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1. Introduction

Nowadays, many diseases as for example HIV/AIDS,
cancer, inflammatory or neurological diseases are seen
by the medical community as being chronic-like dis-
eases, resulting in medical treatments that can last
over very long periods. For treating such diseases,
physicians often adopt explicit, operationalized series
of decision rules specifying how drug types and treat-
ment levels should be administered over time, which
are referred to in the medical community as Dynamic
Treatment Regimes (DTRs). Designing an appropri-
ate DTR for a given disease is a challenging issue.
Among the difficulties encountered, we can mention
the complex dynamics of the human body interacting
with treatments and other environmental factors, as
well as the often poor compliance to treatments due
to the side effects of some of the administered drugs.
While typically DTRs are based on clinical judgment
and medical insight, since a few years the biostatistics
community is investigating a new research field ad-
dressing specifically the problem of inferring in a well
principled way DTRs directly from clinical data gath-
ered from patients under treatment. Among the re-
sults already published in this area, we mention (Mur-
phy, 2005) which uses statistical tools for designing
DTRs for psychotic patients.

2. Problem formulation

One possible approach to infer DTR from the data col-
lected through clinical trials is to formalize this prob-
lem as an optimal control problem for which most
of the information available on the ‘system dynam-
ics’ (the system is here the patient and the input of
the system is the treatment) is ‘hidden’ in the clin-
ical data. This problem has been vastly studied in
Reinforcement Learning (RL), a subfield of machine
learning (see e.g., (Ernst et al., 2005)). Its application
to the DTR problem would consist of processing the
clinical data so as to compute a closed-loop treatment

strategy which takes as inputs all the various clinical
indicators which have been collected from the patients.
Using policies computed in this way may however be
inconvenient for the physicians who may prefer DTRs
based on an as small as possible subset of relevant in-
dicators rather than on the possibly very large set of
variables monitored through the clinical trial. In this
research, we therefore address the problem of deter-
mining a small subset of indicators among a larger set
of candidate ones, in order to infer by RL convenient
decision strategies. Our approach is closely inspired
by work on ‘variable selection’ for supervised learning.

3. Learning from a sample

We assume that the information available for design-
ing DTRs is a sample of discrete-time trajectories of
treated patients, i.e. successive tuples (xt, ut, xt+1),
where xt represents the state of a patient at some
time-step t and lies in an n-dimensional space X of
clinical indicators, ut is an element of the action space
(representing treatments taken by the patient in the
time interval [t, t + 1]), and xt+1 is the state at the
subsequent time-step.

We further suppose that the responses of patients suf-
fering from a specific type of chronic disease all obey
the same discrete-time dynamics:

xt+1 = f(xt, ut, wt) t = 0, 1, . . .

where disturbances wt are generated by the probability
distribution P (w|x, u). Finally, we assume that one
can associate to the state of the patient at time t and to
the action at time t, a reward signal rt = r(xt, ut) ∈ R

which represents the ‘well being’ of the patient over the
time interval [t, t + 1]. Once the choice of the function
rt = r(xt, ut) has been realized (a problem known as
preference elicitation), the problem of finding a ‘good’
DTR may be stated as an optimal control problem
for which one seeks to find a policy which leads to a
sequence of actions u0, u1, . . . , uT−1, which maximizes,



over the time horizon T ∈ N, and for any initial state
the criterion:

R
(u0,u1,...,uT−1)
T (x0) = E

wt
t=0,1,...,T−1

[

T−1
∑

t=0

r(xt, ut)

]

One can show (see e.g., (Ernst et al., 2005)) that there
exists a policy π∗

T : X × [0, . . . , T − 1] → U which
produces such a sequence of actions for any initial state
x0. To characterize these optimal T -stage policies, let
us define iteratively the sequence of state-action value

functions QN : X × U → R, N = 1, . . . , T as follows:

QN (x, u) = E
w

[

r(x, u) + sup
u′∈U

QN−1(f(x, u, w), u′)

]

(1)

with Q0(x, u) = 0 for all (x, u) ∈ X × U . Dy-
namic programming theory implies that, for all t ∈
{1, . . . , T − 1} and x ∈ X , the policy

π⋆
T (t, x) = argmax

u∈U

QT−t(x, u)

is a T-step optimal policy.

Exploiting directly (1) for computing the QN -
functions is not possible in our context since f is
unknown and replaced here by an ensemble of one-

step trajectories F =
{

(xl
t, u

l
t, r

l
t, x

l
t+1)

}#F

l=1
, where

rl
t = r(xl

t, u
l
t). To address this problem, we exploit

the fitted Q iteration algorithm which offers a way
for computing (approximations of) the QN -functions

(Q̂N ) from the sole knowledge of F (Ernst et al., 2005).
Notice that when used with tree based approximators,
as it is the case in this paper, this algorithm offers
good inference performances. Furthermore, we exploit
the particular structure of these tree-based approxi-
mators in order to identify the most relevant clinical
indicators among the n candidate ones.

4. Selection of clinical indicators

As mentioned in Section 2, we propose to find a small
subset of state variables (clinical indicators), the m

(m ≪ n) most relevant ones with respect to a certain
criterion, so as to create an m-dimensional subspace
of X on which DTRs will be computed. The approach
we propose for this exploits the tree structure of the
Q̂N -functions computed by the fitted Q iteration algo-
rithm. More specifically, it evaluates the relevance of
each state variable xi, by the score function:

S(xi) =

∑T

N=1

∑

τ∈Q̂N

∑

ν∈τ δ(ν, xi)∆var(ν)|ν|
∑T

N=1

∑

τ∈Q̂N

∑

ν∈τ ∆var(ν)|ν|

where ν is a nonterminal node in a tree τ (used to

build the ensemble model representing one of the Q̂N -
functions), δ(ν, xi) = 1 if xi is used to split at node

ν and 0 otherwise, ∆var(ν) is the variance reduction
when splitting node ν, and |ν| is the cardinality of the
subset of tuples residing at node ν.

The approach then sorts the state variables xi by de-
creasing values of their score so as to identify the m

most relevant ones. A DTR defined on this subset of
attributes is then computed by running the fitted Q

iteration algorithm again on a ‘modified F ’, where the
state variables of xl

t and xl
t+1 that are not among these

m most relevant ones are discarded.

The algorithm for computing a DTR defined on a small
subset of state variables is thus as follows:
(1) compute the Q̂N -functions (N = 1, . . . , T ) using
the fitted Q iteration algorithm on F ,
(2) compute the score function for each state variable,
and determine the m best ones,

(3) run the fitted Q iteration algorithm on
∼
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where

∼
xt =

∼

Mxt, and
∼

M is a

m×n boolean matrix where
∼
mi,j = 1 if the state vari-

able xj is the i-th most relevant one and 0 otherwise.

5. Preliminary validation

The method has been tested on the ‘car on the hill’
problem, a classical benchmark in RL (Ernst et al.,
2005). This problem, which has a (continuous) state
space of dimension two (the position p and the speed
s of the car), is originally a deterministic problem. We
have added to these variables some non-informative
components so as to set up an experimental protocol.
In our trials, the algorithm described previously was
able to identify s and p as the most informative vari-
ables, which is encouraging for our future work with
real-life clinical data.
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