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A NEW LOOK AT HERRMANN'S FORMULATION OF INCOMPRESSIBILITY
~ J.F. pesoneyTE (1)
- SUMMARY

An exposition of Herrmann's formulation is given first, and its exten-
sion to the anisotrope case is presented following a new way. Using this
method, the matrix of material coefficients can be calculated in a fully
automated manner,

The existence of the solution is briefly discussed next. A necessary
and sufficient condition is obtained which turns to be of unpractical use.
Fortunately, this condition is in most practical cases equlvalent to
another one, which is of fairly simple use.

These concepts are illustrated by an example.

1. INTRODUCTION

In 1965, a mixed pressure-displacement formulation for compressible
and incompressible isotropic solids was proposed by'HERRMANN'[l « The
orthotropic case has been considered by.TAYLOR, PISTER and HERRMANN [Z] R
and the anisotropic case a short time later by KEY [i]

A new way of extending Herrmann's formulation to anlsotroplc -solids
[4 5] is proposed It differs from Key's approach by the fact that the
variables used are the pressure and the strains, and not the deviatric
strains. Given the compliance matrix, the kernel of the functional is
constructed by a method which can be fully automatized. This possibility
turns out to be of great practical interest.

Unfortunately, when passing from the. compre531b1e can to the incom-
pressible case, a discontinuity can' occur in Herrmann's formulation since the
‘existence and unicity of the solution are not always guaranteed. A theore-
tical study of this difficulty has been achieved [5] which shows that ac-
count must be taken of certain restrictions to ensure correct results.
This theory 1is rather technical, and only its main results will be given
here. The proof will be given next that the theoretical criterium is in
most cases equivalent to a much simpler one due to. NAGTEGAAL et al.'[é] .

2. GENERALIZED HERRMANN'S FORJU ATIOW

2,1, In the follow1ng text, the stresses and strains will be noted ‘in matrlx
form

- =(T11’122'133’T12’T13’T23) > € f(€11’522’533’€125€;3’523)'
Reissner's principle can then be written ' .»§

' [ (tTe —-% tTBt)dV - f Ei“ids stat,
S
where B is the compliance ma%rlx. Varying the stress vector t yields the
relation e=Bt - - (D
The strains of an incompressible.structure verify following r~e=0,
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where rT—(l 1,1,0,0,0). For any stress—vector t, one has thus rTBt =0, and
this means that Br*O This 51nvular1ty 1nvolves the lack of ex1stence of a
displacenient formulation.

2.2, Let us now define a "deviatoric projector" D by the relation

_ 1 T
D=1 3 rr- .

where 1 is the_identity matrix. It is easy to see that this matrix has the
properties D=D" (syummetry), DD=D (idempotency), Dr=0 (projectivity).

Any vector p admits the following decomposition in a deviatoric and an
isotropic vector.

=Dp + 7 (r Tpyr
2.3, If the structure is compressible, we may invert the stress-strain

relation (1) to give t=B~l e, This is of course not possible in the incom-
vpressible case. But one can write

= Bt = B(Dt + %vrT t r) = BDt .
We are thereforelooklng for a matrix A hav1ng the follow1ng property:
ABD=D (@)

If possible, A should also be invertible and well-conditioned, Such
a matrix can be constructed by conSLderlng the one parameter matrix
family

Ba = B + %-rrT ’ a>0
Obviously, if Br=0, one has

Ea r = %— rrT r = or (3)
i.e. the vector r is mo longer singular, and for any deviatoric vector
Dp 4 ‘_ T

Ba Dp = BDP. + §-rr Dp. = BDp .

If Br=0 has no other non trivial solution than r, E is thus invertible,
and one can set . ¢
-l o :

AL = a . . (4)

Making use of (3) yields then expected _property (2)
A B D= A BD+ §-A rrT D= A BD ,

"The free parameter a allows for anm optlmlzatlon of the condition number

of A « A suitable ch01ce is given by the relation

@ op_

r"Br : ;
T'q = mean of the eigenvalues of B _=v%-tr (Ba)’ where the notation
_ rr . : : :
. tr states for the trace of a matrix, Noting that :
_ t (B ) =tr(B) + a, rTB r = rTBr + E-(r r) Br+ 3a R
: oneobtalns immedlately the optlmum value a_
5a, = tr (B) -2 B r : (5)

In what follows, we will write A for Aa and ¢ for o . Consider for,
instance the isotroplc case. The matrix® B is given gy '
1ty T
B = I-2 rr ’
. E € :



Where € and v are Young's modules and Poisson's ratio.respectively.
After some elementary calculations, one obtains

v 3v - £ _
¢ =% » A 1+v I ' ’ (6)

The particular choice (6) can be seen to 1ead to Herrmann s 1sotropic
formulation.

The "optimum" matrix A has some remarkable properties. For sake of
brevity, they are given without their (elementary) proof

(a) BAr = ur, with y=1- %-a rTAr o (7)v
(b) in the incompressible case, Ar = é— r and’u = 0 (8)
(c) (B-1) = - & Arr’ - O
(d) (AB-I) r = - oAr ~ o (10)
(AB-I) D = 0 : ' ‘ : (11)
(BA-I) BD = 0 o a1

2,4, We are now ready to transform Reissner's principle, Starting from
(1), which can be rewritten in the form -
_ BDt+-31-Brth,__ ' ’ (13)
let us multlply both sides of equatlon (13) by A. By 2, thlS leads.
to R SO ' s
Ae = Dt + §-ABrr t o - (14)

,As it appears immediatly, the deviatoric stress-vector_has a real
dimension equal to 5 since the subsidiary condition r°Dt = O holds.,
If this s automatlcally verified, one may define an 1ndependant mean
"_pressure T o= —.% T t. Equatlon (14) becomes then

Dt = Ae + TABr .
‘ yleldlno thus the result '

= Dt - q#r = Ae + W(AB I)r. . . ' . (15)
The first term of Reissner's functlonal is then easy to transform

' tTe = eT Ae + nr ( BA-I)e

[N

“1ransform1ng the complementary energy density requires somewhat more care:
~the key is to transform it from one side, and then from the other one: ‘

3 tT e =2 el ape + 2w’ (BA-D) Bt |
= %-eT ABDt —-% eT ABrn +~% wr (BA—I) BDt —f% an(BA—I)Brn
(a) - (b) (@ (d)
and we get : '
(a) +j% eT~Dt ~-% eTAe + %-nABr R (c) > 0 “from (12) .
The resulting functional is _ ' : :
‘5 [¢ (Du,m - Fiui] av - é E u ds, e

2 -



Where 1 T 17

¢(e T) = 5 e Ae- + nr (BA—I) et+sr (BA~I) Br nz » " 17
 whose.stat1onar1ty restitutes the'elastic solution.

In fact , : . ‘ o
. §$.= he + (AB-Drm =t

from what follows the fact that equilibrium will be. satlsfled Varylng T,
one obtains the condltlon

r (BA—I)(e+Brﬂ) =0
which, by (10), is.equivélent to
- arl(Ae + ABrm) = 0 , ‘ (18)

that is, (Ae + ABrm) is effectively a deviatoric stress vector. It is the
condition of independancy of the pressure, This relation admits another
interpretation. Following (7), we have or” ABrm = 3a u 7 , and combining
this relation with (18), one obtains '

rTAe

m=-I28 | : | 19

| T o (19)
that is, the relation between fhe’pressure and the deformations. In the
isotropic case, it reduces to the classical compressibility equation

T = - o) re .. : _ . (29)

The function ¢ can be set in the matrix form
. 1 T = e
T ¢(e,m) =5 (e,m)” H ()

with ‘ .

A (AB-I)r , | A =~ CQAr

H= , : = (21)
rT(BA—I) rT(BA~I)Br - arTA .= 3au| '

In the incompressible case, this matrix becomes

_ v A -r . '
Hiiney ~ {-rT 0] 8 (22)

For isotropic structures, it follows from (6) that

£ _3v_ r ,
1=2 = 1+ T T+v '
w=g s H=| T Y ) 23
: 3y T _ 3v 3(1-2v) ) g
I+v ~ 1+v € ' ‘

_ We recognize Herrmann's isotropic formulation which can thus be con-
" sidered as optimum in the sense defined above.

3. SOME REMARKS

341l.The conditions of applicability of Herrmann's formulation are first that

the derivatives of the displacements are square —integrable. This is verified
if the displacement are continuous at the, interelement boundaries. But
- the pressure should simply exist in the L™ sense. In particular, one can B



choose a pieceawise continuous polynomial, with discontinuities at the
interelement boundaries. Many authors use a continuocus pressure, We find it
" is not very logical and, moreover, it causes great difficulties when the
material is discontinuous., With element polynomials including at least a
constant term, the volume of each element is preserved, and this property
seems the most natural way of ensuring the lncompre351b111ty.

3.2, In practical appllcatlons, it is necessary to rescale the element
pressure to enstre a good conditioning of the final matrix. The problem
lies in the fact that the pressure and the displacements are d.o.f. of
different nature. A different scaling factor must be used in each element
taking in account the orders of magnitude of the modull and of the size
of the element in concern, This possibility of preserving the condltlon
number is obviousely lost if the pressure is taken continuous.

3.3. Herrmann's formulation leads to a nonstandard system of equationms,
because the corresponding matrix is not positive definite., Therefore, some
authors have tried to eliminate these cumbersome pressure d.o.f. This

is possible only if the structure is not exactly incompressible, that is

B # 0. Consider for simplicity the case of a constant pressure in each
element, One can write

M=t [ a Tl AedV == A [ arl Ae dV (24)
S 30 pdv X X \ _
K .
and this leads to the displacement -like funet ional
£ izl aet A (Lar fedD’l | (25)
K K K

‘ : - s " , T

For 'the quasi-incompressible case, - Ir e|<< , and one can replace

e by De in the first term of the functional., This leads to a generallzatlon
of a principle due to NAGTEGAAL et al. [6] o In fact, in the isotropic
homogeneous case, we obtain ‘

‘ 1l T .13y
§ é {5e e+ T 3(1 Zv) (» [ rle dv)© } av , ) (26)
‘and if v = 0,5 , this can be,approximated by
‘ 1 T 1 -
P f{=e DADE+ % orre ([ r e dV) } dav, (27)
K K 2 2 3(1- Zv) X

‘which is precisely Nagtegaal's formulation., It is thus no more than a

variant of Herrmann's principle, where the element incompressibility.

conditions are now obtained by a penalty method when v + 0,5 .

Nagtegaal's two field principle is also intimately connected to Herrmann's

'one, by the substitution of m by ¢ = 3 o p v and the above approximations

when v » 0,5, '
However,vlt should be emphasized that the pressure d.o.f. do not

cause "insurmountable implementation problems" [7] « In a frontal

‘elimination process, it is only necessary to select a suitable order of

pivoting the different terms, :



4 PROBLEMS CONNECTED TO THE EXISTENCE AND UNICITY OF THE SOLUTION

Herrmann's variational principle is unfortunately not mlnlmal, and the
_corresponding formulation does not necessary admit a solution. A complete
discussion of this problem has been done [5 « But it is rather technical,
and we shall here' restrict ourselves to the main results, limiting the
justifications at the intuitive level, Three cases can occur:
(a) o = 0 : in this case, which corresponds, in the isotropic case
to v = 0, the pressure does not appear in the principle, and the correspon-
ding dearees of freedom must be fixed . The corresponding variational prln—
ciple is then wminimal, and the solution always exists and is unique.
(b) standard compressible case,o. # O , 4 # O . Then, as it has been
seen, the pressure d.o.f. can be eliminated at the element level, and this
will reduce the principle to a displacement-like form. The principle is then
minimal., The solution always exists and . is unique,
_ (c) The only problematic case is the 1ncompre351ole one,o. #$0, n=0,

The pressure plays the role of a Lagrange multlpller, and we are in presence
of a saddle point problem. Following BREZZI's theory [ﬁ] , the solution
exists and is unigue if and only if the follow1ng condltlon is verified,
"There exists a constant B >0 such that for any p € LZ (V)

sup f P div u dV : 9 -% '
uwél. 2 B( S p” av) y - - (28)
u#0 (6 e AedV)Z’ V- : e :

whére U is the space of admissible displacements". It can be shown that

in the undiscretized case, this condition is verified, except when the
normal displacements are fixed on the whole boundary. In this special case,
the solution is correctly defined if one add the extra—-condition tnat if p
is constant, it must be equal to zero..

Since the finite element discretization consists of selectlng flnlte v
dimensional subspaces U, €1 and P c:L2 and finding a solution (uh,ph) with
u Gl)h and Py, e P it is clear ‘that the same condition (283) ‘
mist hold for the Blscretlzed problem, where U is replaced by U, and B by
another number B8, . Unfortunately, this condition does not always hold in
‘the present case, and, in principle, must be verified in any practical case,
But the quite complicate form of this condition is somewhat discouraging .

However, there exists another, very simple condition, which is

= dimensiop-(Ph) < dimension»(Uh) =q , (29)

i.e. the number of unfixed displacements is greater thant the number of

~unfixed pressures. The necessity of this condition will be proven first.
Let-us develop u and p in their basis functions :

' " n : _ T :

u= % 3k uk x) , p= I e ¢k (x) ,
, k=1 k=1
and suppose that n < r . One writes

_ . > ) T _ T=' ‘ .
Ckﬂ, = 6Pk div (V.Q,) dv y V. = (Vl,...,Vn), q (ql,oot?gr) ‘.
- If (wl,...,w ) is.a basis of the n-dimensional euclidean space R: “the
vectors s w, form the basis of a n-dimensional subspace of R . Taklno
P in the orthogonal complement of this subspace, one has necessarlly q- CV—O



and this contradicts (28). But is the condition (29) also sufficient ? The
answer is almost always affirmative, In fact, if the matrix C is of rank r,
that is, 'if all incompressibility relations are independent - and this is
the usual case - the condition (28) is also sufficient. To prove this, we
decompose v in :

~

v=CTy+v,with cé=0,

There,

PO 1

T .

T T
c cc - T
sup frofr = swp AL — 0 < Qe
v v (yTCCTy+V )2

where CC' is a positive definite matrix. The relation (28) follows then
from the fact that all norms of a finite dimensional space are equivalent.

The condition (29) is very .simple, and therefore, it can be considered
as a very useful and effective criterium, Its application can be systematized
as follows : _ :

(1) numbering of the n unfixed displacements

(ii) numbering of the r pressure

(iii) definition of the discretization ratio n = =
This ratio represents the proportion of "active" displagements. If negative’
or equal to zero, the solution does not exist. The greater n is, the better
is the discretization, at least from the safety point of view. To characte-
rize the performance of an element in more general terms, one may use the
following method, which was introduced by NAGTEGAAL, PARKS and RICE [6] for
their plasticity problems.

(i) Define a regular mesh with n. x n. x n_ nodes’

(11) Compute n,r and n in terums 5t nxz ny, n

z
(iii) Comnute the asvmptotic dlscretlzatlon ratio

n = lim n .
n_,n_ > ®-
Byerfyelty

As an illustration, the case of axisymmetrical trlanaular tori elements,
of various degrees is considered (fi 1)

N

a) degree 1, constant pressure :

M = = -T1) -

Nz | n annz’ T Z(nr l)(nz 1)

N ' _ 1 1 1 -

. ///// | n_n n =0

» T z rz
L A The discretization is thus generally
. : _ somewhat poor, Note that this evalu-

‘ /////- ation does not take the fixed d.o.f.
5 - : in account. It is relatively easy to
. ///// S obtain examples where Ut <0,
2 : | ’
1 2 JF - .. s




b) degree 2, constant pressure

=8 n.n, - 4 n_ - 4 n, * 2, o r= Z(nr—l)(nz-l)

ébnn - 2n - 2n
rz T z -

Ny T Bnn - 4o - 4o +2 ’ My =
rz r z

3
A

c) degree 3, linear pressure : the linear pressure terms can be eliminated
with the '"bubble modes" in each element, and we omit these two kinds of
duOofc ,Then,

= 14 oo, = 8nr - 8nz + 4 R r = 2(nr-1)(nz-l)
'12n.n - 6n_ - 6n_ + 2
- . rz T z . - _6
N3 l4n.n - 38n_ - 8n_ +4 ' N3 =3
r oz r oz

d) degree 1, linear continuous pressure : we have élready said that, from
our point of view, the procedure is not justified. But it gives a better
dlscretlzatlon ratio than (a) : :

e) when all vertical displacements ére-fixed, 1 is reduced. The results are

o= Py —-...].'. v n :—.2» =
nl = =1 (bad), n, =3 (correct), Ny =% (correct), 0 (bad)

A
Finally, it should be noted that, as is the case for the undiscretized

problem, when the fixations, ensure the constance of the global volume, one

has to add the extra-condition that if p is constant, it must be equal to

“zero, This can be done by fixing arbitrarily a pressure to zero, This condi-

-tion admits a very simple interpretation when the pressure remains constant

on each element, In fact, each pressure is "responsible" for the volume

conservation of its element, When the last element has to be connected to the

others, its volume cannot vary since it is equal to the difference between

the total volume and the invariant volume of the rest of the structure. There-

fore, the last pressure parameter plays no role and must be fixed.

5. NUMERICAL EXAMPLE

As an example, the plane strain problem of a pressurized thick-walled
incompressible cyllnder contained in a thin case (fig.2) is considered.
' It is discretized by axisymmetrical
triangular tore elements, as represented
on fig.3 . The plane strain condition
is obtained by fixing all longitudinal
displacements., The idealization contains
12 elements and 11 nodes.At the first
degree, it leads to 1l displacements and
12 pressure d.o.f., and the solution does
not exist. This prediction is confirmed
numerically.(In Gauss method, after
some operations, the non-pivoted sub-
matrix has all zero diagonal terms).




_ A _ By contrast, a second-degree 1deallza—
I . o -+ | tion, with constant pressures leads to

‘ - a discretization ratio equal to 21/33
= 0,636 , and with third degree elements
will a linear pressure, the value 0,78
is obtained. Therefore, both idealiza-
tion will be satisfactory . With the

£ following data, v

o p—

200

E=21000 kb , t=10mm, (l-v>)=0,91,

h=200 mm,

figf 3 b=400mm, a=100mu, G=7,692300hb,

p=1 hb -

the exact analytical solution yields the following results:

potential energy U=2,4893389.1O5

hoop stress resultant in the case: N ee = 285, 71437

With Herrmann's third degree elements, having a linear (discontinuous).
pressure, we have obtalned

U = 2,480198.10° , N,j0= 285,7
The correspondance is quite good. Figure 3 shows the results obtained
with Herrmann's first, second, and third degree elements, when v + 0.5,

24 i and compares them to the results of
$40% Pot- En. g""""‘“"" 1ot 45 | the classical displacement formulation.
' o 4 Displacement3d. A% As demonstrated in [1@] s the extre-
4o ro : " . iﬁ &g mely poor results of this formulation
, ' ' - the energy converges to zero when
' v >+ 0,5 -, are due to the fact that
307 the finite element model contains mo
) Exact . ‘
T T S — “Inc. | incompressible mode. It is equivalent
20| h~‘§*\\\\\ . | to say that Fried's K, matrix [9] is
: L not singular, Fried's method consists
" A0 _ " | in underintegrating the compressibility
: energy terms. It can be considered as
‘] ~¢ " | a disguised form of Nagtegaal-Herrmann's
49 499 9999 49993 ng%;:gs. method, where the independant strain
: : , . - parameter is connected to the displa- -
23 b 5 6-4050540 cements by an interpolation conditlon
{nﬂ q ’ o ' at Gauss points, ;
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