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ABSTRACT

This article describes an energy based, two variables, isotropic damage model merged with Bodner’s elasto-
visco-plastic model and implemented in a non-linear finite element code. The procedure to identify the
parameters of the model and its experimental validation are presented and applied to an annealed aluminum.

1. INTRODUCTION

The improvement of numerical simulations of industrial
forming processes requires reliable constitutive models
and rupture criteria. There are two common ways to
predict rupture in the field of continuum mechanics [1]:
classical behavior laws with a posteriori rupture criteria
or continuum damage coupled constitutive laws. The
first approach, easily implemented in any numerical
code, is less general as it is difficult to find a single
rupture criterion effective for all types of ruptures. This
explains the tremendous amount of research work in
continuum damage theory. Nowadays, elasto-plastic and
elasto-visco-plastic continuum theories for isotropic
damageable materials [2-5] are available and new
extensions cover anisotropic cases [6,7].

Bodner & Partom [8] have proposed a unified theory
for elasto-visco-plastic work hardening materials which
has been widely used because of its ability to represent
various material properties and to describe material
response for steady or varying strain rate over a wide
range of conditions [9]. Different extensions [10] have
already been proposed to model kinematic hardening
and damage evolution using one scalar damage variable.

In the present paper, Bodner’s model is coupled with
damage using two scalar variables in order to represent
damage effects on both Young’s modulus and Poisson’s
ratio. The true and effective strains and stresses are
derived from elastic energy equivalence and respect the
conservation of plastic dissipation rate. So, elastic,
plastic and viscous material behaviors are affected by
damage. Since, in Bodner’s model, no yield surface is
adopted, this feature is kept here: damage is not related

to any threshold criterion but described by a continuous
damage evolution law which takes into account a
different damage behavior in tensile and compression
states.

2. THE MODEL THEORY

2.1 Bodner’s constitutive law

The general formulation of Bodner’s model [8] is
based on the additive decomposition of the total strain
rate £ into elastic £° and inelastic £” components
which are both non-zero for all loading and unloading
conditions :

A %

The elastic behavior follows Hooke’s law, & is the
deviatoric Cauchy stress and 0, the mean stress. The
superscript ~ identifies a deviatoric tensor, the

superscript V' the Jaumann rate and the subscript ,, the
mean value of a tensor. G and Y are respectively the
shear and bulk moduli, computed from Young’s
modulus E and Poisson’s ratio v.
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where Z is a total scalar hardening variable, composed
of an isotropic part K and a directional part Zp :

Z=K+7, 4
The directional component Zp is computed by the

projection of [, a directional hardening symmetric
tensor, on the direction u of the stress tensor :

Z,=p:u  withu=g/\o:0 5)

Both K and Zp are assumed to occur under the action
of two competitive mechanisms strain induced
hardening (first terms of equations 6 below) and

temperature induced softening or recovery, represented
by the second terms of equations 6:
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where W7 is the rate of plastic work. The initial value
of K at zero inelastic strain is K; K| is its maximum

value; K ,is its minimum (or stable) value at a given

temperature at which creep is occurring. The initial and
minimum (or stable) values of B are zero, which

corresponds to an initially isotropic state. 2 is the

antisymmetric part of the velocity gradient tensor.
Bodner’s model is totally defined by 14 parameters :

E,v,D,,K,.K,,K,,D,,m,A,1,,m,,A,,1r,,n

At room temperature, the terms related to the thermal
recovery can be omitted and the number of parameters is
reduced to 10. These are the material parameters to be
determined.

2.2. Damage theory

Two scalar damage variables, called the deviatoric
componentd and the volumetric component & , are used
to represent the average material degradation due to
microscopic defects {11]. As usual, true and effective
stresses are related through the damage variables by:

__¢ 5, - -
(1-d) " (1-6)

From the energy equivalence proposed by [12], the

following relations are deduced for the elastic strains:

E=8(1-d) En=£€(1-5) @®)

1]

Concerning plasticity, the plastic work rate WP s
conserved, this yields :

¢'=¢"(1-d) ©
The damage evolution law comes from the one proposed

by Lemaitre [13]. It has been adapted to a multiaxial
state and a two damage variable model :

jo_ 1 <F(g)-0,>)
T x1-d)|  A(l-d)

with <x> = x ifx > Oand <x> = 0ifx 0.0, A, 1, S

. (10)

.

are material constants. F(0) is a triaxiality function

defined below which separates tensile, compression and
shear stress states and introduces one new parameter «:

F(o)=(1-a)j3J, +3c0, (1

One should notice that the deviatoric damage d
does not dependent on the shear component J only, as
the triaxiality function involves the mean stress G;,.

The evolution of the volumetric damage variable &
is directly related to the evolution of d and assumes no
volumetric damage increase in compression state :
S=rd ifo,>0; §=0ifo, <0 (12)

It has been checked experimentally that7 can be
assumed constant in tensile state for common materials
[14]. So, finally, damage is characterized by 6
O,,A,r,5,0,T This model allows to
recover the well-known Kachanov creep law for
=1, s=0,=0.

parameters :

2.3. Summary of the proposed model

According to damage theory, effective stresses and
strains follow the classical behavior laws. So

replacing O by E and € byé in Bodner's relations (1)

to (6) and then using relations (7) to (9) between true

and effective tensors, one can get the final equations :
v
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1t is assumed that the Z hardening variable takes equal
values in the actual damaged state and in the equivalent
virgin state since its evolution is mainly controlled by
the rate of plastic work which is the same in both states.



3.CALIBRATION METHOD

3.1 General principle

STEP1 STEP2
g o ) B g ) D
Quasi-static tensile Compression tests at
and compression tests  constant strain rates D
Current elastic moduli Original stress strain curves T
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damage evolution ><L
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STEP3

Optimization of the total parameters set to fit the original o - ¢
curves in tensile and compression for different strain rates

Figure. | Summary of parameter identification procedure for damage Bodner’s model

The parameter identification procedure is
summarized by figure 1. The parameters of the damage
law and of Bodner’s model (§2.1) applied to the
effective behavior in the equivalent virgin state are first
computed separately thanks to different experimental
tests. Then the final set of parameters is obtained by an
optimization process that modifies the less accurate
parameters to reduce the difference between simulated
and experimental values for uniaxial tests.

Each step of this parameter identification procedure
is now described for the chosen annealed aluminum.
This material is only available under the form of tubes
of limited thickness.

3.2. Identification of damage parameters

3.2.1. Tensile tests

Cyclic loading-unloading quasi-static tensile tests
performed on the whole tube allow to measure the

evolution of _E-and 5 Figures 2a,b show the

experimental results and two representative analytical
curves which neglect or not the phenomena occurring at
the beginning of plasticity. Both damage variables are
directly deduced from these measures :

d=1—‘/—G—— 6=1—"—Z— (16)
GO ZO

where Y is the bulk modulus computed by :

E.G
3(3G-FE)

Figures 3a and b show the experimental damage
evolutions as well as reduced curves used further as
explained in section 3.2.3.

According to the classical macroscopic damage
theory [4], extrapolated value of Young’s and shear
moduli E((,“ ,Gl(]“ should be used. This gives damage

values growing in a monotonic way from zero as
represented by model 1 curves on figures 3a and b. The

X = a7

. . (2 2
difference between the elastic moduli E,(, ! ,G(() " and
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Figure 2.2 Young’s modulus from tensile tests.
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Figure 3.a Deviatoric damage from tensile tests.

. 1 1),
their extrapolated value EL ),GL ) is assumed to be

related to plasticity entrance and not to damage [15].

However [2,16], this fact could also be linked to a
nucleation void rate increasing the void volume fraction
very quickly at the plasticity entrance and followed by a
smoother void growth rate
In the present aluminum 2024, optic microscopy has
demonstrated the presence of precipitates which exhibit
a matrix decohesion after plasticity entrance. Such a
phenomenon is not seldom. For instance in Pardoen’s
thesis [17] dedicated to copper, an initial void volume
fraction is assumed to take into account the precipitate
decohesion appearing under microscopic strains.

Here, the two assumptions are considered: damage is

. 1 1 2 2 .
computed according to E‘() ),Gf, ) or E:, ),Gf, ) This

yields to check two models : Model 1 where damage
evolution is defined according to. (10) and (12) and
Model 2 where damage follows a quick linear increase
at plasticity entrance and, afterwards is modeled by. (10)
and (12).
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Figure 2.b Shear modulus from tensile tests.
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Figure 3.b Volumetric damage from tensile tests.

The constant damage ratio 7 =0 /d assumption is
reasonably checked . Its variation is in the range [3.24,
4.12] for Model 1 and [1.37, 2.30] for Model 2.

3.2.2 Compression tests

Cyclic loading-unloading tests were performed on
small cylinders (diameter 7 mm, height 7 mm) and the
evolution of Young’s modulus is shown on figure 4.a

To reach the damage parameters in compression
thanks to relations (16) and (17), measurements of the
effective shear modulus should be available. Practical
experimental problems prevent us to accurately measure
this modulus. Adding the assumption of no volumetric
damage in compression (equation 12) yields the
following relation :

d=1-(1-D) £, -
3G, -3G,(1-D)} +E,(1-D)

with D=1- £ (18)
Eo
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Figure 4.a Young’s modulus from compression tests.

So, the experimental evolution of deviatoric damage
(figure 4.b) is deduced from figure 4a and relation (18).

3.2.3 Identification of damage parameters

Let 0 be the true value of the stress in uniaxial
tests. The triaxiality function (11) is straightforward :
F(g)=(1-2a)'c (19)
with 6=0 in tension and 1 in compression.

The integration of the damage evolution law defined
by (10) results in the following relation for model 1 :

S+2)(1-2a)%* ety
d=1-a-% )2(AS ) j odel )5

(20)
if, from the beginning, we assume that there is no effect
of strain rate on damage evolution (r=1) and no
threshold value (op=0). These additional assumptions
are related to the experimental damage observations
(figures 3a and 4b) and to the low viscosity effect
observed in section 3.3.2 for this aluminum.

For model 2, the principle is identical except that the
damage evolution law is first linear until damage has
reached a transition value.

The problem is now reduced to a classical inverse
method: knowing relation (20) and experimental curves
(figures 3a and 4b), let us find the best set of parameters
(S, ¢, A) that minimizes the differences between model
and experiments. In fact for tensile state, the reduced
values (figure 3a) and not the experimental ones have
been used as a target value. This is justified by the fact
that the plastic strain reached during tensile tests is much
smaller than in compression. Furthermore, the range
covered by tensile tests (figure 3a) corresponds to the
region of maximum scatter of the compression results
(figure 4a). This choice allows to reach an effective
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Figure 4.b Deviatoric damage from compression tests.

reference curve O .Ee¢ compatible with both tensile

and compression experimental curves
Table 1 summarizes the final damage parameters
provided by the inverse method.

Model 1 Model 2
S 2,006 2,5274
A (Mpa) 256.74 250
op (Mpa) 0 0
r 1 1
o 0.216 0.2136
d, (model 2) 0 0,09
£,,; (model 2) 0 0,0029

Table 1 Parameters for damage models 1 and 2

3.3. Identification of Bodner’s parameters

3.3.1.Compressions at various strain rates

Compression tests on cylindrical samples have been
performed for various constant strain rates at room
temperature. For a strain rate of 20 s, a temperature
increase of = 80°C can be reached during a compression
test up to 70% strain. The temperature dependence of
the material behavior has been checked by quasi-static
uniaxial compression tests at room temperature (16,5°C)
and at 100°C. Using these results, a quasi-adiabatic
assumption (for tests performed at £ = 10 s?Tand 20s™)
and the damage evolution law (Model 1) defined in the
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Figure 6a. Compression at different strain rates.
Experimental results.

preceding sections, the effective stress strain curves
(figure 6b) can be deduced from the experiments (figure
6a). It is seen that the viscous effect on this material is
limited for the considered strain rates.

3.3.2 Identification of Bodner’s parameters

The procedure applied to identify Bodner’s
parameters comes from [18]. Bodner’s law for a uniaxial

test is expressed the by following relation :
~1/2n

9 -\2m 2D,0

2 ) “

where &7 is constant for the selected tests. As D,, is
chosen by the model user, the constant f is easily
computed for each experiment once n is known. At
room temperature, thermal softening effect is negligible.
So, the isotropic and directional hardening laws reduce
to their first term in (6). For uniaxial tests, one gets:

K=m(K,~K)W? with K(0)=K, (22)
Zy=my(D,—Z,)W?  with D0)=0  (23)
Z=K+2Z, (24)

The derivative of the axial stress with respect to
plastic work is then used to find m; and m, .From (21) to

(24) one gets:
do
y(o)= W7 = f(m(K,—K)+my(D,~Zp))

(25)
Theoretically, this function should allow to define two
linear parts represented on figure 7, which also defines
the saturation stress g, and the coefficient a.
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Figure 6b. Compression at different strain rates.
Effective stress strain curves.

for small plastic strains, isotropic hardening is equal
to K, while directional hardening is increasing :

K=K, ZD=Z——K0=%—K0 26)

for large plastic strains, directional hardening has
reached its saturation level D, while isotropic
hardening is increasing :

Z, =D, K:Z—D,=%—D, @)

Y ﬁl
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Figure 7. Function ¥ o) for an ideal theoretical case.

However, the function ¥ issued from the effective
stress strain curves (figure 6b) is quite far from this
theoretical shape, which leaves quite a large range to
chose m; and m,.

The value of the saturation stress ¢; can be used to
find the strain rate sensitivity coefficient n. Combining
relation (21) and the definition of o; (figure 7), gives :

1 2D,
Ino, ='§;l"(21"4§ép )+In(K,+D;) (28



Again, the tests do not yield to co-linear points, which
leaves some freedom to define the value of n. The
hardening values are extracted from the stress strain
curves, relation (21) and from the value of £

= fK,; D, =%—K0; K, =‘—’fL—D1 29)

where o, is the yield stress, 0y the stress at saturation of
directional hardening and g, the stress saturation value.

The preceding procedure helps to define the range of
the different parameters. The final set of parameters is
then produced by optimization

3.4 Set of parameters

Damage Model 1 Damage Model 2
Parameter Values Value set
E (Mpa) 72250 65660
v 0,31 0.31
D, (™" 10° 10°
K, Mpa) 106.584 99.506
K; (Mpa) 341.744 358.661
K> (Mpa) 106.584 99.506
D; (Mpa) 231.445 239.131
my 0.091 0.0125
ny 0.33 043
n 5.5126 6.8524

Table 2. Bodner’s parameters to recover the effective
stress strain curves (Models 1 and 2)

At this level, tables 1 and 2 define the whole set of
parameters set for Models 1 and 2. One can check that
simulated curves are close to the experimental ones
(figures 8a,b). The RR’ line defines the experimental
rupture in tensile state.
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Figure 8.a. Stress-strain curves.

4. VALIDATION

4.1. Introduction

In this section, experiments and simulations are
performed in order to check the ability of the model to
predict fracture initiation and development as well as the
global response of the tested structure. To achieve this,
the damage evolution rule should be accurate enough to
follow the different steps of void nucleation, growth and
coalescence and other mechanisms of a ductile fracture.
As the model is macroscopic and not dedicated only to
one rupture type, one cannot expect perfect agreement
with the experiments but a general information should
be given by the simulations.

Since damage coupled constitutive models are
softening ones, strain localization appears, governing
equations lose their ellipticity and a pathological mesh
dependency of the solution is pointed out for classical
damage elasto-plastic laws.

Various solutions have been proposed to overcome
this difficulty : non local approach [19], Cosserat theory
[20] viscous regularization [21], gradient plasticity
[22]... In the present research, although the material
viscosity is low, it seems to be sufficient to prevent
mesh dependence. This is examined in section 4.2.

Another key point is the rupture criterion to detect
fracture initiation and development. The experiments
were filmed with a classical camera which allows to
roughly detect the macrocrack appearance and its
evolution. Comparisons of the simulation results and the
experiments show that damage is correctly localized as
well as its propagation. The analysis of the results
demonstrates that a simple deviatoric damage threshold
value is not very accurate to detect rupture but can be
used. Finally, the experimental fracture always happens
simultaneously with a strong drop in the global force-
displacement or force-time curve.
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2 tensile FEM (model 1)
—3 compression experiment (model 1)
4, compression FEM (model 1)
03+ ——5 tensile experiment (model 2)
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5 R’ 3
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Figure 8.b. Deviatoric damage versus strain.



In our simulations, the damage variables d and O
are not numerically limited, they increase according to
their evolution rule up to one. This means that even
after micro-crack initiation, which is not accurately
defined with this macroscopic model, the element
stiffness and stresses are still non zero but strongly
reduced.

For a localized zone with very high damage or a
larger zone with medium damage, the stiffness decrease
yields to an effective drop in the global force response.
This could represent numerically well the final fracture.
However in some cases, convergence problems appear
and prevent to go on with the simulation until a
significant drop of the curve is noticeable. This
generally happens when the maximum of the curve is
already passed over and some material points have
already reached high damage value. So, one can predict
that global rupture will happen soon but the computation
does not go on until this point. As checked for the notch
test, the final global force displacement curve decrease
is strongly mesh dependent, so the model is not able to
accurately detect the final fracture.

Finally, this validation part also allows a comparison
of the constitutive law efficiency according to the
chosen damage evolution model (Models 1 or 2, see
section II1.2.1 of Part 1).

All the simulations are performed with the nonlinear
finite element code LAGAMINE developed in the MSM
Department. The 2D and 3D finite elements are of
mixed type {23,24]

4.2.. Mesh dependence

The geometrical details of the axisymmetric test
specimen are given on figure 9. The test is driven by the
displacement of one extremity at the constant velocity of
0,005 mm/s while the elongation of the middle part is
measured between points AA’.

Six different meshes have been used to check the
stability of the simulation results. They differ by the
mesh density at the notch level. Figure 10 shows the
finest and the coarsest meshes

These meshes are characterized by the ratio b
between the diagonal of the smallest element and the
notch radius. It ranges from b=1% to b=10.4%. The
simulation results (using Model 1) are summarized on
figures 11 and 12.

From figure 11, it is clearly seen that the mesh
dependence only appears after necking.

Figure 12 shows a small variation of deviatoric
damage with the mesh except for the center point and
the coarsest mesh.

44
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Figure 9. Sample description — Notch test

Figure 10. Finest and coarsest meshes for notch test
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However, if some smoothing procedure is used to
represent the map of deviatoric damage, one will find
that the level and the size of the localized damage zone
is quite identical for each mesh, even the coarsest one.

Since this notch test is the only validation test for
which necking appears, it can be assumed that mesh
dependency will not significantly affect the validation
procedure.

*1,0B-02 43

4.3. The notch test.

The tensile test has a large notch radius (figure 9)
which means that damage is maximum at the center of
the neck, leading to a well-known cup-cone fracture
[25]. For this test, the stress field is characterized by a
very high triaxiality index: J, / o, = 1.4 instead of
0.57 for a uniaxial tensile test.

The simulation results considered hereafter were

obtained with a fine mesh (b=2.43%). Figures 13a,b 0
show maps of the triaxiality index, and of the deviatoric
damage obtained with Model 1 at the moment identified
as the “experimental rupture” (line RR’ in figure 11).
Model 2 gives the same distribution for these variables;
a difference exists only on their values. For this reason,
we will not show such figures for model 2, neither for
this example nor for the following ones.

Figure 13.a.Triaxiality index at the moment of
experimental rupture

153

4.4. Tensile test on a perforated specimen

The sample geometry is shown on figure 14. It is cut Figure 13.b.Deviatoric damage at the moment of
from the tube wall. A gauge length AA’ of 10 mm is experimental rupture
used for regulation: the end displacements are controlled
so that a relative constant velocity of 0.01 mm/sec
between A and A’ is maintained. The specimen is

discretized by 8-node 3D mixed finite elements. The 2

118

| |
. : I
ratio b between the diagonal of the smallest element and —_—
the radius of the hole is 9%. The ratio ¢ between the N o
maximal side and the minimal side of the smallest <+
element is 2.3. » U -
The experimental and computed force-displacement A -
curves are given on figure 15.a. Generally speaking, <« e ™~

Model 2 is closer to the first test in which fracture takes
place earlier, while Model 1 is closer to the second test
in which fracture happens later. The calculated force—
time curves capture very well the drop of the
experimental curve both for Models 1 and 2. But for the 2
force-displacement curves, only Model 2 follows this
sudden drop while Model 1 shows only a little decrease
of the force. This is due to a quick elongation developed

at the moment of fracture. Figure 14. Tensile test on a perforated specimen:

geometry
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Figure 15.a. Tensile test of perforated specimen
Tensile force versus relative displacement of base AA’)

Figure 15.b shows the distribution of deviatoric
damage for Model 1 at the moment of rupture (RR’).
The maximum deviatoric damage, d,,,, reaches 0.15 and
all values of d greater then 0.14 are located within 1.2
mm from the hole root.

4.4. Bending test

The third example is a three points bending test on
the notched whole tube is loaded (figure. 16).

The tube is discretized in 8-node 3D mixed finite
elements. The b ratio is about 12% and the ¢ ratio is 9.5
for a first mesh with one layer of elements through the
thickness. This relatively high c ratio leads to poorly
shaped elements near the notch root. So, a second mesh
with two layers of elements through the tube thickness
was used. Its ¢ ratio is 4.75.

L=741

L/2 F

5

2
5
1

b — =

[
Figure 16. Three point bending test: geometry

The experimental and computed force-displacement
curves are given on figure 17. From the experiments, it
has been checked that local fracture appears earlier than
the final rupture due to the high strength of the tube
section. This fact explains why the experimental local
rupture indicated by RR’ seems far away from the actual

10

Figure 15.b. Tensile test of perforated specimen
Deviatoric damage at the moment of rupture RR’
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0 5 R 10 15

Figure 17. . Three point bending test.
Force displacement curves.

fracture of the structure.

From the distribution of deviatoric damage (not
shown for brevity) obtained with the second mesh, one
can realize that damage is highly concentrated and
cannot be represented with a coarse mesh. To simulate
the high damage gradient, the b and c ratios should be
even smaller than the smallest ones (b=12%, c=4.75). A
strong damage variation between the internal and
external layers proves the necessity of a very low c ratio.

4.4. Shear test on perforated tube

The shear dominated test is shown on figure 18. For
simulating this test, a coarse (b=50%, ¢=2.5) and a fine
(b=15%, ¢=4.1) meshes are used. As could be expected,
the first mesh gives poor results with a lot of strain or
damage discontinuities. The second one is reasonable.
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Figure 18a: Shear test: geometry and loading (side view)

Figure 19.a shows force-displacement curves. The
drop of the simulated curves occurs later than in the
experiments except with Model 2, mesh 2. Figure 19.b
shows the deviatoric damage d at experimental rupture
(line RR’, figure 11.b) for mesh 2. It can be seen that the
global simulation results (force-displacement curve) are
not affected by the discretization, except for the curve
drop. With both meshes, both damage models predict
the maximum deviatoric damage and the maximum
equivalent strain at the location of the experimental
fracture (internal face, above the notch). No matter the
chosen damage model, the finer mesh simulates more
accurately the damage or strain gradients: higher
maxima are reached and they are more localized. The
distribution of shear stress has a maximum above the
hole; however local hydrostatic stress concentration
induces a strong gradient of the triaxiality factor.
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——2: model 1, mesh2 ;
/ —3:model2,mash 1 ™\
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20000 -+ 6: measured clirve 2
; ----6; measured clirve 3
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Figure 19.a. Shear test: force displacement curves.
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Figure 18b: Shear test: geometry and loading (top view)

5. CONCLUSION

An extension of Bodner’s model to include damage
has been proposed. Two damage evolution models have
been considered. They differ by the way the initial drop
of Young’s modulus for small plastic strain is taken into
account The calibration procedure is well developed
and, despite some experimental inaccuracies and
difficulties due to the fact that the material tested was
only available under the form of tubes, it has
successfully been applied on the considered aluminum.

The model and the calibrated material parameters
allow to represent the material behavior from a
macroscopic point of view. Both proposed damage
evolutions have been checked for various loading states
and, globally speaking, they efficiently predict rupture.
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Figure 19.b. Shear test: deviatoric damage at the
moment of rupture RR’
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