulus and to 

ignore the rest. The statistically significant accuracy with which the tactile P3s could 

be classified demonstrated the feasibility of this approach. However, the authors 

pointed out that further improvements to the tactile interface and stimulation design 

would be required to improve accuracy to a level acceptable for use with patients. 

Finally, it is worth noting that ERP components other than the P3 could potentially be 

used to improve performance of BCIs. Bianchi at al., (2010) reported preliminary 

results suggesting that sensors located over the occipital cortex provide classifiable 

information, highlighting the fact that some visual evoked components (e.g., the 

N100) might advantageously be combined with P3s for discrimination of targets from 

non-targets. The question about whether similar improvements can be made by 

incorporating early auditory evoked potentials in auditory BCIs remains to be 

explored in future work. 

 



In summary, research into P3-based tasks is encouraging for DoC applications, and 

has demonstrated the possibility of selecting a stimulation modality sensitive to the 

patient’s individual circumstances. However, the need for active tasks to differentiate 

volitional P3 responses from automatic ones will add to the cognitive load imposed on 

patients. On the technical side, machine learning algorithms will have to be adapted to 

the difficult problem of detecting a relatively small and often abnormal P3 response in 

patients, with usually only a few clean trials worth of signal. Furthermore, the 

performance limitations imposed by non-visual stimulation modalities need to be 

overcome. In this regard, future research will need to investigate potential benefits of 

multi-modal audio-tactile stimulation suitable for patients, alongside means for 

providing effective feedback with these modalities.  

 

2.2. SMR-based BCIs 

 

The Sensorimotor or mu-rhythm (SMR) refers to the 8–15 Hz oscillatory EEG 

activity that can be recorded over primary sensory and motor cortical areas [12, 55-

58]. It is usually accompanied by 18–26 Hz harmonics in the beta frequency band. In 

neural terms, the SMR is seen as an ‘idling rhythm’ of neurons in the motor cortex. 

Crucially, it has been known for many years that the SMR desynchronises, i.e., its 

power decreases, with the preparation of movement [59]. This power decrease, 

termed event-related desynchronization – ERD [60], is particularly prominent in the 

relevant motor regions contralateral to the limb movement being made. Often, an 

ipsilateral increase in SMR power, or ‘event-related synchronization’ (ERS), is 

observed after the movement [61]. 

 



For the purposes of BCI design, the most interesting feature of the SMR is that ERD 

and ERS do not require actual movement; as they are markers of well-developed 

motor competencies, they occur even when the user is asked to imagine performing a 

movement [62, 63] kinesthetically [64]. Furthermore, participants who are provided 

with visual or auditory feedback on their performance can learn to regulate the SMR 

amplitude [65]. Since the mid-1980s, several motor-imagery BCIs have been 

developed to tap into this phenomenon. These systems allow the user to select 

between two to four response choices by mapping pairs of complementary motor 

imagery tasks (e.g., right hand and left hand) to either bimodal responses or to 

continuous control of a computer cursor. 

 

Detailed studies of motor imagery BCIs have been conducted, both with healthy 

controls [66] and paralysed patient populations [9]. In patients who could not perform 

actual limb movements due to severe motor disabilities, SMR modulation due to 

imagined movement could be detected and classified with accuracies above 70% [13, 

67, 68]. In addition, several asynchronous spelling applications have been developed 

using motor imagery, and have shown promising results in healthy controls [69, 70]. 

Neuper et al. [71] trained a paralyzed patient diagnosed with severe cerebral palsy, to 

use a language support program [72] for communication. In their paradigm, the 

patient was presented with a virtual keyboard with a predefined set of letters, split into 

two equally sized subsets at the top and the bottom of the computer screen. The 

patient had to select the subset containing the target letter using a mental task. 

Following the detection of this choice, the chosen subset was split again. This 

successive splitting of the letter set continued until only one letter was selected. They 

showed that, after several months of training, the patient was able to control the 



keyboard with 70% accuracy. Another study by Neuper et al. [73] showed that a 

patient suffering from ALS could learn to operate the virtual keyboard spelling 

application using SMR modulation. 

 

Going beyond two-choice designs, Pfurtscheller et al. [74] studied the possibility of 

disentangling four different motor imagery tasks (pointing either to the left, right, up, 

or down), representing one of four different motor imagery tasks (left hand, right 

hand, both feet, and tongue, respectively) and one mental-calculation task. They 

found that it was difficult to discriminate between more than two mental states when 

only imagery-induced ERD patterns were available. This was mainly because of the 

large number of perceptual and memory processes that resulted in a non-specific 

desynchronization of alpha band rhythms [75], irrelevant for the classification task at 

hand. Wolpaw et al. [56, 76] have had some success in developing multi-class SMR-

based BCIs, by having participants modulate mu- or beta-rhythm amplitudes 

separately. Using their system, healthy controls and patients with motor disabilities 

learned to control their brain activity to move a cursor in one or two dimensions 

toward targets on a computer screen.  

 

This prior research in patients with motor disabilities has laid much of the 

groundwork for potential applications of motor-imagery BCIs to patients with DoC. 

In particular, researchers have developed sophisticated methods for extracting best 

possible classification performances to drive BCIs. Amongst these, Common Spatial 

Pattern (CSP) analysis is a popular technique suitable for use with increasingly 

popular high-density EEG hardware. Mathematically speaking, CSP analysis is a 

supervised Blind Source Separation algorithm. It is focused on improving the spatial 



resolution of EEG data at the single-trial level [77]. CSP analysis aims to spatially 

filter high-density data from a large number of EEG sensors (electrodes) across the 

scalp to a relatively small number of task-relevant spatial patterns of activity. In a 

motor imagery setting, the scalp topographies of these spatial filters are selected on a 

per-user basis, selected so as to maximise the discriminability of the ERD patterns 

across a pair of motor imagery tasks. The spatial patterns generated by appropriate 

filters are well suited for improving classification performance with relatively simple 

linear approaches. Indeed, Blankertz et al. [78] have demonstrated that CSP analysis 

can assist in generating excellent (>84%) classification of motor imagery in 8 out of 

14 BCI-naïve healthy participants after the first training session. Given these 

properties, CSP analysis could provide key advantages for dealing with the large 

amount of variability observed across patients with DoC. In particular, due to the 

aetiology (and subsequent atrophy) of their brain injuries, the cortex might have 

undergone significant functional remapping. These changes are likely to be 

significantly variable from one patient to the next; spatial filtering could account for 

this variability by isolating patient-specific spatial patterns (if any) that are likely to 

be generated by volitional motor imagery. This pre-processing step enables the 

subsequent single-trial classification procedure and the BCI in general, to be tailored 

to the patient’s specific neuroanatomy and dynamics. 

 

Preliminary evidence in the literature suggested that patients with DoC might be able 

to use some forms of motor imagery to express volitional intent. In particular, 

Bekinschtein et al. [79] showed that some VS/UWS and MCS patients were able to 

produce sub-threshold increases in hand electromyographic (EMG) activity in 

response to movement commands. This result pointed to the possibility of developing 



of simple EEG BCIs based on two-choice imagery paradigms, which could afford 

such patients the means to demonstrate awareness. Goldfine et al. (2011) recorded 

EEG from three patients with severe brain injury (MCS and LIS), while they were 

asked to imagine motor and spatial navigation tasks. In one MCS patient and one LIS 

patient, they were able to show evidence of significant differences between the 

frequency spectra accompanying the two imagery tasks, though the pattern of changes 

observed in patients differed from those in controls [80]. Cruse et al. [81] investigated 

the ability of DoC patients to perform demanding motor imagery tasks that could be 

discriminated in their EEG at the single-trial level. They assessed 16 behaviourally 

VS/UWS patients while asking them to imagine either squeezing their right hand or 

moving all their toes. The results showed that in 19% (3) of the patients, a support 

vector machine was able to accurately predict the task being performed, with cross-

validated accuracies between 61% and 78%. Cruse, Chennu et al. [82] performed the 

same test with MCS patients and found that 5 out of 23 (22%) MCS patients were 

able to follow command using motor imagery. Such paradigms could allow 

researchers to establish binary communication in patients who successfully perform 

the imagery tasks, by mapping imagination of right hand movement to ‘YES’ and toe 

movement to ‘NO’.  

 

These DoC studies with SMR are promising in their use of the auditory modality. 

However, learning to map intended responses to motor imaginations is a relatively 

complex task, and can be challenging to perform consistently even for healthy adults 

[66]. Hence SMR-based BCIs will probably be useful only for a minority of patients 

retaining high-level cognitive function. Along with the use of techniques like CSP to 

improve classification performance and reduce training time, suitable means of 



providing feedback will need to be investigated. In this regard, past research into 

adapting SMR-based BCIs to other sensory modalities might well prove useful. 

Nijboer et al. [31] demonstrated that SMR-modulation could be learned and improved 

with auditory feedback, albeit slower than with visual feedback. Further, Cincotti et 

al. [83] showed that SMR could also be modulated with tactile feedback. In fact, they 

found no difference between the efficacies of tactile and visual feedback. 

 

2.2.2. Alternative forms of imagery 

 

Despite its popularity in BCI research, motor imagery is not the only task that can be 

used for volitional modulation of oscillatory rhythms in the brain. Mental arithmetic 

[84, 85], mental task rotation [86] and many others have been shown to lead to 

differentially specific patterns of spatially specific cortical activation and deactivation 

[87]. Given that some patients with DoC were able to follow command imagine 

playing tennis and spatial navigation with fMRI [5, 6], it might be fruitful to draw 

upon this previous work to explore novel imagery tasks that are well suited for use 

with EEG. The most suitable sorts of tasks in this context are likely to be based on 

well-established, long-term mental capabilities that might be preserved in DoC. 

Looking ahead, tapping into these capabilities might allow BCI design to move 

beyond the two-choice design, into the realm of complex and nuanced 

communication. 

 

2.3. Steady-state evoked potential BCIs 

 



We now consider a set of related BCI approaches based on the volitional modulation 

of steady-state electrical responses set up in the brain by the presentation of 

oscillatory stimulus sequences. Such BCI designs are distinguished based on the 

sensory modality used to present these stimuli, considered here in turn. 

 

2.3.1. SSVEP-based BCIs 

 

Steady-state visually evoked potentials [SSVEPs; see 88 for a review] are the 

oscillatory electrical responses of neurons in the visual cortex to stimuli that are 

repeatedly presented, or flashed, at frequencies above 6 Hz. For many years, it has 

been known that such rapid stimulus sequences set up stable and synchronised neural 

oscillations in the occipital cortex, at frequencies corresponding to that of the stimulus 

[89]. SSVEPs are easy to detect, as their frequency content is completely determined 

by the visual stimuli used to elicit them. These stimuli typically also elicit oscillations 

at harmonics of the stimulating frequency [89, 90]. 

 

For the purposes of BCI design, the finding that the strength of the SSVEP is 

modulated by endogenous attention is crucial. Specifically, it has been found that 

when the visual system is presented with multiple stimuli flashing at different 

frequencies, the frequency of the stimulus being attended to generates the largest 

oscillatory response in the brain. Tapping into this knowledge, researchers have built 

BCIs that use stimuli at different frequencies to represent a set of responses from 

which the user selects one by paying attention to it. Such BCIs are particularly 

attractive because occipital SSVEPs have high signal-to-noise ratios and are nearly 

completely free of eye movement [91] and electromyographic (EMG) artifacts [92, 



93]. Moreover, SSVEP-based BCIs allow the user to select from a relatively large 

number [up to 64 of different choices 15, 94] without adversely affecting 

classification accuracy, which tends to range between 64-96.5% [88].  

 

Stimulation for modern SSVEP-based BCIs is delivered either on a computer screen, 

or using light-emitting diodes flickering at different frequencies [15, 94, 95]. The 

power at the stimulation frequencies over occipital electrodes is fed to a classifier, 

which is trained a priori to identify the stimulus frequency most likely to be focused 

on by the user. It has been found that the first three harmonics of the stimulus 

frequencies carry additional information, providing for a significant increase in 

classification accuracy [96]. Progressive improvements in the design have produced 

systems that allow for impressive rate of communication. Parini et al. [97] showed 

performance results from a SSVEP-based BCI that employed four cubic LED stimuli 

mounted at each side of a display. Seven healthy participants and four patients 

affected by muscular dystrophy at different stages were able to successfully use this 

system. In particular, the study reported the robustness of the system and the rapidity 

of user performance. 

 

The ability to focus gaze and attention is an obvious requirement for using SSVEP 

BCIs. Hence, their use by a majority of patients with DoC, who often have little or no 

control of their eye movements, would seem infeasible. There has been some progress 

in addressing this limitation; paradigms based on covert spatial attention [98], 

selective attention to spatially overlapping stimuli [99] and superimposed illusory 

surfaces [100] have also been found to evoke changes in SSVEP activity. However, 



preliminary tests with healthy controls have found significant increases in the 

variability of performance, making it difficult for a patient to reliably control the BCI. 

 

2.3.2. SSSEP-based BCIs 

 

Analogous to visually evoked SSVEPs, steady-state somatosensory evoked potentials 

(SSSEPs) are elicited by a continuous vibro-tactile stimulus of a constant carrier 

frequency and a modulation frequency applied to the skin [101]. Using this technique, 

early research reported that when the palm [102] or the palm and sole [103, 104] were 

stimulated, corresponding steady-state responses were recorded at the scalp. Such 

non-visual BCIs based on SSSEPs hold promise for patients with DoC unable to focus 

their gaze. 

 

The first study showing attentional modulation of SSSEP amplitude in humans was 

done by Giabbiconi et al. [105], using tactile stimuli with different frequencies 

applied simultaneously to the left and right index finger. Following this, the usability 

of SSSEPs in BCI design was evaluated by Müller-Putz et al. [106]. They stimulated 

both index fingers using tactile stimulation in the resonance frequency range of the 

somatosensory system. Four healthy subjects participated in the experiments and were 

trained to modulate the induced SSSEPs by focusing their attention on either their left 

or their right index fingers. Two of them learned to modulate their SSSEPs with 

accuracies between 70% and 80%, demonstrating the initial possibilities of this 

approach. 

 



Researchers have also attempted to combine multiple modalities to improve the 

classification accuracy of steady-state BCIs. Such BCIs, based on multi-modal 

attention, have been proposed by Zhang et al. [107]. They combined tactile and visual 

stimuli to realise a 3-class BCI based on SSSEPs and SSVEPs. The combination of 

the two modalities resulted in improved classification accuracies when compared to 

either modality alone. Further, they showed that steady-state evoked potential 

amplitudes were modulated not only by switching spatial attention within one sensory 

modality, but also by switching across different modalities. 

 

2.3.3. ASSR-based BCIs 

 

There have been a few relatively recent attempts to use steady-state responses 

produced by auditory stimulation, i.e., ASSRs [Auditory steady-state responses; 108, 

109, 110] to drive BCIs. Cortically recorded ASSRs are generated presenting 

amplitude-modulated tones to the ear [111]. Ross et al. [112] showed that the 

amplitude of the prominent ASSR generated by 40Hz stimulation is modulated by 

selective attention. However, as of yet, there has been no demonstration of a BCI 

driven by such attentional modulation of ASSRs. The BCI design challenge yet to be 

overcome here is the relatively small size of this modulation effect, making it difficult 

to detect in real-time. 

 

BCIs employing ASSRs would come with the important advantage of not requiring 

the visual modality. Hence, as with SSSEP-based BCIs, they could find applications 

for patients with DoC. However, a potential drawback, the seriousness of which is yet 

to be properly studied, might be related to sensory stress and irritation brought on by 



continual steady-state stimulation. The problem of cognitive fatigue and short 

attention spans, common in patients with DoC, might be exacerbated with steady-state 

stimulation, limiting the viability of steady-state BCI applications in this context. 

 

2.4. SCP-based BCIs 

 

We finally consider the class of BCIs based on the modulation of Slow Cortical 

Potentials [SCPs, 113]. These slow voltage changes generated in the cortex are among 

the lowest frequency features of scalp-recorded EEG, occurring over periods of 0.5–

10.0s. Usually, negative SCPs are associated with motor movement and other 

functions involving increased cortical activation, while positive SCPs are more 

associated with reduced cortical activation [113]. Over the last few decades, 

Birbaumer and colleagues have worked on the development of SCPs-based BCIs. 

Crucially, they have shown that people can learn to modulate their SCPs and use them 

to control the movement of an object on a computer screen [16, 114, 115]. Further, 

this system has been tested in people with late-stage ALS and has proved capable of 

providing basic communication capacities [17]. Often, these BCIs are based on visual 

feedback from a computer screen that shows one choice at the top and one at the 

bottom. Two seconds of baseline are necessary to provide the system the user’s initial 

voltage level. In the next two seconds, the user selects either the top or bottom choice 

by attempting to decrease or increase their SCP voltage level by a criterion amount, 

leading to a vertical movement of a cursor in the chosen direction. In addition to the 

commonly used visual feedback mode, SCP BCIs have also been set up to provide 

auditory or tactile feedback [115]. However, a study by Pham et al. [116] in healthy 



participants showed that auditory feedback resulted in a relative increase in the 

variability of performance. 

 

SCP-based BCIs come with the advantage of being the most stable over longer 

periods of usage, and do not require the use of any specific sensorimotor functions. 

This is a potential advantage for patients with DoC. On the other hand, the speed of 

choice selection is low, owing to the slow rates at which SCPs manifest. More 

importantly, these BCIs require relatively long periods of user training, sometimes in 

the order of months for some LIS patients [30]. It will probably be a minority of 

patients with DoC, showing consistent signs of awareness, who will be able to 

exercise the cognitive control required to train their SCPs over extended periods of 

time. 

 

3. Discussion 

 

Currently, there still remain a number of barriers keeping patients with DoC from 

benefitting from novel BCI technologies. Three key challenges are identified below: 

 

1. Firstly, there is the sensory dysfunction, arousal fluctuation and limited 

attention span commonly observed in DoC, and especially in MCS. Hence 

task/stimulus complexity is an important factor to consider when evaluating 

BCI applications for such patients. 

2. Stimulation and feedback modality is another issue: the visual modality is 

infeasible for use with most patients with DoC, and it has proven difficult to 



develop effective auditory and tactile BCIs that deliver relatively consistent 

performance [49, 52, 116]. 

3. In addition, the suitability of different BCI designs for individual patients is 

significantly variable, and will need to be comparatively assessed in each case. 

While some patients have been shown to be able to generate reliable P3s in 

response to task-relevant stimuli, others have demonstrated the ability to 

consistently perform motor imaginations in response to command. 

 

Amongst the different designs, SMR BCIs are relatively less hindered by problems of 

stimulation modality. There is relatively little stimulation that needs to be presented, 

and this can be effectively delivered auditorily. Furthermore, such BCIs can be 

designed to be self-paced, further minimising intrusiveness and patient distress. 

Results on their use in some DoC patients have produced promising results [9, 81, 

117]. This knowledge, along with the fact that other forms of mental imagery (e.g., 

playing tennis vs. spatial navigation imagery) in fMRI have already allowed some 

patients with DoC to communicate [6], bodes well for similar BCI variants. 

 

However, as SMR-based BCIs rely on the user’s ability to learn mappings between 

intention and movement imagery, they require adequate training before reliable 

performance can be achieved. In this regard, the need for consistent SMR changes 

within the training procedure poses a significant challenge in the DoC context. The 

classification algorithms that drive BCIs naturally depend on the quality and inter-trial 

consistency of the data used to train them. This is problematic for most patients with 

DoC, especially those in MCS, who are prone to frequent and prolonged bouts of 

fatigue, accompanied by severe temporal variability in their levels of arousal and 



awareness. This would effectively render them unable to pay attention for sufficiently 

long periods. For many patients, this limitation will adversely affect the statistical 

power of the classifiable patterns latent in their EEG data. 

 

In comparison, P3-based BCI designs rely on ‘natural’ responses of the brain to 

salient stimuli, and hence require relatively little explicit user training. As highlighted 

earlier, previous findings by Monti et al. [45] and Schnakers et al. [43] have shown 

that some patients with DoC can generate consistent changes in fMRI and EEG when 

asked to selectively attend to task-relevant stimuli. These are promising for the 

development of simple, binary BCIs based on auditory/tactile stimulation. Eventually, 

if successful with a patient, a P3-based BCI for spelling words and sentences using a 

predictive language support program would provide a true, multi-class system with 

relatively high efficiency. 

 

For any of the BCI designs discussed in this article, results from patients with DoC 

will need to be interpreted with great caution. In part, this is because, even in a large 

sample of the healthy controls, only 20% of users were able to drive a motor-imagery 

based BCI with accuracies greater than 80% [66]. In fact, between 40-50% of users 

only managed accuracies around 60-70%. In comparison, P3-based BCIs fared much 

better, with 89% of healthy controls able to use it with an accuracy between 80-100% 

[29]. Though these results do not invalidate the potential of these BCIs in DoC 

research, we must keep in mind that the likelihood that a covertly aware patient might 

go undetected (i.e., the false negative rate) is likely to vary significantly across 

different tests and patient groups. Hence, none of these tests applied individually to 

look for command-following can currently be used to interpret negative results, 



without combining findings from multiple testing methods to mitigate against the 

level of uncertainty. 

 

Furthermore, it is important to note that while the BCI designs reviewed in this article 

have seen many years of intensive development, much of this work has involved 

testing of various designs with healthy controls. As one might expect, it is often the 

case that results from controls do not generalise well to patient groups [118]. Hence, 

there is a need to conduct extensive testing with patients likely to benefit from various 

BCI systems in their daily lives [119]. To date, EEG and ERP responses 

demonstrating volitional brain activity in DoC have only been shown in relatively 

small cohort studies or case reports. Larger cohort studies by multiple, independent 

groups will need to test and validate these findings. A better understanding of 

variability in responses across a wider population of patients will certainly aid future 

BCI research. 

 

Lately, there is increasing research interest in the question of ‘what it is like’ to be in 

an unresponsive or minimally conscious state [1, 120]. The development of methods 

for working towards empirically motivated answers to such questions will 

undoubtedly benefit from the latest BCI research. As neuroimaging contributes to our 

current understanding of mental states in DoC, we will be able to better evaluate the 

challenges, benefits and viability of the different BCI designs discussed in this 

review. 

 

4. Conclusions 

 



We have reviewed a range of BCI systems that might prove useful for enabling 

communication in DoC. The prior research into the development of these systems has 

done much of the groundwork to allow us to evaluate the relative merits and demerits 

of these designs, with a view to their viability for patients with DoC. These are, 

however, a particularly difficult group of patients for BCI research. Developing 

feasible BCIs in this context will require, in parallel, preliminary exploratory research 

into basic cognitive tasks that allow us to probe the forms in which patients could 

potentially express volition. This work might bring to light new paradigms, e.g., based 

on novel forms of mental imagery, which could then be applied to developing BCIs. 

Eventually, we would hope to have at our disposal an essential, broad-based battery of 

neuroimaging paradigms that tap into a wide range of cognitive functions with the 

potential to drive BCIs. The combination of knowledge therefrom will better enable 

us to tailor the mechanisms and complexity of future designs to the specific 

capabilities of individual patients with DoC most likely to benefit from them. 

However, it will take significant time and effort before current BCI technology can 

move from bench to the bedside, and reliably inform clinical practice for improving 

the quality of life in patients with DoC. 

 

Acknowledgments 

 

We gratefully acknowledge the support of the Belgian Fund for Scientific Research 

(FNRS), European Commission (FP7-247919 DECODER), James S. McDonnell 

Foundation, Mind Science Foundation, French Speaking Community Concerted 

Research Action (ARC-06/11-340), Fondation Médicale Reine Elisabeth, University 

of Liège, the CNRS/FNRS-CGRI collaboration funds, the UK Medical Research 



Council (U.1055.01.002.00001.01) and the Canada Excellence Research Chairs 

Program. The text reflects solely the views of its authors. The European Commission 

is not liable for any use that may be made of the information contained therein.  

 

Declaration of interest 

The authors report no declarations of interest. 

 

Figure Captions 

 

Figure 1: A typical Brain-Computer Interface loop. Real-time neural signals acquired 

from the user are pre-processed before discriminative features are extracted 

therefrom. Machine learning techniques are then used to train classifiers to detect 

statistical patterns in the features that are reliably associated with pre-specified 

(supervised) volitional states of the user. The trained classifer can then be used to 

classify new features corresponding to states now selected by the user to 

communicate choices. Finally, the result of the classification is fed back to the user, to 

help them train themselves in the use of the BCI. 
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