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ABSTRACT : This paper presents the simulation of a deep-drawing process using three different
constitutive laws: strain rate space yield locus description with an isotropic hardening law, strain rate
space yield locus description with a combined (isotropic and kinematic) hardening law, and stress space
yield locus description with an isotropic hardening law. To take into consideration material anisotropy,
the yield locus is computed from the crystallographic texture using Taylor’s model, a dual plastic
potential and combined hardening law taking into account the dislocations microstructures. The results
obtained by these three constitutive laws are compared with experimental ones.

1. INTRODUCTION

The industrial requirements (aerospace, car
manufacturing) of lighter parts with high mechanical
resistance and, at the same time high geometrical
accuracy, have motivated the study of metals such as
high strength steel and aluminum alloys, and their
appropriate forming process. Several problems have
been detected during metal forming processes, like
springback, wrinkles and earing behavior caused by
material anisotropy. The idea is to have a
constitutive model for plastic behavior able to
predict those phenomena. The model presented in
this paper takes into account two sources of material
anisotropy, the crystallographic texture and the
strain-path induced anisotropy.

The description of a texture based anisotropic
yield locus has been proposed by MTM of K.U.
Leuven. This team has developed texture models in
strain rate and stress space (Van Bael [1994] and
Winters [1996] respectively), which allow to
describe initial yield locus. Their method is based on
texture measurements by X-Ray diffraction avoiding
the performance of several mechanical tests needed
to identify the initial yield locus.

The hardening model proposed by Teodosiu and
Hu [1995] allows to describe the strain-path induced
anisotropy considering the influence of the

deformation history represented by internal variables.

Hoferlin [2001] incorporates this hardening law and
a strain rate space description of the initial yield
locus into the finite element code Lagamine

developed by M&S department at University of
Licge.

This hardening law in addition with an isotropic
one and the texture-based yield locus description
will be briefly introduced in section 2. Section 3 is
focused on the description of the type of finite
element used and the chosen formulation. The
application is a deep-drawing process modeled in
section 4 as follows: first using a strain rate space
formulation and an isotropic hardening law, second
using a strain rate space formulation with Teodosiu
and Hu’s hardening law and finally using a stress
space formulation and an isotropic hardening law.
The results will be compared with experimental
measurement and conclusions are established in
section 5.

Considering that the plastic strain rate & is

classically assumed to be deviatoric and that only the
deviatoric stress tensor § matters with regard to

plastic deformation these deviatoric tensors have
only five independent variables. In order to save
storage and time these second order tensors are
represented by first order vectors limited to five
components such that Ebef=efef and

A

G, 6;=6,6, with i,j=1,...,3 and p=1,....,5.

2. CONSTITUTIVE MODEL

To compute the yield locus from crystallographic
data, two convex dual potentials will be used, from
which the stress tensor can be derived as a function
of the plastic strain rate tensor and vice versa, as
shown in sections 2.1 and 2.2. This potential
function is given by the rate of plastic work per unit



volume (equation (1)):
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where s and ¢ the five-dimensional

representation of the deviatoric stress tensor minus
the back stress (see equation (7)) and the plastic
strain rate respectively.
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2.1 Texture-based strain rate space potential

Let ¢ and u be respectively the magnitude
and the direction of a plastic strain rate.
¢’ 2)

y_-—-?; with ef=\/eféf .

By definition of rate insensitivity, the stress s
corresponding to a given plastic strain rate ¢ does
not depend on ¢ but only on u, so equation (1)

can be rewritten as:

P:Spupép . (3)

Van Houtte and al. [1989], proposed to use a
dimensionless function of u:

spitp=10" (1), )

where 7 is the value of the critical resolved shear
stress (CRSS) which is assumed to be the same on
all the slip systems. The function Q" represents the
average Taylor factor and it is expressed as a
polynomial series expansion defined in the strain
rate space:
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where the indices satisfy the condition
1<p1<p;...<pn<5. In equation (5), N is the order of
the series expansion and is equal to 6 in this case.
The coefficients of the series expansions can be
calculated by a least square fitting on the average
Taylor’s factor directly computed using the texture
measurement.

From equation (4), P can be written as:
P=1cPQ"(u). (6)

Then, the gradient of the defined potential gives
the deviatoric yield stress corresponding to any strain
rate direction u:

Jer0(w)) (7)
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where x represents the center of the yield locus, 7
gives its size and the partial derivative as a function
of & corresponds to its shape.

2.2 Texture-based stress space potential

A unique yield locus in five-dimensional stress
space can be represented by the following
expression:

r=501(s’), ®)

where Q' (g*) is a function of the stress direction

s and s is the length of the radius vector such that

ss lies on the yield surface.

To find the stress radii s for a set of stress
directions s , the following minimization procedure
has to be done:

Qll @ (9)
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The scale factor 7 clearly shows that the shape does
not depend on the size of the yield locus.

The series expansion for the function Q' (g*) can

be written by analogy with equation (5) as:

QI(_.S:*)Zprpz...pNS;lS;T Shy s (10)

the coefficients Gop..,v Of the series expansion are
obtained by a least squares fitting to the inverse of
the stress radii, i.e. to #s, for all the different stress

modes s instead of the Taylor factors as in section
2.1.

The strain rate mode u corresponding to a stress

mode s can be calculated by:
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which is analogous to equation (7) except for the
parameter A that has to be chosen here, such that u
has the unit length.



2.3 Hardening models

Two hardening models based on texture will be
briefly described. The first one, TexIso (strain rate
space formulation, Hoferlin [2001]), is an isotropic
hardening where 7is assumed to be a function of the
average polycrystal slip I':

r=k(T+T, ), (12)
a simple micro-macro link applied on an uniaxial
tensile test allows to identify the k’, I'y and n’.

The second one, TexMic (strain rate space
formulation, Hoferlin [2001]), is based on
Teodosiu’s hardening law (Teodosiu and Hu [1995]),
and takes into account the evolution of dislocation
substructures during reversed deformation. It
explains the strain hardening stagnation and the
influence of the amount of pre-stress. It allows to
model the Bauschinger effect and strong path
changes such as ones observed during complex
loading modes. The complete set of internal
variables is denoted by(S,P,&R).S, @ and R

have the dimension of stress, P is dimensionless.

For a well-annealed material, all their initial values
are zero.

S (fourth order tensor) describes the directional

strength of an intragranular structure. P (second
order tensor) indicates strain-path changes, it is
associated with the polarity of the persistent
dislocation structures and saturates toward the

direction of strain rate tensor N, (tensioral form of
P

u). o (second order tensor and tensioral form of x)
describes the back stress and R takes into account the
isotropic hardening by the statistically accumulated
dislocations. If S is decomposed as shown in

equation (13) (where ® is the cross-product) the
evolution of these state variables is represented by
equations (14) to (18) denoting by V the Jaumann
objective rate.

S=SpN, ®N, +S, (13)
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(15)
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Equations (19) to (24) complete the description of

the model. 0, o, Ssata Rsat» Cpa CSLa CSDa CJCa CRa Np,
nr, m, q are material parameters.
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The final hardening model is defined by:

=g, +mSHR . (25)

3. FINITE ELEMENT FORMULATION

3.1 Solid element BLZ3D

It is a mixed type element with eight nodes and
one integration point (Zhu and Cescotto, [1994]). It
is based on the Hu-Washizu principle, which 1is
formulated on three fields: displacement, strain and
stress. Special cares such as anti-hourglass stresses
and assumed strain method are taken to avoid
spurious zero-energy modes and incompressibility
locking.

3.2 Contact element CFI3D

It is simulated by an interface element based on a
penalty approach and derived from de virtual work



principle  (Habraken and Cescotto [1998]).
Kinetically compatible with the associated solid
element, this element 1is defined by an
isoparametrical approach and its numerical
integration is carried out by Gaussian points. The
originality of the present approach lies in the fact
that the contact conditions (Signorini’s condition and
Coulomb friction law) are expressed at some
integration points, not at nodal points.

3.3 Additive hypo-elastic formulation

As the anisotropic yield locii is defined according
to material principal axes, some local reference
system must follow these material axes during the
large strains and rotations of the sheet. Real material
axes attached to a deforming body are subjected to
distortion, while local axes remain Cartesian. So,
there is no unique definition of a local frame,
however the various possible choices differ only
through a spurious rigid body rotation. In Lagamine
code, the method implemented to follow material
axes is due to Munhoven and details can be found in
Munhoven [1995] or Munhoven and al. [1995].
Working in hypo-elastic formulation, constitutive
equations are not required for a plastic spin. This
choice of hypo-elastic formulation has different
advantages and remains physically sound as long as
the elastic strains are small. A discussion on this
choice can be found in Hoferlin [2001] .

4. APPLICATION

The geometry of the simulated deep-drawing
process is the following one: a 100 mm long punch
with a diameter of 150 mm and a curvature radius of
10 mm, a die with a curvature radius of 10 mm and a
blank holder are the drawing tools. The drawing
ratio is 2.0; the blank holder force is 98.1 kN; the
simulation is performed up to a drawing depth of 80
mm. The blank is a 0.8 mm thick high strength steel
sheet.

As we focus on the texture, the shape of the yield
locus is deduced from the Orientation Distribution
Function (ODF), which has been measured by X-ray
diffraction.

The numerical data for this steel are obtained
from a simple tensile test for the TexIso hardening
behavior: k’=173.59, I'y=0.007827, n’=0.1726. The

parameters for TexMic hardening law are 7%=60
MPa, =20 MPa, S;,~=83.03 MPa, R,,=27.86 MPa,
Cp=2.66, Cs5=4.76, Csp=1.89, C,=100, Cz=9.55,
n,=27.1, n;=1.87, m=0.6, g=3.9. These parameters
are not fully representative of the studied steel as
only %, a, C, were identified thanks to the available
tensile tests. The other parameters are typical ones
for a deep drawing steel (Hoferlin [2001]). The
Young’s modulus is 209880 MPa and the Poisson
ratio is 0.28.

Due to the orthotropy of the problem only one
quarter is modeled (see Figure 1), using for the blank
a three-layer mesh made up of 2256 BLZ3D
elements. The die, punch and blank holder are
modeled by 1085 triangular foundation elements and
the contact between the blank and the tools by 2257
CFI3D contact elements.

Figure 1. Initial configuration.

Figure 2. Final shape of the mesh.



Three simulations were done using the TexIso,
TexMic and ANI3VH (stress space formulation with
an isotropic hardening law, Winters [1996])
constitutive laws. Figure 2 shows the final shape of
the mesh for the simulation with TexIso constitutive
law. The results are compared with experimental
measures. Figure 3 shows the deep-drawing force
with respect to the cup’s depth. It can be seen that
constitutive laws TexIso and ANI3VH, which use
the same isotropic hardening law, provide curves of
identical shape but with a stiffer behavior for
ANI3VH. This difference could be explained by the
supplementary minimization required to calculated
the yield locus or due to the effect of the different
integration schemes used. The shape of the TexMic
curve is the one which agrees the best with the
experimental curve. It appears to be stiffer than
TexIso, in spite of their same formulation in strain
rate space. This difference can only be related to the
hardening behavior which modifies the yield locus
size and location.
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Figure 3. Deep-drawing force.

The plane principal strains E;, E;, and the
thickness strain E3 at 0°, 45° and 90° with respect to
the rolling direction (RD) are analyzed in Figures 4,
5, 6, in which three zones are identified: zone I, zone
IT and zone III according to curvilinear abscises from
the center. Zone 1 is defined for abscises smaller than

80 mm and represents the sheet part under the punch,

zone II from 80 mm to 140 mm consists in the wall
cup and zone III represents the sheet still under the
blank-holder. In zone I (small strain zone) TexMic
results are the closest to the experimental curve.
Strains obtained by these three constitutive models
show the same tendency in the next two zones, but

in zone II TexMic has the best accuracy in most of
the cases. TexIso and ANI3VH fit better in zone III.
Picks observed in transition zones could be related to
numerical perturbation due to a too coarse
discretization. This point has to be investigated.
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Figure 4. Strains at 0° with respect the RD.
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Figure 5. Strains at 45° with respect the RD.
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Earing behavior is depicted in Figure 7, showing
that the closest level is achieved by TexMic, but no
model is able to represent the correct shape.
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Figure 7. Earing behavior.

S. CONCLUSIONS

The behavior of three constitutive models is
presented. The deformation analysis suggests that
TexMic better represents the beginning of the plastic
flow, i.e. small strain zone, but also the punch force
curve at the end of the drawing process. This shows
the interest of a hardening law closer to the
microscopic events of the material. The earing
profile, different from the simulated one, is still not
clearly explained. Simulations with texture evolution
do not bring any answer. Other factors such as the
stiffness of BLZ3D element or contact penalty
approach are currently studied as well as the earing
profiles of another steel.
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