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ABSTRACT

The treatment of chronic-like illnesses such has HIV infection,
cancer or chronic depression implies long-lasting treatments
that can be associated with low quality outcome, painful side
effects and expensive costs. To enhance these treatments, clin-
icians often adopt what we call Dynamic Treatment Regimes
(DTRs). DTRs are sets of sequential decision rules defining
what actions should be taken at a specific instant to treat
a patient based on information observed up to that instant.
Since a few years, a growing research community is working
on the development of formal methods (mainly issued from
mathematics, statistics and control theory) that allow to in-
fer from clinical data high-quality DTRs. We propose in this
framework a consistent algorithm of quadratic complexity [3]
that infer from clinical data a sequence of treatment actions by
maximizing a recently proposed lower bound on the return de-
pending on the initial state [2]. The algorithm (called CGRL
for Cautious Generalization for Reinforcement Learning) has
cautious generalization properties, i.e. it avoids taking treat-
ment actions for which the sample of clinical data is too sparse
to make safe generalization.

1 PROBLEM STATEMENT

•Discrete-time system dynamics over T stages

xt+1 = f(xt, ut) t = 0, 1, . . . , T − 1,

where for all t, the state xt is an element of the normed vec-
tor state space X and ut is an element of the finite (discrete)
action space U ,

•An instantaneous reward

rt = ρ(xt, ut) ∈ R

is associated with the action ut taken while being in state
xt,

•The system dynamics f and the reward function ρ are un-
known,

•The system dynamics f and the reward function ρ are
Lipschitz continuous, i.e. that there exist finite constants
Lf , Lρ ∈ R such that: ∀x, x′ ∈ X , ∀u ∈ U ,

‖f(x, u)− f(x′, u)‖ ≤ Lf‖x− x
′‖ ,

|ρ(x, u)− ρ(x′, u)| ≤ Lρ‖x− x
′‖ ,

•Two constants Lf and Lρ satisfying the above-written in-
equalities are known,

•Data : a set of one-step transitions

F = {(xl, ul, rl, yl)}
|F|
l=1

where each one-step transition is such that yl = f(xl, ul)
and rl = ρ(xl, ul),

• Each action a ∈ U appears at least once in F :

∀a ∈ U , ∃(x, u, r, y) ∈ F : u = a ,

• For every initial state x, the return over T stages of a se-
quence of actions (u0, . . . , uT−1) ∈ U

T is defined as

Ju0,...,uT−1(x) =
T−1
∑

t=0
ρ(xt, ut) .

2 OBJECTIVE

•An optimal sequence of actions u∗0(x), . . . , u
∗
T−1(x) is such

that

Ju
∗
0
(x),...,u∗T−1

(x)(x) = J∗(x) .= max
(u0,...,uT−1)∈UT

Ju0,...,uT−1(x) .

•The goal is to compute, for any initial state x ∈ X , a
sequence of actions (û∗0(x), . . . , û

∗
T−1(x)) ∈ U

T such that
J û
∗
0
(x),...,û∗T−1

(x) is as close as possible to J∗(x).

3 LOWER BOUND ON THE RETURN OF

A GIVEN SEQUENCE ACTIONS

Lemma 3.1 Let u0, . . . , uT−1 be a sequence of actions.
Let τ = [(xlt, ult, rlt, ylt)]T−1

t=0 ∈ F
T
u0,...,uT−1

where FTu0,...,uT−1

is the set of all sequences of one-step system transitions
[(xl0, ul0, rl0, yl0), . . . , (xlT−1, ulT−1, rlT−1, ylT−1)] for which ult =
ut, ∀t ∈ J0, T − 1K. Then,

Ju0,...,uT−1(x) ≥ B(τ, x) ,

with

B(τ, x) .=
T−1
∑

t=0



rlt − LQT−t‖y
lt−1 − xlt‖



 ,

yl−1 = x ,

LQT−t = Lρ
T−t−1

∑

i=0
(Lf)

i .

Fig. 1: A graphical interpretation of the different terms composing the bound on

Ju0,...,uT−1(x) computed from a sequence of one-step transitions.

Definition 3.2 (Highest lower bound for u0, . . . , uT−1)

Bu0,...,uT−1(x) = max
τ∈FTu0,...,uT−1

B(τ, x) .

Definition 3.3 (Sample sparsity of F) For X bounded,
let Fa = {(xl, ul, rl, yl) ∈ F|ul = a}. ∃ α ∈ R

+ :

∀a ∈ U , sup
x′∈X







min
(xl,ul,rl,yl)∈Fa

‖xl − x′‖






≤ α . (1)

The smallest α which satisfies equation (1) is named the sam-
ple sparsity and is denoted by α∗.

Theorem 3.4 (Tightness of highest lower bound)
∃ C > 0 : ∀(u0, . . . , uT−1) ∈ U

T ,

Ju0,...,uT−1(x)−Bu0,...,uT−1(x) ≤ Cα∗.

4 THE CGRL ALGORITHM

•The CGRL algorithm computes for each initial state x a se-
quence of actions û∗0(x), . . . , û

∗
T−1(x) that belongs to B

∗(x)
where

B
∗(x) = {(u0, . . . , uT−1) ∈ U

T |

Bu0,...,uT−1(x) = max
(u′

0
,...,u′T−1)∈UT

Bu
′
0
,...,u′T−1(x)}.

• Finding an element of B
∗(x) can be reformulated as a short-

est path problem (see Figure 2).

5 CONSISTENCY

Theorem 5.1 (Consistency of CGRL algorithm) Let

J
∗(x) = {(u0, . . . , uT−1) ∈ U

T |Ju0,...,uT−1(x) = J∗(x)} ,

and let us suppose that J
∗(x) 6= UT (if J

∗(x) = UT , the search
for an optimal sequence of actions is indeed trivial). We define

ǫ(x) = min
u0,...,uT−1∈UT\J∗(x)

{J∗(x)− Ju0,...,uT−1(x)}.

Then

Cα∗ < ǫ(x) =⇒ (û∗0(x), . . . , û
∗
T−1(x)) ∈ J

∗(x) .

Fig. 2: A graphical interpretation of the CGRL algorithm (notice that n = |F|)

6 PRELIMINARY VALIDATION

The puddle word benchmark The CGRL algorithm is com-
pared with the Fitted Q Iteration(FQI) algorithm [1] on two
samples F1 (“normal” sample) and F2 (no information about
the puddle).

Fig. 3: CGRL with F1. Fig. 4: FQI with F1.

Fig. 5: CGRL with F2. Fig. 6: FQI with F2.

HIV infection Database generation: A patient does not take
his antiretroviral therapy in average once every eight days.
CGRL is run on the trajectory generated by this patient.

Fig. 7: Treatment evolution for

generating the database

Fig. 8: Treatment evolution com-

puted by the CGRL algorithm

7 FUTURE WORK

• Extension of the CGRL algorithm to a stochastic framework / on-line
learning framework,

• Derivation of the CGRL algorithm to address the exploitation / explo-
ration tradeoff,

• Selecting concise sets of transitions.
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