02 International Conference

185

A parallel computing model for the acceleration of a
finite element software

Serge Moto Mpong, Pierre de Montleau, André Godinas, Anne Marie Habraken
Université de Ligge, Département M&S, Chemin des Chevreuils, 1, 4000 Ligge, Belgique
Tel : (32) 4 366 9332
Fax : (32) 4 366 9192

Abstract

This paper presents the parallelization model used
for the non-linear finite element software
LAGAMINE. The proposed model is based on the
use of a coarse grain approach for the
parallelization of the assembly of the stiffness
matrix. For the solver of the generated linear
problem, we used a parallel direct solver of Gauss
type. Finally, we present a discussion of the results
of our approach on an example of deep drawing

1. Introduction

The Finite Element code LAGAMINE is
developed by the MSM department of the
University of Liége since 1982, and has been
adapted to numerous finite elements and
constitutive laws. Its modular architecture has
been efficient to allow improvements towards
applications very far from the initial goal:
rolling simulation, soil simulation. The present
researches on micro-macro modelling increase
the requirement of CPU time. If large size
simulations with 100 000 degrees of freedom
are not presently aimed, even with 5000 DOF,
the CPU time is now a strong limitation
because of the complexity of the constitutive
laws.

Nowadays, parallelization of software is often
divided into two main approaches: the coarse
grain approach and the fine grain approach.
For Finite Element software, the coarse grain
method is usually characterized by the use of
the mesh partitioning. In this case, the mesh is
partitioned in a number of sub-meshes
generalily corresponding o number of
processors on which the computation is to be
done. Then, the same program is executed on
each part of the mesh by one processor. This
approach is the SPMD (Single Program
Multiple Data) one {7]. In the fine grain
approach, there is no partition of the mesh. The
parallel program is made by the parallelization
of instructions issued of the analysis of

with description of the rexture evolution, and on an
example of upsetting of an elastic cube. For the
deep drawing simulation, the computational time
for the assembly of the stiffness matrix is more
important than the time spent by the solver for the
solution of the generated linear problem. Therefore
this example is important and had determined our
strategy of parallelization.

Keywords: parallel computing; finite element;
metal forming simulation.

dependency between the instructions and in the
loops. The efficiency of all these approaches
depends on the organization of the memory
and on the used exchange protocol (MPL,
PVM, or OpenMP) [5]. Our approach is
intermediate between these two main
categories of parallelization. It is characterized
by the parallelization of the assembly of the

stiffness matrix using a coarse grain approach. .

Because of the architecture of the available
parallel computers, which are share memory,
we decided to use OpenMP protocol.

On the following lines, we will summarize the
different modifications of the code and their
effects on CPU time for a deep drawing and an
upsetting of a cube examples.

2. Constitutive equations

2.1. Equilibrium equations

Relation (1) presents the equilibrium equation
in the simple case, when we have neither
volume and nor external forces. Solid metallic
alloys are assumed deformable bodies. Their
governing equations consist in the elasto-
plastic constitutive equations (1-3), defining

the Cauchy stress tensor G, with respect to the
strain rate tensorg, with v as the velocity
field, £ as the strain field, Ko, pi, pz, P%

ps as temperature dependant parameters. The

186

PDPTA 02 IntemationalrConference

Von Mises equivalent stress, strain and strain

rate are identified by ¢, €, €.

Vo=0 (D

o= Ko-(;:N -exp(— p,E)p: \/—3‘(\[3—:5—‘)'ﬁ (2)

g=H{(Vv+(Vvyr) ©)

2.2, Time discrelisation

For the computation of the solution of the non-
linear system of equations, an incremental
method is used. The strategy used is the
subdivision of the load in time steps and its
application step by step. If F is the external
load applied, we apply AF with 0<A<L. On
each step, the constitutive equations are
integrated in function of the strain rate. The
iterations are done on the choice of the
displacement until the convergence of the
Newton-Raphson algorithm used for the
solution of the equation system. Then the load
is increased to AF with A<h<luntil A=l.
The equilibrium is then realised when the
internal nodal loads are equal to the nodal
applied lcads.

2.3. Weak form of the mechanical
equaiions

The equilibrium equations are integrated using
the principle of virtual power. The solution of
the equilibrium equations is equal to the
solution for which the total energy of the
system is minimised. That solution. is also
equal to the solution that verifies the principle
of virtual power.

According to the above-mentioned time
integration scheme, at each time step,

equations (1) to (3) have to be solved for x'™

on the updated geometry QI

Taking into account the previous time
discretisation, the application of the principle
of virtual power method to the above
mentioned momentum equation (1), to which
the external and the volumic loads have been
added, leads to the following weak form:

YVéue &,

[o" o8 av= [frouav+ (o1 8 uds
QH'AI QNAJ — aQH-N -
@

With du the virtual displacement,
o the Cauchy stress vector,
ée virtual strain compatible

with the virtual displacement,
P density,
f external volumic load,
3 external surface load,

Vand S respectively the current
volume and the current surface.

3. Parallelization of the
assembly loop

3.1. Different kinds of parallelism
used in the bibliography for
finite element software

There are many kinds of classification for the
different models of parallelization [5].

In function of the granularity, which
characterises the parallelization finest, we have
two different classes of parallelism: the fine
grain parallelization in which the elementary
unit parallelisable is an instruction and the
coarse grain parallelization in which
instructions are packed into tasks or processes
which are the elementary parallelisable unit.
Models of parallelization and parallel
programming languages usually use one of
those two models.

We can also classify parallel programming
models by the exchange of communication
model between the different tasks or processes.
Then, we have explicit exchange models of
communication and implicit exchange models
of communication. In both cases, the program
is written using a classical programming
language, and processes execute the same
program or parts of the same program. For
programs using an explicit exchange of
communication model, all the variables are of
private type (that means that they are not
shared by the different tasks) and remain in the
cache memory of each process. Data are then
exchanged between processes using an explicit

WPTA 02 International Conference

187

call of particular subroutines. It is the case of
parallelization models using MPI (Message
Passing Instruction) or PVM (Parallel Virtual
Machine). Meanwhile, for programs using an
implicit exchange model, there is no call of
subroutine for exchanging data. Variables can
be private and remain in the cache memory of
each process or shared and are packed in the
heap memory or in a part of the memory
accessible by all the processes.
Communications between processes are then
done implicitly by a direct access to these
memory zones. This is the case for OpenMP
model of parallelization.

For scientific calculus software such as finite
element codes, we usually have two main
approaches of parallelization, in function of the
division or not of the data:

o The first approach is the SPMD
(Single Program Multiple Data), which
can be called division of data method
(usually it is the mesh which is
divided) in nearly equal packs usually
equal to the number of processors of
the parallel machine. The same
program is then executed on each
processor on a part of the data. The
exchange of information between the
processes is then made using either an
explicit exchange model (MPI or
PVM) or an implicit exchange model
(OpenMP). The parallelism is here in
the partition of the data, and the
protocol is used here for the exchange
of data between the processes. This
approach is the one generally used for
finite element software [2]. It requires
few modifications in the original
program, except in the linear system
resolution algorithm. The parallelism
effort is here concentrated on the
partition of the mesh and on the
system resolution algorithms. The
partition of the mesh is done so that
the boundary regions between adjacent
submeshes are regular and have few
nodes, in order to limit the number of
communication at the interfaces [7].
For the solution of the linear system,
there are two different approaches: the
first one is a global approaches, which
consists in the resolution of the global
system either by a distribute direct
algorithm, or by a distribute iterative

algorithm [7]; the second approach,
which s used in domain
decomposition algorithms, consists in
the solution of a restricted part of the
global linear system on each domain
and the solution of a continuity
problem at the interface so that the
solution of restricted problems
converges to the solution of the global
problem [1]{8]. In those two main
approaches, there is the necessity of
explicit or implicit communication
either for matrix/vector operations of
the global system, or for the solution
of the continuity problem at the
interfaces.

e The second method is generally
characterised by the use of parallel
languages. It consists in the use of the
parallelism of the language to execute
simultaneously independent instruction
of the program. The goal here is to
change the sequential order of the
program. It requires a dependency
analysis of the program, in order to
exhibit independent instructions and to
preserve its semantic. In general this
approach of parallelism is a fine grain
method. It can also be done by using
an exchange of communication
protocol such as OpenMP, which
creates tasks at the beginning of a
parallel region. The sequential
program is then divided into tasks. The
communication model is generally
implicit. These tasks can then be
executed in parallel, each on a
processor, if their number is lower or
equal to the number of processors.
This model of parallelism is generally
used on MIMD architecture machine
and on shared memory architecture
parallel machine.

3.2. Choice of a method for the
parallelization

For the parallelization of our software, the
second approach has been chosen. The first
one requires indeed an important effort for the
partitioning of the mesh and for the
parallelization of the direct solver. As our
parallel machines are shared memory
machines, we have decided to use OpenMP
protocol for the communication exchange. The

188

PDPTA ‘02 International Conference

strategy of parallelisation is then to exhibit
independent instructions and to execute them
simultaneously, using OpenMP directives.

3.3. Steps of the parallelization

The first thing done was an analysis of the
computational time on our examples which
require a lot of time. According to that
analysis, the areas of the program which use
most computational time for our complex
applications are the constitution of the
assembly matrix for the deep drawing
simulation with texture evolution and the
resolution of the linear system for other
applications like casting. First, we examined
the assembly loop of the stiffness matrix in
order to parallelise its different iterations.
Thus, we analyse the data flow, which permits
to determine the order of the definition and the
use of a variable. That determines the
dependency between different instructions.
Simultaneously, the analysis of the control
flow had been done, in order to transform
control instruction of the program so that it
alloys its parallelization.

3.3.1. Different types of dependency

There are three different types of
dependencies:

e The “read after write” dependency for
which it is necessary to wait that a
variable is assigned before being used
in another instruction. This induces a
sequentiallity in the program, so the
necessity to execute the first
instruction (the assign) before the
second one (the use).

e The “write after write” dependency
which is the dependency between two
consecutive instructions, which assign
a value to a same variable. The
problem here is the memory
management, because it is not possible
to write simultaneously at the same
place of the memory.

s The “write after read” dependency
which is the dependency between two
instructions when in the first one the
value of the variable is used and in the
second one there is an assign of the
same variable. So it is not possible to
modify the value of this variable while
its previous value is being used.

From the previous dependencies, the “read
after write” dependency is the only one which
induces a sequentiality in the program. For it
the assign instruction must necessary be done
before the use of its value. For the other
dependencies, also called artificial
dependencies, it is possible to reorganise the
program so that those dependencies are
removed.

3.3.2. The OpenMP protocol

It is an industrial standard based on an API
(Application Programmer Interface) for shared
memory or virtually shared memory machines.
It is possible to use it either for coarse grain
paralielism (like domain decomposition) or for
fine grain parallelism (loops or instructions).
Nowadays, this standard is highly implemented
on Fortran90, C and C++ compilers of many
constructors of parallel shared memory
machines. There is only one process which is
created and, parallel zones are executed by
creation of tasks. Parallel zones are either
different iterations of a loop packed to be
executing simultaneously and shared between
the different tasks, or the execution of several
occurrence of a subroutine. Parallel zones can
also be parts of the program executed
simultaneously. The sharing of the work
between the tasks can be done statically by the
programmer, or dynamically by the system.
The program is sequential at the beginning,
and this until the first parallel zone. Then, it
creates tasks, which are executed in parallel.
At the end of parailel zones, only the principal
task pursues its execution. The model of
communication is implicit. The programmer
can do the introduction of OpenMP directives
in the program. They are view as comments if
the compilation is done without the use of
OpenMP flags or by a compilator which does
not support this standard {3]. o7
In a parallel zone, the programmer defines the
attribute of all the variables.

¢ The « SHARED » attribute
The variables having this attribute are shared
between all the tasks. That means that they are
accessible by all the tasks. In Fortran, variables
defined in common blocks or in modulus have
this status by default. Dynamic arrays allocated
outside of parallel zones have also this
attribute by default.

e The « PRIVATE » attribute

PTA ‘02 International Conference

189

Variables having these attributes are copied on
each task memory zone. So, they are different
from a task to another. At the beginning of a
parallel zone, the value of a private variable is
not defined, even if it had been assigned
before. At the end of a parallel zone, the value
of the variable is not transferred to the
following sequential zone. Local variables and
automatic arrays have this attribute by default.
e “FIRSTPRIVATE” and
“LASTPRIVATE” aftributes

The variable must have the private attribute. In
the case of “FISRTPRIVATE” attribute, each
private instant of the variable is initialised by
the value of this variable in the previously
sequential zone. In the case of
“LASTPRIVATE” attribute, only use for
“DO” and “PARALLEL DO” directive, the
last value of the variable is transferred to the
following sequential zone.

3.3.3. Dependency Analysis of the
assembly loop

The assembly loop is a loop over the elements
of the mesh. For each element, the associated
law is called and the constitutive equations are
integrated to compute the internal forces and
the tangent matrix. The parallelization method
is simply the build of a PARALLEL DO loop
in order to share between the available
processors the different iterations of the loop.
The objective of the analysis of dependency is
the determination of the order of definition and
of use of the variables. They are then used for
the solution of the system of dependency
encountered between the instructions. Here, we
will focus on variables with “SHARED”
attribute because there are shared by the
different parallel tasks working on the
iterations of the assembly loop of the stiffness
matrix.

o Solutions of the « read after write »
dependencies

Normally, this type of dependency indicates
sequential instructions in the program. So, we
have been obliged to remove those variables
and to modify the programming of the
software in order to have parallelisable
instructions. It is what we have done for
variables used as counter in the assembly loop
and declared outside this loop. For variables
updated as counter in the assembly loop and
only used after this loop, we use the fact that

the addition is transitive. So there were not
suppressed and, at the end of the loop, these
variables contain exactly the truth result, if the
different parallel instructions are done at once
and the same time. Therefore we use an
OpenMP critical instruction, the “ATOMIC”
directive, to oblige the system to authorize
only one task to update at once that variable.
Thus those instructions are not executed at the
same time by different tasks. For arrays in
which there were components modified in the
loop, we create new variables for those
components and we assign them the private
attribute.
¢ Solutions of the other system of
dependency
For the other systems of dependency, new
variables were created and used, so that the
two instructions could be executed
simultaneously.

4. Solver of the linear system
of equations

For the solution of the linear system of
equations generated, we decided to adapt a

parallel gauss type solver developed at the

Universitat Politénica de Catalufia in Spain.

4.1. Storage of the matrix in the
memory

The stiffness matrix needs an important storage
space in the random access memory. The
control of this memory must be studied for the
optimisation of the computer work, because
the access time to the data depends on the area
of the memory in which they are stored. Two
type of storage exist for direct methods:

e In the first group, there is a reservation
of the memory space necessary for the
storage of the matrix and for the
additional resolution term of the
factorisation. The skyline method in
this approach is usually used. The
former resolution method of our
software uses this type of storage.

e In the second group of methods, a
memory zone containing only non zero
elements of the matrix is defined. This
approach is generally called Morse
storage. Thus, the necessary storage
space is less important, but the
addressee of the elements is more
complicated (indirect addressee). The

190

PDPTA ‘02 International Conference

factorisation phase needs the
reservation of new memory zone. One
of the methods used nowadays is the
symbolic factorisation, which
determines the non-zero element of the
profile of the matrix. This method has
been implemented in our software.

For the iterative methods, the problem of data
storage is less important, as the operations are
easily parallelised. The terms of the stiffness
matrix can be lead in the memory in assembly
form by Morse storage like in direct method,
or conserved element by element. In this last
case, there is a more important use of memory,
but there is less access conflict when several
processes are working together, each of them
using a part of the finite elements.

4.2. Description of our parallel
solver

Our new parallel solver is a parallel gauss type
solver which has been developed in the
CEPBA department of the Universitat
Politénica de Catalufia, and adapted to the
solution of our problem. This parallel direct
solver can be describe by the following points:

¢ the Morse storage is used, so that only
non zero elements are stored. Thus, the
necessary storage space is reduced;

e A METIS software is used for the
renumbering of the equations. That
renumbering optimises as less as
possible the number of operations that
will be performed during the
factorisation [6];

¢ The symbolic factorisation is
performed. This operation gives the
structure of the L and U matrix that
will be obtained during the
factorisation and permit to foresee
their storage.

These three steps are performed only once at
the beginning of the simulation.

5. Applications

5.1. Deep drawing with evolution of
the structure

We present here the results obtained for the
deep drawing simulation example, realised as
part of the present PhD thesis of Laurent

Duchéne in our department. The material is
steel with a small elasticity limit. The mesh has
4020 finite elements nodes and 1504 volumic
elements, for a total of 7000 degrees of
freedom. The simulation is a three dimension
mechanic computation, which consists in the
deformation of the initial steel part by a punch
until the final shape. The material is
characterised by the elasto-plastic Minty-law
describe in [4]. The computation, after 10 days
on only one processor was not finish on a
Silicon Graphix SG3800 machine, which has
64 processors. On 8 processors of this same
machine, it has required 2 days of computation
with a speed-up of six. The efficiency was
about 93% on two processors, 84% on four
processors and 73% on eight processors, as
shown on Tablel.

Tablel: Results obtained for the deep
drawing case on a SG3800 machine

Number of
processors | ! 2 4 8
used
Speed-up

1 1.86 3.36 591
Efficiency
(%) 100 |93 84 73

I

|
Figurel: Experimental set-up of the deep

drawing

5.2. Upsetting of an elastic cube

The second example is an upsetting of a cube.
The mesh of this cube has 4096 finite elements
nodes and 3375 volumic elements, for a total
of 11500 degrees of freedom. The behaviour of
the material is characterised by a linear elastic
law. The computation has been done on one
processor, two processors, 4 processors and

PDP 4 ‘02 International Conference

191

eight processors of a Silicon Graphix SG3300
computer, which has 64 processors. The
efficiency was about 93% on 2 processors,
85% on 4 processors and 75% on 8 processors,
as shown on Table2.

Table2: Results obtained for the upsetting of
the elastic cube

Number of
processors | 1 2 4 8
used
Speed-up

1 1.82 34 6
Efficiency
(%) 100 91 85 75

6. Conclusion

We have presented a model of parallelization
of a finite element software simple to realise.
Our approach was first of all the identification
of areas of the software that need a lot of
computation time for our big examples. Then,
those zones have been parallelised. These
zones were the assembly loop of the stiffness
matrix and solution of the generated linear
system. For the assembly loop of the stiffness
matrix, we analysed and we eliminated the
dependencies between the different iterations
of the assembly loop. As our parallel computer
is shared memory, we used OpenMP protocol.
For the solution of the linear system generated,
we adapted a parallel direct solver of Gauss
type developed at the Universitat Politénica de
Catalufia in Spain. For the moment, we have
result in accordance with the literature, and our
simulations can be done within acceptable
CPU times.

7. References

[1] J. Bramble and J.-E. Pasciak, A domain
decomposition technique for stokes problems,
App. Num. Math., pp. 251-261 (1990)

(21 G.-F. Carey, Parallelism in finite
element modelling, APNUM 2, pp. 281-288
(1996)

[31 1. Chergui, P. F. Lavallée, J.-P. Proux,
C. Roult, OpenMP parallélisation multitdche
pour machine & mémoire partagée, IDRIS,
Janvier 2001.

[4] L. Duchéne, A. M. Habraken and A.
Godinas, Influence of steel sheet anisotropy
during deep-drawing process, The 4"
international ESAFORM conference on
Material Forming, pp 461-464, April 23-25
(2001)

{51 C. Farhat, Which parallel finite element
algorithm for which architecture and which
problem?, Eng. Comput, 7:186-195
(September 1990)

[6] George Karypis and Vipin Kumar, A
Software Package for the Partitioning
Unstructured Graphs, Partitioning Meshes,
and Computing Fill-Reducing orderings of
sparse Matrices, Department of computer
science, University of Minnesota, September
20", 1998

[71 S. Marie, Un modeéle de parallélisation
SPMD pour la simulation numérique de
procédé de mise en forme des matériaux,
Theése de doctorat de I’Ecole des Mines de
Paris (1997)

[8] F.-X. Roux, Calculateurs massivement
paralléles MIMD et méthodes de résoluiton
par sous-domaines, Onéra, division calcul
parallgle.

8. Acknowiedgement

The authors would like to thank The Belgium
Ministére de I'Enseignement Supérieur et de la
Recherche, the Belgium Fonds National de
Recherche Scientifique and The Région
Wallone for their financial support. They are
also deeply indebted to the CEPBA
Department of the Universitat Politénica de
Catalufia for their help in the discussion for the
amelioration of the software and to Professor
Serge Cescoto of the University of Liége who
permits this collaboration.

