Performances of low-level audio classifiers for
large-scale music similarity

Julien Osmalskyj, Marc Van Droogenbroeck, Jean-Jacques Embrechts
INTELSIG Laboratory, Departement EECS
University of Liege, Belgium
{josmalsky, m.vandroogenbroeck, jjembrechts}@ulg.ac.be

Abstract—This paper proposes a survey of the performances
of binary classifiers based on low-level audio features, for music
similarity in large-scale databases. Various low-level descriptors
are used individually and then combined using several fusion
schemes in a content-based audio retrieval system. We show the
performances of the classifiers in terms of pruning and loss and
we demonstrate that some combination schemes achieve a better
performance at a minimum computational cost.

I. INTRODUCTION

Recent years have seen an increased interest in music and
audio similarity in the Music Information Retrieval (MIR)
community [1], [2], [3]. One example application is an audio
matching system, whose goal is to retrieve similar items to
queries, based on audio data only, and not on textual infor-
mation such as tags. Such search systems are called Content-
Based Retrieval Systems (CBRS) and can be implemented in
two steps. The first one is a pruning step, whose goal is,
given an audio query, to eliminate as many unrelated songs
as possible without losing correct matches. The second step is
a matching operation, on the remaining subset, which can be
performed by an expert, human or computer based. This paper
focuses on the first step. When dealing with large databases
(typically more than 1 million items), the pruning stage
should be efficient. Therefore, the features used for similarity
computation should not be computationally expensive so that
the retrieval cost is minimal [4]. However, most of the existing
retrieval systems are based on relatively complex features such
as chroma features [2] or Mel-frequency cepstral coefficients
(MFCCs) [5]. In this paper, we investigate the performance of
low-level features individually, as well as their combination,
in order to determine if they can be useful in a retrieval
system. We make use of weak classifiers called rejectors [3].
A rejector is a classifier, based on an audio feature, which
aims at deciding whether two songs are considered similar
(positive class C';.) or dissimilar (negative class C'_). Rejectors
can be used for the pruning step of a CBRS. To evaluate
the features, we use the Million Song Dataset (MSD) [6]
coupled with the Second Hand Song Dataset (SHSD) which is
a subset of the MSD composed of similar songs. As low-level
features are not available by default in the MSD, we relied
on the work of Schindler et al. [7], in which many other
features have been computed on the Million Song Dataset,
including low-level features (details are given in Section II).
We denote the dataset provided in [7] by IFS dataset (IFSD).

Combining the MSD, the SHSD and the IFSD therefore
provides us a large-scale dataset suitable for similarity mea-
sures research. We show in this paper the performance of the
features used individually and their combination using various
fusion schemes. Combination methods from the literature are
used. In particular, we implement boolean combinations using
the union, intersection, and majority vote methods [8], [9],
[10]. Techniques based on probabilities are also presented
and investigated. We implemented a combination scheme
based on the probabilistic product and the sum [11]. Finally,
a composite classifier was learned using machine learning
techniques, specifically the ExtraTrees algorithm [12]. We
show that combination of low-level audio features does not
necessarily improve the performance of a retrieval system.
However, we show that some combining schemes bring better
results than using individual features.

The remainder of this paper is organized as follows. Sec-
tion II introduces the used features as well as the dataset
used for evaluation. Section III describes the low-level based
classifiers and presents their performance. In Section IV, we
present the combination schemes used and the results obtained
with fusion methods. In Section V, we discuss the results and
finally, Section VI concludes the paper.

II. EXPERIMENTAL SETUP

In this section, we detail our experimental setup. Our goal
is to experiment with large-scale audio retrieval systems. To
this end, we use the only large-scale audio dataset available,
namely the Million Song Dataset (MSD) [6]. The MSD
contains textual and content-based features computed on one
million songs. It represents a subset of the EchoNest database
(http://echonest.com). Unfortunately, we do not have any in-
formation about the algorithms used to compute the features
of the MSD, and therefore, they are difficult to reproduce.
Moreover, the MSD provides the features only, and no audio
data, making it unusable for computation of new features.
In [7], Schindler et al. proposed the IFSD, another dataset
derived from the MSD, in which they computed new features
on the same songs (e.g. rhythm patterns, low-level features,
etc.), using state of the art reproducible techniques. Note that
the IFSD does not contain exactly one million songs, since the
authors were not able to retrieve the audio data corresponding
to each song of the MSD. However, more than 99% of the
MSD is present in the IFSD (994, 623 songs). In this paper, we

100 100

= - - Spectral centroid
—6— Spectral flux
Random rejector

80 80

= = = Root mean square
—o— Spectral rolloff
Random rejector

60 7 60

Loss rate (%)
<
Loss rate (%)

% A 2

20 < 20 “

100

= = - Spectral variability
—6— Zero crossings
—»%— Compactness
Random rejector

~
Loss rate (%)

40 .

20 40 60 80 100 20 40
Pruning rate (%)

(a)

Pruning rate (%)

(W)

80 100 20 40 60 80 100
Pruning rate (%)

©

Figure 1: Performance of the individual classifiers based on low-level audio features in terms of pruning rate and loss rate using
the IFSD. None of the feature achieves a convenient pruning rate. The zero crossing classifier achieves the best performance.

make use of a subset of the IFSD containing low-level audio
features computed with the JMir extraction framework [13].
For each feature, the authors computed the average value on a
range of analysis windows, as well as the standard deviation.
As we experimentally noticed that the standard deviation
does not bring any improvement over average, we decided
to only use the average values of the features in our work.
For this paper, we used the seven following features: spectral
centroid, spectral rolloff point, spectral flux, compactness,
spectral variability, root mean square and zero crossings. Each
of them is described in [13].

For evaluation, we use the SHSD, which is a subset of the
MSD organized in 4128 cliques. A clique gathers items of the
MSD which are related to the same underlying song. Thus, a
clique contains several versions of the same song, allowing us
to evaluate features in the context of music similarity.

In the next section, we explain how we built classifiers on
top of these low-level features and we show the performance
obtained with these classifiers.

III. ELEMENTARY CLASSIFIERS
A. Rejectors

For each feature of the IFSD, a rejector R takes two tracks
Ty and T» as an input and returns the class similar (C)
or dissimilar (C_). Each rejector is based on one low-level
feature, therefore, we call our rejectors weak rejectors. To
take its decision, a rejector makes use of a probability model
learned using machine learning techniques. For each feature,
we learned a model from the SHSD using the ExtraTrees [12]
algorithm, which is a machine learning technique based on a
forest on randomized trees. The model predicts the probability
P, that two tracks are similar. A rejector next classifies a
pair of tracks in either the class “similar” C, or the class
“dissimilar” C'_ by thresholding the probability computed
with the ExtraTrees algorithm. Each rejector was learned with
a total of 1000 trees. To avoid overfitting of the models,
the depth of the trees is limited and the optimal depth is
found by maximizing the area under the Receiver Operating

Characteristic (ROC). To fit the learning algorithm, we derived
six attributes for each pair of features (f1, 2): min(f1, f2),
maz(f1, f2), abs(f1, f2), abs(f1—f2)/(J1+f2). (F1+2)
and min(f1, f2)/max(f1, f2).

In the next section, we describe our evaluation method using
the IFSD and the SHSD.

B. Evaluation

To evaluate our low-level features based classifiers, we
use the IFSD coupled with the SHSD. For each value of a
threshold T'h and for each clique, we compare each song of the
clique against every song of the IFSD using a rejector. Thus,
for each track T, of a clique, the rejector outputs a decision
§ for the pair (T.,T;), where T; € IFSDsuch thatT; # T..
It should be stressed that the decision § taken by a rejector
is an approximation of the real class value s computed using
the machine learning model. Using the rejector, we can next
compute a pruning rate and a loss rate for a song and for
a clique. The pruning rate corresponds to the mathematical
expectation, over all possible queries, of the proportion of
irrelevant samples from the IFSD that are pruned. We have

(D

The loss rate is the mathematical expectation, over all
possible queries, of the probability to discard all matching
samples in the IFSD. We therefore consider that there is
a loss only if every correspondence to a query has been
dropped from the pruned subset. For a query g, we have
loss(q) = [p(§ = C_|s = C)]“V!, where |c(q)| corresponds
to the size of the clique ¢ belongs to. Thus, the total loss is
computed as follows.

prune =p(§ =C_|s=C_)

loss =Y p(le(g)) =m)[p(3=C_|s =Cy)" (@)
m=1

Each rejector is therefore evaluated in terms of its pruning and
loss rates for a range of values of a threshold T'h. The results
are plotted on prune-loss curves [3].

100

100

= = = AND fusion
—e— ORfusion
Random rejector

ExtraTrees fusion
Random rejector

80 80

60 60

Loss rate (%)
Loss rate (%)

40 40

20 20

= = = Majority Vote fusion

100

= = = Product fusion
—©— Sum fusion
Random rejector

Loss rate (%)

40

40 60
Pruning rate (%)

(a)

100 40

Pruning rate (%)

(W)

80 100 40

0
Pruning rate (%)

©

80 100

Figure 2: Performance of the composite classifiers in terms of pruning rate and loss rate using the IFSD. The improvements
over the individual classifiers are not significant. The best combination is obtained with the product and sum rules.

C. Performance of elementary rejectors

The performance of each classifier is depicted in Figure 1
as prune-loss curves. Each curve is plotted against the random
rejector curve, which takes its decisions completely randomly.
As we can see, the performance of the elementary classifiers
are better than the random rejectors, but clearly, the maximum
pruning rate that can be achieved is quite small (around 20%
of pruning for a maximum loss of less than 10%).

It is important to realize that the used features are very
low-level and do not correspond to any musical feature and
are therefore not much suited for music similarity, as it
appears clearly in Figure 1. They are just weak descriptors
directly computed from the spectrum of the audio signal.
One feature, namely the zero-crossings average value, can
however be related to the overall frequency of the audio signal,
as it corresponds to the number of times the signal crosses
the zero axis. This feature actually performs better than the
other features in our music similarity experiment, as shown in
Figure 1c.

IV. COMPOSITE CLASSIFIERS

In this section, we investigate the combination of our
elementary classifiers and we analyze whether fusion of
classifiers can increase or decrease the performance of the
low-level features for music similarity. We created composite
rejectors using several combination schemes. We analyzed
fusion schemes based on boolean combinations, probabilistic
combinations and one scheme based on machine learning.
Note that composite boolean and probabilistic classifiers make
the assumption that the features are independent.

A. Boolean fusion schemes

1) AND combination: The AND combination corresponds
to the boolean intersection of each individual rejector. The
composite rejector returns C only if every single rejector
returns C, and returns C_ otherwise. The performance of
that combination is shown in Figure 2a.

2) OR combination: The OR combination corresponds to
the boolean union of each individual rejector. The composite
rejector returns C, only if at least one elementary rejector
returns C, and returns C_ otherwise. The performance of
the combination can be seen in Figure 2a.

3) Majority Vote (MV) combination: That combination
scheme returns C'y only if a majority of elementary rejectors
returns C; and returns C_ otherwise. The performance is
depicted in Figure 2b.

The boolean combination producing the best results is the
AND combination, which is followed by the Majority Vote,
and the OR fusion. However, none of the combinations outper-
forms the best results obtained with an elementary classifiers,
namely the zero-crossings classifier.

B. Probabilistic fusion schemes

Probabilistic combination schemes are based directly on
the probability that songs are similar or dissimilar. In these
schemes, the elementary rejectors are therefore slightly mod-
ified to output a probability value rather than a class C; or
C_.

1) Product rule: The product rule multiplies the prob-
abilities of the elementary rejectors and normalizes them
according to [14]. Note that the final probability is thresholded
as explained in Section III-B so that the composite rejector
returns an output class C';. or C_. The composite probability
for seven elementary rejectors is computed as

(e [T p(Cy,)

(e L2 p(Cs £) + 52 [T p(C-, fj)(3)
where f; corresponds to the feature used with rejector j.
According to [15], the product rule is good if the individual
classifiers are independent.

2) Sum rule: The sum rule is equivalent to the product rule,
but it does perform a sum instead of a product. We have

1 7
P+ = §ij
j=1

Px =

4)

100

= = = Product fusion
—©— Zero crossings 4
Random rejector !
1
80
’
’
’
g 60 /2
P G
©
ﬁ 4
3 a0t
20
o i i i i
0 20 40 60 80 100

Pruning rate (%)

Figure 3: The improvement of the product classifier against
the zero crossings classifier is not much significant.

where p; is the probability returned by an elementary classifier.
According to [15], the sum rule can be useful in reducing the
noise in large-sets of weak classifiers. The results obtained
with the product and sum rules are depicted in Figure 2c.
Clearly, best performance is achieved with these combinations,
compared to the other schemes. We can notice that the product
and sum rules produce similar results.

C. Machine learning fusion

We have also investigated a combination technique using
a trained classifier. Instead of using solely the results of
each individual rejector, we built a new composite feature
set derived from each individual feature. Thus, for each of
the seven features, we compute six attributes as explained in
Section III-A, and we store all the 42 values in the dataset.
Based on this new dataset, we computed a composite model
using the ExtraTrees [12] learning algorithm containing 100
trees, and we used it in our evaluation method by thresholding
the resulting probabilities. The performance of the ExtraTrees
composite rejector can be seen in Figure 2b. For lower pruning
rates, it outperforms the Majority Vote fusion scheme. How-
ever, for higher pruning rates, the performance is equivalent
to the Majority Vote scheme. Note however that this classifier
is the slowest one from a computational point of view.

V. DISCUSSION

From our experiments, we can realize that no combination
rule really outperforms the performance obtained with the
zero-crossing elementary classifier, which achieves the best
results. The composite classifier achieving the best perfor-
mance is the product classifier which only outperforms the
zero-crossing rejector slightly, as can be seen in Figure 3.

The small difference between these results could be ex-
plained by the fact that, for some fusion schemes, the com-
bination works under the assumption of independence of
the features, which is hardly the case with our low-level
features. It should be stressed, however, that despite the low
improvements, the product combination rule (and the sum

as well since their results are similar) always produces best
results.

VI. CONCLUSION

In this paper, we presented an evaluation of several low-level
audio features in the context of music similarity. We created
weak-classifiers called rejectors and evaluated elementary and
composite classifiers in a similarity framework, in terms of
pruning and loss rates. The conclusion of our observation
is two-fold: first, the maximum achievable pruning rate with
low-features is small. Clearly, they are not well suited for
similarity measures as we cannot achieve a high pruning with
these features. Secondly, the combination of weak classifiers
does not bring much improvement over elementary classifiers.
Indeed, the best results are obtained with the product and sum
rules, which slightly decrease the loss rate (at a fixed pruning
rate), but not significantly.

However, we believe that the product rule coupled with
stronger features, more related to musical information, such
as chroma features, rhythm patterns of MFCC coefficients,
could lead to a significant increasing of the pruning rate, while
keeping the loss minimal.

REFERENCES

[1] M. Casey and M. Slaney, “Fast recognition of remixed audio,” in Int.
Conf. Acoustics, Speech and Signal Process. (ICASSP), 2007.

[2] F. Kurth and M. Muller, “Efficient index-based audio matching,” Audio,
Speech, and Language Processing, IEEE Transactions on, vol. 16, no. 2,
pp- 382-395, 2008.

[3] J. Osmalskyj, S. Piérard, M. Van Droogenbroeck, and J. Embrechts,
“Efficient database pruning for large-scale cover song recognition,” in
Int. Conf. Acoustics, Speech and Signal Process. (ICASSP), Vancouver,
Canada, May 2013, pp. 714-718.

[4] H. Turtle and J. Flood, “Query evaluation: strategies and optimizations,”
Information Processing & Management, vol. 31, no. 6, pp. 831-850,
1995.

[5] M. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney,
“Content-based music information retrieval: Current directions and fu-
ture challenges,” Proc. of IEEE, vol. 96, no. 4, pp. 668-696, 2008.

[6] T. Bertin-Mahieux, D. Ellis, B. Whitman, and P. Lamere, “The million
song dataset,” in Int. Symp. Music Inform. Retrieval (ISMIR), 2011.

[71 A. Schindler, R. Mayer, and A. Rauber, “Facilitating comprehensive
benchmarking experiments on the million song dataset,” in Int. Symp.
Music Inform. Retrieval (ISMIR), 2012, pp. 469—474.

[8] R. Duin and D. Tax, “Experiments with classifier combining rules,”
in Multiple Classifier Systems, ser. Lecture Notes in Comp. Science.
Springer, 2000, vol. 1857, pp. 16-29.

[9]1 T. Ho, J. Hull, and S. Srihari, “Decision combination in multiple clas-

sifier systems,” IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 16, no. 1, pp. 66-75, Jan. 1994.

L. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms.

Wiley-Interscience, 2004.

L. Kuncheva, J. Bezdek, and R. Duin, “Decision templates for multiple

classifier fusion: an experimental comparison,” Pattern Recognition,

vol. 34, no. 2, pp. 299-314, Feb. 2001.

P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”

Machine Learning, vol. 63, no. 1, pp. 3-42, Apr. 2006.

C. McKay, I. Fujinaga, and P. Depalle, “jaudio: A feature extraction

library,” in Proceedings of the International Conference on Music

Information Retrieval, 2005, pp. 600-3.

J. Kittler, M. Hatef, and R. Duin, “Combining classifiers,” in IEEE Int.

Conf. Pattern Recognition (ICPR), vol. 2, Vienna, Austria, Aug. 1996,

pp. 897-901.

R. Duin, “The combining classifier: to train or not to train?” in /EEE Int.

Conf. Pattern Recognition (ICPR), vol. 2, Quebec City, Canada, Aug.

2002, pp. 765-770.

[10]

[11]

[12]

[13]

[14]

[15]

