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In financial, medical, and engineering sciences, as well as
in artificial intelligence, variants (or generalizations) of the
following discrete-time optimal control problem arise quite
frequently: a system, characterized by its state-transition
function xt+1 = f (xt ,ut), xt ∈ X , ut ∈ U, f : X ×U → X ,
should be controlled by using a policy ut = h(t,xt), h :
{0, . . . ,T − 1}×X →U so as to maximize a cumulated re-
ward ∑

T−1
t=0 ρ(xt ,ut), ρ : X ×U → R over a finite horizon

T ∈ N.

Different approaches have been proposed for solving this
class of problem, such as dynamic programming [1] and
model predictive control [2], reinforcement learning ap-
proaches [3, 4, 5] or approximate dynamic programming
approaches [6] . Whatever the approach used to derive a
control policy for a given problem, one major question that
remains open today is to ascertain the actual performance of
the derived control policy [7] when applied to the real sys-
tem behind the model or the dataset (or the finger). Indeed,
for many applications, even if it is perhaps not paramount
to have a policy h which is very close to the optimal one, it
is however crucial to be able to guarantee that the consid-
ered policy h leads for some initial states x0 to high-enough
cumulated rewards on the real system that is considered.

Motivated by these considerations, we have focused on the
evaluation of control policies on the sole basis of the ac-
tual behaviour of the concerned real system. This has lead
us to develop an approach for computing a lower bound on
the sum of rewards generated by a policy h based on the
sole basis of a sample of one-step system transitions F =
{(xl ,ul ,rl ,yl)}|F |l=1. Each one-step system transition provides
the knowledge of a sample of information (x,u,r,y), named
four-tuple, where y is the state reached after taking action
u in state x and r the instantaneous reward associated with
the transition. The assumptions under which the approach
works are similar to those made usually in the dynamic pro-
gramming literature when studying problems with infinite
state-action spaces: the state and action spaces X and U are
normed and the functions f , ρ , and h are Lipschitz continu-
ous.

The approach, which is fully detailed in [8], works by iden-
tifying in F a sequence of T four-tuples [(xl0 ,ul0 ,rl0 ,yl0),
(xl1 ,ul1 ,rl1 ,yl1), . . . ,(xlT−1 ,ulT−1 ,rlT−1 ,ylT−1)] (lt ∈
{1, . . . , |F |}), which maximizes a specific numerical
criterion. This criterion is made of the sum of the T rewards

corresponding to these four-tuples (∑T−1
t=0 rlt ) and T negative

terms. The negative term corresponding to the four-tuple
(xlt ,ult ,rlt ,ylt ) of the sequence represents an upper bound
variation of the cumulated rewards over the remaining time
steps that can occur by simulating the system from a state xlt

rather than ylt−1 (with yl−1 = x0) and by using at time t the
action ult rather than h(t,ylt−1). Once this best sequence of
tuples has been identified - something that can be achieved
by using an algorithm whose complexity is linear with
respect to the optimization horizon T and quadratic with
respect to the size |F | of the sample of four-tuples - a
lower bound on the sum of rewards can be computed in a
straightforward way. Furthermore, it can be shown that this
lower bound converges at least linearly towards the true
value of the return with the density of the sample (measured
by the maximal distance of any state-action pair to this
sample).
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